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We study the polytopic-k-step Fibonacci sequences, the polytopic-k-step Fibonacci sequences
modulo m, and the polytopic-k-step Fibonacci sequences in finite groups. Also, we examine the
periods of the polytopic-k-step Fibonacci sequences in semidihedral group SD2m .

1. Introduction

The well- known k-step Fibonacci sequence {Fk
n} (k ≥ 2) is defined as

F
(k)
0 = 0, . . . , F(k)

k−2 = 0, F
(k)
k−1 = 1,

F
(k)
n+k = F

(k)
n+k−1 + F

(k)
n+k−2 + · · · + F

(k)
n for n ≥ 0.

(1.1)

Let {aj}k−1j=0 (k ≥ 2, ak−1 /= 0) be a sequence of real numbers. A k-generalized Fibonacci se-
quence {Vn}+∞n=0 is defined by the following linear recurrence relation of order k:

Vn+1 = a0Vn + a1Vn−1 + · · · + ak−1Vn−k−1, for n ≥ k − 1, (1.2)

where V0, . . . , Vk−1 are specified by the initial conditions.
The k-step Fibonacci sequence, the k-generalized Fibonacci sequence, and their prop-

erties have been studied by several authors; see, for example, [1–5].
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The k-step Fibonacci sequence is a special case of a sequence which is defined as a
linear combination by Kalman as follows

an+k = c0an + c1an+1 + · · · + ck−1an+k−1, (1.3)

where c0, c1, . . . , ck−1 are real constants. In [6], Kalman derived a number of closed-form
formulas for the generalized sequence by companion matrix method as follows:

Ak =
[
aij
]
k×k =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

c0 c1 c2 · · · ck−2 ck−1

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
...

...

0 0 0 · · · 1 0

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

. (1.4)

Then, by an inductive argument he obtained

An
k

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

a0

a1

...

ak−1

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢
⎢
⎣

an

an+1

...

an+k−1

⎤

⎥⎥
⎥⎥⎥
⎥
⎦

. (1.5)

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions
of a fixed subsequence. The number of elements in the repeating subsequence is called
the period of the sequence. For example, the sequence a, b, c, d, e, b, c, d, e, b, c, d, e, . . . is
periodic after the initial element a and has period 4. A sequence of group elements is simply
periodic with period k if the first k elements in the sequence form a repeating subsequence.
For example, the sequence a, b, c, d, e, f, a, b, c, d, e, f, a, b, c, d, e, f, . . . is simply periodic with
period 6.

Definition 1.1. For a finitely generated group G = 〈A〉, where A = {a1, a2, . . . , an}, the
sequence xi = ai+1, 0 ≤ i ≤ n− 1, xi+n =

∏n
j=1xi+j−1, i ≥ 0, is called the Fibonacci orbit of Gwith

respect to the generating set A, denoted by FA(G). If FA(G) is periodic, then the length of the
period of the sequence is called the Fibonacci length of G with respect to generating set A,
written as LENA(G) [7].

Definition 1.2. For every integer k, where 2 ≤ k ≤ LENA(G), the sequence {yi}∞1 of the
elements of G defined by

yi = xi, i = 1, . . . , k,

yi =
(
yi−k
)α1
(
yi−k+1

)α2 · · · (yi−1
)αk , i ≥ k + 1

(1.6)
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is called a k-step generalized Fibonacci sequence ofG, for some positive integers α1, α2, . . . , αk

[8].

Definition 1.3. A k-nacci sequence in a finite group is a sequence of group elements x0,
x1, x2, x3, . . . , xn, . . . for which, given an initial (seed) set x0, . . . , xj−1, each element is defined
by

xn =

⎧
⎨

⎩

x0x1 · · ·xn−1 for j ≤ n < k,

xn−kxn−k+1 · · ·xn−1 for n ≥ k.
(1.7)

We also require that the initial elements of the sequence, x0, . . . , xj−1, generate the group, thus
forcing the k-nacci sequence to reflect the structure of the group. The k-nacci sequence of a
group G seeded by x0, . . . , xj−1 is denoted by Fk(G;x0, . . . , xj−1) and its period is denoted by
Pk(G;x0, . . . , xj−1) [9].

The Fibonacci sequence, the k-nacci sequence, and the generalized order-k Pell se-
quence in finite groups have been studied by some authors, and different periods of these
sequences in different finite groups have been obtained; see, for example, [7, 9–16].
Formulas which classified according to certain rules for this periods are critical to be used
in cryptography, see, for example, [17–19]. Because the exponents of each term in the
generalized Fibonacci sequence are determined randomly, classification according to certain
rule of periods is resulting from application of this sequence in groups is possible, only
if the exponent of each term are determined integers obtained according to a certain rule.
Therefore, In this paper, by expanding the k-step Fibonacci sequence which is special type of
the generalized Fibonacci sequences with polytopic numbers which are a well-known family
of integers, we conveyed the sequence named the polytopic-k-step Fibonacci sequence that
exponent of n+ tnd term is determined that

(
α+k−t−1

k−t
)
formula to finite groups and named the

polytopic-k-step Fibonacci sequence in finite groups as polytopic-k-nacci sequence. Because
of varying both α and according to the number of step and the exponent of each term of
this is determined according to a certain rule, the polytopic-k-step Fibonacci sequence is
more useful and more general than the k-nacci sequences and the generalized order-k Pell
sequence which varying only by the number of step. So that considered by different α value,
different step values and different initial (seed) sets, different lineer recurrence sequences
which are a special type of generalized Fibonacci sequences occur, and thus by conveying the
polytopic-k-step Fibonacci sequence to finite groups, more useful and more general formulas
than formulas used to obtain periods of the k-nacci and the generalized order-k Pell sequence
in finite groups are obtained to be used in cryptography.

In this paper, the usual notation p is used for a prime number.

2. The Polytopic-k-Step Fibonacci Sequences

The well-known k-topic numbers are defined as

Pk(n) =
n(n + 1)(n + 2) · · · (n + r − 1)

k!
=

(
n + k − 1

k

)

. (2.1)



4 Discrete Dynamics in Nature and Society

When k = 2, the k-topic numbers, Pk(n), are reduced to the triangular numbers. In [20],
Gandhi and Reddy obtained triangular numbers in the generalized Pell sequence {P (α)

n } and
generalized associated Pell sequence {Q(α)

n } which are defined for a fixed α > 0, respectively,
as

P
(α)
0 = 0, P

(α)
1 = 1, P

(α)
n+2 = (α + 1)P (α)

n+1 +
α(α + 1)

2
P
(α)
n for n ≥ 0,

Q
(α)
0 = Q

(α)
1 = 1, Q

(α)
n+2 = (α + 1)Q(α)

n+1 +
α(α + 1)

2
Q

(α)
n for n ≥ 0.

(2.2)

Nowwe define for a fixed integer α > 0, a new sequence called the polytopic-k-step Fibonacci
sequence {F(k,α)

n }, by

F
(k,α)
0 = 0, . . . , F(k,α)

k−2 = 0, F
(k,α)
k−1 = 1,

F
(k,α)
n+k = αF

(k,α)
n+k−1 +

(
α + 1

2

)

F
(k,α)
n+k−2 + · · · +

(
α + k − 2

k − 1

)

F
(k,α)
n+1 +

(
α + k − 1

k

)

F
(k,α)
n for n ≥ 0.

(2.3)

Obviously, if we take α = 1 in (2.3), then this sequence reduces to the well-known k-step
Fibonacci sequence. When α ≥ 2 and k = 2 in (2.3), we call {F(2,α)

n } the polytopic Fibonacci
sequence.

By (2.3), we can write

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎣

F
(k,α)
n+k

F
(k,α)
n+k−1

F
(k,α)
n+k−2
...

F
(k,α)
n+1

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎣

α

(
α + 1

2

)

· · ·
(
α + k − 2

k − 1

) (
α + k − 1

k

)

1 0 · · · 0 0

0 1 · · · 0 0

...
...

...
...

0 0 · · · 1 0

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎦

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎣

F
(k,α)
n+k−1

F
(k,α)
n+k−2

F
(k,α)
n+k−3
...

F
(k,α)
n

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎦

(2.4)

for the polytopic-k-step Fibonacci sequence. Let

M =
[
mij

]
k×k =

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎣

α

(
α + 1

2

)

· · ·
(
α + k − 2

k − 1

) (
α + k − 1

k

)

1 0 · · · 0 0

0 1 · · · 0 0

...
...

...
...

0 0 · · · 1 0

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎦

. (2.5)

The matrix M is called the polytopic-k-step Fibonacci matrix.
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We obtain that the polytopic Fibonacci sequences {F(2,α)
n } are generated by amatrixQα

for a fixed integer α ≥ 2:

Qα =

⎡

⎣α
α(α + 1)

2
1 0

⎤

⎦, (Qα)n =

⎡

⎢
⎣
F
(2,α)
n+1

α(α + 1)
2

F
(2,α)
n

F
(2,α)
n

α(α + 1)
2

F
(2,α)
n−1

⎤

⎥
⎦ (2.6)

which can be proved by mathematical induction.

3. The Polytopic-k-Step Fibonacci Sequences Modulo m

In this section we examine the polytopic-k-step Fibonacci sequences modulom for α ≥ 2 and
k ≥ 2.

Reducing the polytopic-k-step Fibonacci sequence by a modulus m, we can get a re-
peating sequence denoted by

{
F(k,α)(m)

}
=
{
F
(k,α)
0 (m), F(k,α)

1 (m), F(k,α)
2 (m), . . . , F(k,α)

i (m), . . .
}
, (3.1)

where F(k,α)
i (m) = F

(k,α)
i (modm). It has the same recurrence relation as in (2.3).

Theorem 3.1. {F(k,α)(m)} is a periodic sequence for k ≥ 2 and α ≥ 2.

Proof. Let Uk = {(x1, x2, . . . , xk) | 0 ≤ xi ≤ m − 1}. Then we have that |Uk| = mk is finite,
that is, for any a ≥ 0, there exist b ≥ a such that F(k,α)

a+1 (m) ≡ F
(k,α)
b+1 (m), . . . , F(k,α)

a+k (m) ≡
F
(k,α)
b+k (m). From the definition of the polytopic-k-step Fibonacci sequence {F(k,α)

n } we have
F
(k,α)
n+k = αF

(k,α)
n+k−1+

(
α+1
2

)
F
(k,α)
n+k−2+ · · ·+

(
α+k−2
k−1
)
F
(k,α)
n+1 +

(
α+k−1

k

)
F
(k,α)
n , that is,

(
α+k−1

k

)
F
(k,α)
n = F

(k,α)
n+k −

αF
(k,α)
n+k−1 −

(
α+1
2

)
F
(k,α)
n+k−2 − · · · − ( α+k−2k−1

)
F
(k,α)
n+1 . Then we can easily get that F(k,α)

a (m) ≡ F
(k,α)
b

(m),

F
(k,α)
a−1 (m) ≡ F

(k,α)
b−1 (m), . . . , F(k,α)

2 (m) ≡ F
(k,α)
b−a+2(m) and F

(k,α)
1 (m) ≡ F

(k,α)
b−a+1(m), which implies that

{F(k,α)
n } is a periodic sequence.

Let h(α)
k

(m) denote the smallest period of {F(k,α)(m)}, called the period of the poly-
topic-k-step Fibonacci sequence modulom. When k = 2, h(α)

2 (m) is the period of the polytopic
Fibonacci sequence modulom.

Example 3.2. We have {F(3,4)(3)} = {0, 0, 1, 1, 2, 2, 0, 0, 1, . . .} and then repeat. So we get
h
(4)
3 (3) = 6.

By elementary number theory it is easy to prove that ifm =
∏t

i=1p
ei
i , (t ≥ 1), where pi’s

are distinct primes, then h
(α)
k

(m) = Icm[h(α)
k

(peii )].
For a given matrix A = [aij] with aij ’s being integers, A (modm) means that every

entry of A is reduced modulo m, that is, A (modm) = (aij (modm)). Let 〈M〉pa = {Mi (mod
pa) | i ≥ 0} be a cyclic group, and let |〈M〉pa | denote the order of 〈M〉pa with p �

(
α+k−1

k

)
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(where by p �
(
α+k−1

k

)
we mean that

(
α+k−1

k

)
is not divided by p) and T the transpose of a

matrix. It is clear that

(
Mi[1, 0, 0, . . . , 0]T

)T
(modm) =

[
F
(k,α)
i+k−1(m), F(k,α)

i+k−2(m), . . . , F(k,α)
i (m)

]
. (3.2)

We then obtain that h(α)
k

(m) is least positive integer h(α) such that

(
Mh(α)

[1, 0, 0, . . . , 0]T
)T

(modm) = [1, 0, 0, . . . , 0]. (3.3)

Theorem 3.3. Let α ≥ 2. If p �
(
α+k−1

k

)
, then h

(α)
k

(pa) = |〈M〉pa |.

Proof. It is clear that |〈M〉pa | is divisible by h
(α)
k

(pa). Then we need only to prove that h(α)
k

(pa)

is divisible by |〈M〉pa |. Let h(α)
k

(pa) = n. Then we have

Mn =

⎡

⎢
⎢⎢⎢
⎢⎢
⎣

m11 m12 · · · m1k

m21 m22 · · · m2k

...
...

...

mk1 mk2 · · · mkk

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

. (3.4)

The elements of the matrixMn are in the following forms:

m11 = F
(k,α)
n+k−1, m21 = F

(k,α)
n+k−2, . . . , mk1 = F

(k,α)
n ,

mii = β1F
(k,α)
n+k−2 + β2F

(k,α)
n+k−3 + · · · + βk−1F

(k,α)
n + 1, for 2 ≤ i ≤ k, β1, β2, . . . , βk−1 ≥ 0,

mij = η1F
(k,α)
n+k−2 + η2F

(k,α)
n+k−3 + · · · + ηk−1F

(k,α)
n for i /= j, 1 ≤ i ≤ k, 2 ≤ j ≤ k, η1, η2, . . . , ηk−1 ≥ 0.

(3.5)

We thus obtain that

mii ≡ 1
(
mod pa

)
, for 1 ≤ i ≤ k,

mij ≡ 0
(
mod pa

)
, for 1 ≤ i, j ≤ k such that i /= j.

(3.6)

So we get thatMn ≡ I (mod pa), which yields that n is divisible by |〈M〉pa |. We are done.

Theorem 3.4. Let α ≥ 2, and let t be the largest positive integer such that h(α)
k (p) = h

(α)
k (pt). Then

h
(α)
k (pa) = pa−th(α)

k (p) for every a ≥ t. In particular, if h(α)
k (p)/= h

(α)
k (p2), then h(α)

k (pa) = pa−1h(α)
k (p)

holds for every a > 1.
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Proof. Let q be a positive integer. Since Mh
(α)
k

(pq+1) ≡ I (mod pq+1), that is, Mh
(α)
k

(pq+1) ≡ I (mod
pq), we get that h(α)

k
(pq+1) is divided by h

(α)
k

(pq). On the other hand, writing Mh
(α)
k

(pq) = I +

(a(q)
ij pq), we have

Mh
(α)
k (pq)p =

(
I +
(
a
(q)
ij pq

))p
=

p∑

i=0

(
p

i

)(
a
(q)
ij pq

)i ≡ I
(
mod pq+1

)
, (3.7)

which yields that h
(α)
k

(pq)p is divided by h
(α)
k

(pq+1). Therefore, h(α)
k

(pq+1) = h
(α)
k

(pq) or

h
(α)
k (pq+1) = h

(α)
k (pq)p, and the latter holds if, and only if, there is an a

(q)
ij which is not

divisible by p. Since h
(α)
k

(pt)/= h
(α)
k

(pt+1), there is an a
(t+1)
ij which is not divisible by p, thus,

h
(α)
k

(pt+1)/= h
(α)
k

(pt+2). The proof is finished by induction on t.

Conjecture 3.5. Let α ≥ 2. If p ≥ k, then there exists a σ with 0 ≤ σ ≤ k such that (pk+1 − pσ) is
divided by h(α)

k
(p).

Table 1 list some primes for which the conjecture is true when k = 5 and α = 5.

4. The Polytopic-k-Nacci Sequences in Finite Groups

Definition 4.1. For a finitely generated group G = 〈A〉, where A = {a1, a2, . . . , an}, we define
the polytopic Fibonacci orbit Fα

A(G) with respect to the generating set A to be the sequence
{xi} of the elements of G such that

xi = ai+1, for 0 ≤ i ≤ n − 1,

xi+n = (xi)
(
α+n−1

n

)

(xi+1)
(
α+n−2
n−1

)

· · · (xi+n−2)
(
α+1
2

)

(xi+n−1)α, for i ≥ 0,
(4.1)

Example 4.2. Let G = 〈A〉, where A = {a1, a2, a3}. Fα
A(G) is

x0 = a1, x1 = a2, x2 = a3,

xi+3 = (xi)α(α+1)(α+2)/6(xi+1)α(α+1)/2(xi+2)α, for i ≥ 0.
(4.2)

Definition 4.3. A polytopic-k-nacci sequence in a finite group is a sequence of group elements
x0, x1, . . . xn, . . . for which, given an initial (seed) set x0, . . . , xj−1, each element is defined by

xn =

⎧
⎪⎪⎨

⎪⎪⎩

x

(
α+n−1

n

)

0 x

(
α+n−2
n−1

)

1 · · · (xn−1)α for j ≤ n < k,

x

(
α+k−1

k

)

n−k x

(
α+k−2
k−1

)

n−k+1 · · · (xn−1)α for n ≥ k.

(4.3)

It is required that the initial elements of the sequence, x0, . . . , xj−1, generate the group, thus,
forcing the polytopic-k-nacci sequence to reflect the structure of the group. We denote the
polytopic-k-nacci sequence of a group G generated by x0, . . . , xj−1 by Fα

k (G;x0, . . . , xj−1).
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Table 1: The length of h(5)
5 (p).

p h
(5)
5 (p) Result

5 5 h
(5)
5 (p) | p6 − p5

11 80525 h
(5)
5 (p) | p6 − p

13 15372 h
(5)
5 (p) | p6 − 1

23 145992 h
(5)
5 (p) | p6 − 1

29 24388 h
(5)
5 (p) | p6 − p3

31 461760 h
(5)
5 (p) | p6 − p2

43 1749132 h
(5)
5 (p) | p6 − 1

47 1661152 h
(5)
5 (p) | p6 − 1

53 2808 h
(5)
5 (p) | p6 − p4

59 205378 h
(5)
5 (p) | p6 − 1

67 4030224 h
(5)
5 (p) | p6 − p2

73 1419912 h
(5)
5 (p) | p6 − p2

97 44264640 h
(5)
5 (p) | p6 − p2

101 13136325 h
(5)
5 (p) | p6 − 1

223 52856154 h
(5)
5 (p) | p6 − 1

397 78804 h
(5)
5 (p) | p6 − p4

419 12914277518098 h
(5)
5 (p) | p6 − p

523 47685222 h
(5)
5 (p) | p6 − p3

607 16969333200 h
(5)
5 (p) | p6 − p2

719 89206789920 h
(5)
5 (p) | p6 − 1

821 454331269680 h
(5)
5 (p) | p6 − p2

853 529414856880 h
(5)
5 (p) | p6 − p2

1009 518758082640 h
(5)
5 (p) | p6 − 1

1523 2319528 h
(5)
5 (p) | p6 − p4

1613 2601768 h
(5)
5 (p) | p6 − p4

2011 4044120 h
(5)
5 (p) | p6 − p4

3011 27298090330 h
(5)
5 (p) | p6 − p3

4021 262790931413426025 h
(5)
5 (p) | p6 − p

5059 43159140126 h
(5)
5 (p) | p6 − p3

6037 132826492154616 h
(5)
5 (p) | p6 − p2

Example 4.4. Let G = 〈A〉, where A = {a1, a2, a3}. Fα
4 (G; a1, a2, a3) is

x0 = a1, x1 = a2, x2 = a3, x3 = (x0)α(α+1)(α+2)/6(x1)α(α+1)/2(x2)α,

xi+4 = (xi)α(α+1)(α+2)(α+3)/24(xi+1)α(α+1)(α+2)/6(xi+2)α(α+1)/2(xi+3)α for i ≥ 0.
(4.4)

It is important to note that the polytopic Fibonacci orbit of a k-generated group is a polytopic-
k-nacci sequence.

The classic polytopic Fibonacci sequence in the integers modulo m can be written as
Fα
2 (�m; 0, 1).We call a polytopic-2-nacci sequence of a group of elements a polytopic Fibonacci

sequence of a finite group.
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Theorem 4.5. A polytopic-k-nacci sequence in a finite group is periodic.

Proof. The proof is similar to the proof of Theorem 1 in [6] and is omitted.
We denote the period of a polytopic-k-nacci sequence Fα

k
(G;x0, . . . , xj−1) by

Pα
k (G;x0, . . . , xj−1). When α = 1, Fα

k (G;x0, . . . , xj−1) and Pα
k (G;x0, . . . , xj−1) are reduced to

Fk(G;x0, . . . , xj−1) and Pk(G;x0, . . . , xj−1), respectively.
From the definition, it is clear that the period of a polytopic-k-nacci sequence in a

finite group depends on the chosen generating set and the order in which the assignments of
x0, x1, . . . xn−1 are made.

Definition 4.6. LetG be a finite group. If there exists a polytopic-k-nacci sequence of the group
G such that every element of the group G appears in the sequence, then the group G is called
polytopic-k-nacci sequenceable.

It is important to note that the direct product of polytopic-k-nacci sequenceable groups
is not necessarily polytopic-k-nacci sequenceable. Consider that the group C2 ×C4 is defined
by the presentation

〈
x, y | x2 = y4 = e, xy = yx

〉
. (4.5)

The polytopic Fibonacci sequences of the group C2 × C4 for α = 2 are

F2
2

(
C2 × C4;x, y

)
= x, y, xy2, y3, x, y, . . . ,

F2
2

(
C2 × C4;y, x

)
= y, x, y3, xy2, y, x, . . . .

(4.6)

Since the elements e, xy, and xy3 do not in either sequences, the group C2 × C4 is not
polytopic-2-nacci sequenceable.

The group 〈x〉 has a polytopic Fibonacci sequence

F2
2(〈x〉; e, x) = e, x, e, x, . . . (4.7)

and hence is polytopic-2-nacci sequenceable. The group 〈y〉 has a polytopic Fibonacci
sequence

F2
2
(〈
y
〉
; e, y

)
= e, y, y2, y3, e, y, . . . (4.8)

and hence is polytopic-2-nacci sequenceable.
We will now address the periods of the polytopic-k-nacci sequences in specific classes

of groups. A group SD2m is semidihedral group of order 2m if

SD2m =
〈
a, b | a2m−1

= b2 = e, b−1ab = a−1+2m−2〉
(4.9)

for everym ≥ 4. Note that the orders a and b are 2m−1 and 2, respectively.
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Theorem 4.7. The periods of the polytopic-k-nacci sequences in the group SD2m for initial (seed) set,
a, b, and α = 2 are as follows:

(i) P 2
k
(SD2m ; a, b) = h

(2)
k
(2m−2), for 2 ≤ k ≤ 4.

(ii) P 2
k
(SD2m ; a, b) = h

(2)
k
(2m−1), for k ≥ 5.

Proof. (i) If k = 2, we have the polytopic-2-nacci sequence for α = 2 :

x0 = a, x1 = b, x2 = a3, x3 = a(2m−2−1)·2·3b,

x4 = a32 , x5 = a(2m−2−1)·2·3+(2m−2−1)·2·32b, . . . ,

x2m−2 = a32
m−3

, x2m−2+1 = a(2m−2−1)·2·3+(2m−2−1)·2·32+···+(2m−2−1)·2·32m−3
b, . . . .

(4.10)

By mathematical induction, it is easy to prove that

32
m−3 ≡ 1

(
mod 2m−1

)
,
(
2m−2 − 1

)
· 2 · 3 +

(
2m−2 − 1

)
· 2 · 32

+ · · · +
(
2m−2 − 1

)
· 2 · 32m−3 ≡ 0

(
mod 2m−1

)
.

(4.11)

So we get x2m−2 = a32
m−3

= a, x2m−2+1 = a(2m−2−1)·2·3+(2m−2−1)·2·32+···+(2m−2−1)·2·32m−3
b = b. It is easy to

see that h(2)
2 (2m−2) = 2m−3 · h(2)

2 (2) = 2m−3 · 2 = 2m−2. Since the elements succeeding x
h
(2)
2 (2m−2),

x
h
(2)
2 (2m−2)+1, depend on a and b for their values, the cycle begins again with the h

(2)
2 (2m−2)nd,

that is, x
h
(2)
2 (2m−2) = x0 and x

h
(2)
2 (2m−2)+1 = x1. Thus, the period of F2

2(SD2m ; a, b) is h(2)
2 (2m−2).

If k = 3, we have the polytopic-3-nacci sequence for α = 2:

x0 = a, x1 = b, x2 = a3, x3 = a4+(2m−2−1)·2·3b, x4 = a32 ,

x5 = a3·4+4+(2m−2−1)·2·3+(2m−2−1)·2·32b, x6 = a33 , . . . ,

x2m−2 = a32
m−3

, x2m−2+1 = a32
m−3−1·4+32m−3−2·4+···+4+(2m−2−1)·2·3+(2m−2−1)·2·32+···+(2m−2−1)·2·32m−3

b,

x2m−2+2 = a32
m−3+1 · · · .

(4.12)

By mathematical induction, it is easy to prove that 32
m−3−1 · 4 + 32

m−3−2 · 4 + · · · +

4 ≡ 0 (mod2m−1), 32
m−3+1 ≡ 3 (mod2m−1). So we get x2m−2 = a32

m−3
= a, x2m−2+1 =

a32
m−3−1·4+32m−3−2·4+···+4+(2m−2−1)·2·3+(2m−2−1)·2·32+···+(2m−2−1)·2·32m−3

b = b, x2m−2+2 = a32
m−3+1

= a3. It is easy
to see that h

(2)
3 (2m−2) = 2m−3 · h(2)

3 (2) = 2m−3 · 2 = 2m−2. Since the elements succeeding
x
h
(2)
3 (2m−2), xh

(2)
3 (2m−2)+1, xh

(2)
3 (2m−2)+2 depend on a, b, and a3 for their values, the cycle begins again

with h
(2)
3 (2m−2)nd, that is x

h
(2)
3 (2m−2) = x0, xh

(2)
3 (2m−2)+1 = x1, and x

h
(2)
3 (2m−2)+1 = x2. Thus, the period

of F2
3(SD2m ; a, b) is h

(2)
3 (2m−2). The proof for k = 4 is similar and is omitted.
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(ii) If k ≥ 5, we have the polytopic-k-nacci sequence for α = 2 :

x0 = a, x1 = b, x2 = a3, x3 = a2m−1−2b, x4 = a14,

x5 = au1 , x6 = au2 , . . . , xk = auk−4 ,

x4h(2)
k (2) = a25, x4h(2)

k (2)+1 = a8b, x4h(2)
k (2)+2 = a27,

x4h(2)
k (2)+3 = a2m−1−2b, x4h(2)

k (2)+4 = a30,

x4h(2)
k

(2)+5 = au1+8·λ1 , x4h(2)
k
(2)+6 = au2+8·λ2 , . . . , x4h(2)

k
(2)+k = auk−4+8·λk−4 , . . . ,

x
i·4h(2)

k (2) = a1+24·i, x
i·4h(2)

k (2)+1 = a8·ib, x
i.4h(2)

k (2)+2 = a3+24·i,

x
i·4h(2)

k
(2)+3 = a2m−1−2b, x

i·4h(2)
k
(2)+4 = a14+16·i, x

i·4h(2)
k
(2)+5 = au1+8·i·λ1 ,

x
i·4h(2)

k (2)+6 = au2+8·i·λ2 , . . . , x
i·4h(2)

k (2)+k = auk−4+8·i·λk−4 , . . . ,

(4.13)

where λ1, . . . , λk−4 are natural numbers and u1, . . . , uk−4 are even natural numbers. So we need
the smallest i ∈ � such that 8 · i = 2m−1. If we choose i = 2m−4, we obtain x

h
(2)
k (2m−1) = a =

x0,xh
(2)
k
(2m−1)+1 = b = x1,xh

(2)
k
(2m−1)+2 = a3 = x2, xh

(2)
k

(2m−1)+3 = a2m−1−2b = x3, xh
(2)
k
(2m−1)+4 = a14 = x4,

x
h
(2)
k (2m−1)+5 = au1 = x5, xh

(2)
k (2m−1)+6 = au2 = x6, . . ., xh

(2)
k (2m−1)+k = auk−4 = xk since 2m−2 · h(2)

k
(2) =

h
(2)
k (2m−1). So we get P 2

k (SD2m ; a, b) = h
(2)
k (2m−1) for k ≥ 5.

Theorem 4.8. The periods of the the polytopic-k-nacci sequences in the group SD2m for initial (seed)
sets b, a, and α = 2 are as follows:

(i) P 2
k
(SD2m ; b, a) = h

(2)
k
(2m−2) for 2 ≤ k ≤ 3,

(ii) P 2
k
(SD2m ; b, a) = h

(2)
k
(2m−1) for k ≥ 4.

Proof. The proof is similar to the proof of Theorem 4.5 and is omitted.
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