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We investigate the structure of the chaotic domain of a specific one-dimensional piecewise linear
map with one discontinuity. In this system, the region of “robust” chaos is embedded between two
periodic domains. One of them is organized by the period-adding scenario whereas the other one
by the period-increment scenario with coexisting attractors. In the chaotic domain, the influence
of both adjacent periodic domains leads to the coexistence of the recently discovered bandcount
adding and bandcount-increment scenarios. In this work, we focus on the explanation of the
overall structure of the chaotic domain and a description of the bandcount adding and bandcount
increment scenarios.

1. Introduction

Piecewise smooth maps are in the meanwhile known to be appropriate models of
many dynamical processes in science and technology as mentioned already in textbooks
on this topic [1–4]. Standard examples mentioned in these books are from the fields
of electronics, mechatronics, and mechanics like power converters, impacting systems,
systems with suspensions, gears, transmissions, or ball bearings. Additionally to these
usual applications further examples range from systems in micro- and nanotechnology, in
particular piezoelectric energy harvesting devices and devices using piezoelectric or other
micro-machined actuators [5, 6] to generate movement or propulsion in a very precise
manner, up to several models [7–9] of the famous Fermi accelerator [10] as a possible
explanation of high-energetic cosmic radiation. Furthermore they occur naturally as one-
or two-dimensional Poincaré maps of corresponding time continuous flows [11–13]. The
inherent state space reduction allows in many cases a much more efficient investigation
of the dynamic behavior than the original flow. In this work we investigate a specific
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one-dimensional piecewise linear map derived from the “canonical form” [14] of one-
dimensional piecewise linear maps with a single discontinuity. Since the pioneer works
[15, 16], it is known that the system

xn+1 =

⎧
⎨

⎩

f�(xn) = axn + μ, if xn < 0,

fr(xn) = bxn + μ + l, if xn > 0
(1.1)

represents some kind of discontinuous canonical form for border-collision bifurcations. It can
be shown [17] that for the dynamic behavior of this system the exact value of the parameter
l is not significant but only the sign of l, so there are three characteristic cases l < 0, l > 0 and
l = 0. The first two cases represent discontinuous maps having a positive or negative jump,
respectively. The third case represents the skew tent map, a continuous map with different
slopes of the system function on the left- and right-hand side of the point of discontinuity.
This map was investigated since the pioneer works by Maistrenko et al. [18, 19] and by many
authors (see, e.g., references in [3, 4]).

The case of the negative jump has already been studied in several works, both in the
regular (periodic or aperiodic but not chaotic) and in the chaotic domain. In these works,
it was discovered that an extended part of the regular domain of the negative jump case is
structured by a bifurcation scenario denoted as period increment scenario with coexisting
attractors while the adjacent chaotic domain is structured by the bandcount-increment
bifurcation scenario [20–22]. The first scenario is formed by border collision bifurcations
where an attracting periodic orbit collides with the point of discontinuity and disappears,
so that after the bifurcation the system evolves to a different attractor. By contrast, the
second scenario is formed by crisis bifurcations. Here, before and after the bifurcation the
system shows chaotic behavior. However, at the bifurcation point the structure of the chaotic
attractor, especially the number of bands (connected components, also known as cyclic
chaotic intervals) changes. The remaining part of the periodic domain of the negative jump
case was found to be structured by the period adding bifurcation scenario and the adjacent
chaotic domain by the bandcount-adding bifurcation scenario [17, 23].

To avoid misunderstandings, note that the notation “period adding” is used in the
literature for different bifurcation scenarios. In this work we use a notation based on the
fact that there exists a bifurcation structure where the periods of subsequent periodic orbits
form an arithmetic progression: pn+1 = pn + Δp = p0 + nΔp. It is known that three different
cases are possible. In the first case the existence regions of the orbits with periods pn and
pn+1 overlap (see Figure 1(a)) and we denote this bifurcation scenario as period increment
scenario with coexistence of attractors. In the second case the existence regions of the orbits
with periods pn and pn+1 adjoin each other without overlapping and without a gap between
them. Accordingly, we denote this situation as pure period increment scenario. In the last case
the situation is more complex. There is a gap between the existence regions of two subsequent
periodic orbits and the behavior in these gaps can be either periodic or chaotic. In the first
case one well-known situation is given by the self-similar Farey-tree like bifurcation structure
where between the existence regions of two periodic orbits with periods pn and pn+1 there
exists a region with period pn+pn+1 and so on ad infinitum (see Figure 1(b)). In the following
we denote this scenario as period adding scenario.
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Figure 1: The period increment scenario with coexisting attractors (a) and the period adding scenario (b)
in map (1.3). For each scenario three sketches of the map, a bifurcation diagram and a period diagram are
shown. Parameter values are: a = 0.42, μ = 3.5 (a) and a = −0.42, μ = 3.5 (b). Their locations are shown in
Figure 2 with gray lines marked with “D” and “E”.

In this work we study the case of the positive jump, which can be transformed into a
standard form, which simplifies analysis. For any l > 0 the transformation

(
x, a, b, μ

)

-−→ (
lx′, a, b, lμ′) (1.2)
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leads us (by dropping the prime) to the map

xn+1 =

⎧
⎨

⎩

f�(xn) = axn + μ, if xn < 0,

fr(xn) = bxn + μ + 1, if xn > 0,
(1.3)

which we will investigate in the following and which can be seen as a canonical form of
discontinuous linear maps with a positive jump.

The domain of regular dynamics of map (1.3) was investigated in [24]. In this work
it was shown that this system has a domain of “robust” chaos (in the sense of Banerjee et
al. [25]) embedded between the two regular domains. However, the structure of the chaotic
domain of this system was not investigated.

The first results related to bifurcations occurring in the chaotic domain are going back
to the works by Mira and Gumowski [26–30]. Already in the 60s they discovered a large
class of bifurcations, called contact bifurcations, which result from contacts of two invariant
sets. These bifurcations were later rediscovered by Grebogi et al. in the beginning of the
80s [31, 32] and denoted as crises bifurcations. Obviously, if one of the involved invariant
sets is given by a chaotic attractor, then a contact bifurcation represents a crisis in the sense
mentioned above, so the crises represent a subclass of contact bifurcations. Since then crises
bifurcations were observed and investigated in several application fields [33–38]. However,
the bifurcation structure formed only by crises bifurcations and organizing the robust chaotic
domain are barely investigated so far.

Examples of such bifurcation structures were recently reported in [20–23]. There it is
shown, that the structure of the chaotic domain is strongly influenced by the structure of
the adjacent periodic domain. If this adjacent periodic domain is structured by the period
adding scenario in the sense mentioned above, then the robust chaotic domain is structured
by the bandcount-adding scenario. By contrast, in the case of an adjacent periodic increment
scenario with coexistence of attractors the chaotic domain is structured by the bandcount-
increment scenario.

By contrast to the situations investigated in the citedworkswhere the domain of robust
chaos is located between regular and divergent domains, the results shown in [24] imply that
in map (1.3) the chaotic domain is sandwiched between two regular domains, one of them
organized by the period adding scenario and the other one by the periodic increment scenario
with coexistence of attractors. Therefore, one can assume that in this case the chaotic domain
is organized by both, bandcount-adding and bandcount-increment scenarios. This fact will
be demonstrated in the paper.

Furthermore, the question arises whether there is any interaction between the
scenarios. Is it possible, that the unstable periodic orbits which induce one of the bandcount
scenarios lead to changes in the other bandcount scenario? Can the scenarios overlap? Is
the complete chaotic domain between period adding and period increment covered by their
bandcount counterparts, or is there a region which is structured by neither of them? Also,
apart from any possible interaction, it is interesting to see if there are significant differences
in the bandcount scenarios as they occur in system (1.3), and the previously discovered ones.
In this work, we examine in which regions in parameter space the bandcount-adding and
increment scenarios exist and we examine each scenario to determine if any interaction takes
place.

This work is structured as follows. After this introduction, we explain in Section 2
symbolic sequences and kneading orbits, which are two important technical concepts
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required for the understanding of this work. In Section 3 we describe the investigated region
in parameter space and the big bang bifurcations structuring this region. In Section 4 we
summarize the structure of the periodic domain by explaining in short the period adding
and the period increment scenarios. In Section 5 we give an overview over the structure of
the chaotic domain. It consists of three different regions, Qadd, Qinc, and Q1. The boundaries
separating these three regions are explained in Section 5.1 and their properties are described
in Section 5.2, whereas the following sections describe the bifurcation structure inside the
regions Qadd and Qinc. In Section 6, the bandcount-adding region Qadd is described, whereby
Section 6.1 is devoted to the overall bandcount-adding structure and Section 6.2 to its nested-
substructures. The boundary between period adding and bandcount-adding shows some
interesting behavior, which is described in Section 7. Finally, in Section 8, we give an overview
over the region Qinc and the bandcount increment structure located therein.

2. Symbolic Sequences and Kneading Orbits

Important for all descriptions that involve periodic orbits is the concept of symbolic
sequences [39]. A symbolic sequence is a sequence of the letters L and R, each representing
a single point of an orbit. L stands for a point x < 0 and R for a point x > 0. Note that
when dealing with periodic orbits, only the symbols necessary for describing one period will
be written and hence the symbolic sequences are shift-invariant. We denote a periodic orbit
which corresponds to the symbolic sequence σ as Oσ .

The chaotic domain of map (1.1) in the case l = +1 is organized in a similar way
as in the above-mentioned case l = −1. This means it is structured by interior and band-
merging crises. Note that we refer to the band-merging crisis as “crisis”, even though there is
no discontinuous change in the overall size of the attractor. Instead, there is a discontinuous
change in the number of bands of the attractor and consequently also in its topological
structure.

Both interior and merging crisis share the property that they can be determined
by calculating the intersection of a point of the colliding unstable periodic orbit with the
boundary of the chaotic attractor. For that, one has to determine the boundary of a chaotic
attractor. This is done using kneading theory by following up kneading orbits, that means
the forward iterates or itineraries of the critical points. We remark that this idea is going
back to the works by Gumowski and Mira [28, 29]. Already in 1977 they recognized that
the boundaries of chaotic attractors in 2D maps are given by itineraries of some critical lines
(lignes critiques). For details we refer to [40]. Of course, when dealing with 1D maps, these
critical lines represent critical points and their itineraries define the kneading orbits.

Following this idea, a kneading orbit is an orbit started at a critical value of the system
function, which is given for system (1.3) by x = 0. It has the property of jumping between the
maxima and minima of the bands of a chaotic attractor, until it reaches a specific length, after
which it leaves the boundaries of the attractor. Because system (1.3) is discontinuous at the
critical point x = 0, there exist two different kneading orbits, one beginning with fl(0) and
the other beginning with fr(0).

For the kneading orbits we use the following compact notation. A point of a kneading
orbit given by fa ◦ fb ◦ fc ◦ fd ◦ · · · ◦ fz(0), with a, b, c, d, z ∈ {r/�}, is written as xko

z···dcba. This
means that the sequence of iteration steps leading to this point starts with fz(0) and ends
with fa(xko

z···dcb). This is similar to the symbolic sequences used for periodic orbits. Note that
the sequences used for kneading orbits are not shift-invariant.
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3. Investigated Parameter Space Region and Big Bang Bifurcations

The periodic dynamics of system (1.3) is investigated in [24]. It is shown in this work that the
periodic domain of system (1.3) is organized by four codimension-3 big bang bifurcations.
A big bang bifurcation point in a n-dimensional parameter space is an intersection point of
infinitely many (n−1)-dimensional bifurcation surfaces. The periods and symbolic sequences
of the periodic orbits existing between these bifurcation surfaces are organized by a rule
specific to the type of the big bang bifurcation. A big bang bifurcation point has an influence
region which is composed of the union of the existence regions of all its periodic orbits. So by
determining the location and type of a big bang bifurcation point, the structure of its complete
influence region can be determined as well. The codimension-3 big bang bifurcation points
found in system (1.3) are of the specific type initially described in [41]. A bifurcation point B
of this type possesses an extended influence regionΩ(B) in the 3D parameter space, which is
organized by two manifolds, a 2D manifold M2D(B) and a 1D manifold M1D(B). Within the
influence region Ω(B) the bifurcation structure above the 2D manifold M2D(B) is given by
the period adding phenomenon. We denote the corresponding part of Ω(B) by Ωadd(B). In
the 2D manifold the structure is given by the pure period increment phenomenon and below
M2D(B) by the period increment phenomenon with coexisting attractors. The part of Ω(B)
organized by the period increment phenomenon with coexisting attractors is denoted in the
following by Ωinc(B). Hereby the terms “above” and “below” refer to the direction of the 1D
manifold M1D(B).

An inherent property of system (1.3), which is reflected in the structure of its
parameter space, is given by the symmetry

f
(
a, b, μ, x

)
= −f(b, a,−(μ + 1

)
,−x). (3.1)

This symmetry implies that the bifurcations occur in this system pairwise and generate
identical structures in the parts of the parameter space, which can be mapped onto each
other by (3.1). Therefore, it is sufficient to consider only two of the codimension-3 big bang
bifurcations organizing the 3D parameter space of system (1.3).

In [24] it is shown that the region in the parameter space given by

P =
{(

a, b, μ
) | |a| < 1, b < −1, μ ≥ 0

}
(3.2)

is organized by two codimension-3 big bang bifurcations occurring at the points

B1 = (0,−1, 0), B2 = (0,−1,∞). (3.3)

The two other codimension-3 big bang bifurcations occur at the points

B′
1 = (−1, 0,−1), B′

2 = (−1, 0,−∞) (3.4)

and organize the part of the parameter space symmetric to P with respect to the symmetry
(3.1). If |a| > 1, there exist no stable periodic orbits for all values of b and μ in P . As we
concern ourselves in this work with the part of the parameter space which is located between
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Figure 2: Numerically calculated bifurcation structures in the (b, μ)-plane for a = −0.42 (a), a = 0 (b),
a = 0.42 (c), and b = −2.0 · · · − 1.0, μ = 0 · · · 3.6. The gray areas in (a) and (c) mark the chaotic domain Qch.
The dashed lines in (a) and (c) show the locations of the bifurcation scenarios, shown in Figures 1, 3, and
5.



8 Discrete Dynamics in Nature and Society

μ

x

2.35

−1.95
1.50

τenv

(a)

μ

3.75

−0.85
3

x

0

τenv

(b)

Figure 3: Numerically calculated bifurcation diagrams for a = −0.42, b = −1.8, μ = 0 · · · 1.5 (a) and a =
−0.42, b = −1.195, μ = 0 · · · 3.0 (b). Both show similar structures in the left part, while they are significantly
different in the right part. The location of these scans in the (b, μ)-plane is shown in Figure 2(c)with dashed
lines. The line A corresponds to (a) and the line C to (b).

the two periodic scenarios in system (1.3), we do not investigate this part of the parameter
space and restrict our investigation to region (3.2).

Figure 2 shows the bifurcation structure of the region P in three characteristic cases
a < 0, a = 0 and a > 0. As one can see, in the case a = 0 the complete (b, μ)-plane is covered
by the periodic domain, which is in this case formed by M2D(B1) and M2D(B2). By contrast,
in both cases a < 0 and a > 0 there is a chaotic domain Qch (characterized by a positive
Lyapunov exponent) located between the influence regions of B1 and B2. As one can see
in Figure 3, the chaotic domain Qch has a complex interior structure formed by both one-
band and multiband chaotic attractors. However, in [24] this structure is not investigated.
Therefore the question arises, which bifurcation phenomena form the interior structure of the
chaotic domain.

It is worth noticing that the above-mentioned question in the case of the negative
jump of the system function (l = −1) is already investigated. The behavior close to the
boundary between the period adding structure and the chaotic domain is reported in [23].
The map considered in this work is equivalent to a special case of map (1.1) with identical
slopes a and b. However, the obtained results are also valid for any values of a and b. It is
shown in the cited work that the chaotic domain is organized in this case by the bandcount-
adding scenario, which is formed by interior crises [31]. A part of these crises is caused
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by the unstable periodic orbits originating from the periodic domain where they are stable
and organized by the period adding scenario. Additionally, the interior substructures of the
bandcount-adding scenario are formed by interior crises caused by periodic orbits, which are
everywhere unstable. Since map (1.3) shows also a transition from period adding to chaos,
it can be expected, that the chaotic domain is in this case also organized by the bandcount-
adding scenario.

The behavior close to the transition from the periodic domain organized by the period
increment scenario with coexisting attractors to chaos for map (1.1) in the case l = −1 is
investigated in a series of works [20–22]. It is shown that the structure of the chaotic domain
is organized in this case by two types of crises, namely band-merging crises and interior
crises. The unstable periodic orbits originating from the periodic domain lead to band-
merging crises organized by the bandcount-increment scenario, whereas the everywhere
unstable orbits lead to interior crises forming the interior substructures of this scenario.
The bandcount-increment scenario is significantly more complex than the bandcount-adding
scenario and is closely related to the composite and nonsmooth shape of the boundary
between periodic and chaotic domain. In contrast to the case of the bandcount-adding
scenario where this boundary represents a smooth surface, in the case of the bandcount-
increment scenario the boundary is given by segments of bifurcation surfaces of two types
(border-collision bifurcations and degenerated flip bifurcations). Therefore, the question
arises, up to which extent the results obtained for the case l = −1 can be adopted also for
the case l = +1 considered in the present work.

4. Periodic Domain

As the bifurcation structure of the chaotic domain is influenced by the periodic orbits, which
exist in the adjacent periodic domain, let us recall some results related to the bifurcation
structure of this periodic domain. For a more detailed description we refer to [24].

As mentioned above, the periodic domain of system (1.3) in the region P of the
parameter space is organized by two codimension-3 big bang bifurcation points, B1 and B2

(see Figure 2). In the case a = 0 the influence region of each of these points consists of a two-
dimensional manifold, which together cover the complete (b, μ)-plane and are both organized
by the pure period increment scenario. The boundary between the manifolds M2D(B1) and
M2D(B2) is given by the curve

τ∞ =
{
(
a, b, μ

) | a = 0, b < −1, μ = −1
b

}

, (4.1)

which is shown in Figure 2(b).
Below τ∞ the influence region of the big bang point B1 is located. It consists of an

infinite number of stability regions of periodic orbits with odd periods, beginning with
Ps
LR2 and continuing with Ps

LR2n for n > 1. Above τ∞, the influence region of the big
bang bifurcation point B2 is located. It is structured similarly to the influence region of B1,
consisting of an infinite number of stability regions of periodic orbits with even periods,
beginning with Ps

LR and continuing with Ps
LR2n+1 for n > 1.

In the case a/= 0, Ω(B1) as well as Ω(B2) are no longer structured by the pure period
increment scenario. Note that, however, both regions still contain the stability regions of the
same orbits as before. In the case a > 0, Ω(B2) is structured by the period increment scenario
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with coexisting attractors. Since system (1.3) is piecewise linear and has only one point of
discontinuity, at most two attractors may coexist. In this case, this means that the regions
Ps
LR2n+1 overlap pairwise. The region Ω(B1) is structured by the period adding scenario, that

means between two subsequent regions Ps
LR2n and Ps

LR2n+2 there is some free space where the
stability regions of the orbits are located, which can be generated by the infinite symbolic
sequence adding scheme. Note that the infinite symbolic sequence adding scheme can be
considered as a symbolic representation of the well-known Farey-tree [39, 42, 43], which is
a subtree of the Stern-Brocot-tree [44, 45]. In the case a < 0 the situation is reversed, with
Ω(B2) structured by the period adding scenario andΩ(B1) structured by the period increment
scenario with coexisting attractors. In both cases, the chaotic domain appears between the
two influence regions, centered at the former location of the curve τ∞. For |a| → 1, both
influence regions Ω(B1) and Ω(B2) shrink and their boundaries move away from each other
in the direction of the respective big bang bifurcation points. Since the bifurcation scenarios
in both cases a > 0 and a < 0 are identical, we consider in the following only the case a > 0.

For the analytical calculations in the following we will need some periodic orbits of
system (1.3). It can be easily seen that system (1.3) has at most two fixed points, however
only the fixed point

xR =
μ + 1
1 − b

(4.2)

exists in the parameter space region P . Since we consider b < −1, the fixed point xR is
unstable.

The existence regions of the (n + 1)-periodic orbits OLRn are bounded by the surfaces
of border collision bifurcations where the involved orbit collides with the boundary x = 0
from the left with its first point xLRn

0 and from the right with its next to last point xLRn

n−1 . In
the following these surfaces will be denoted by ξ0,�LRn and ξn−1,rLRn , respectively. As system (1.3)
is piecewise linear, the orbits OLRn and hence the border collision bifurcation surfaces can be
calculated analytically for all n > 0. The colliding points xLRn

0 and xLRn

n−1 are:

xLRn

0 = −
(
bn+1 − 1

)
μ + (bn − 1)

(abn − 1)(b − 1)
,

xLRn

n−1 = abn−2x0 +

(
bn−1 − 1

)
μ +

(
bn−2 − 1

)

b − 1
.

(4.3)

(see [24]) The conditions xLRn

0 = 0 and xLRn

n−1 = 0 lead us to the following expressions for the
border collision bifurcation surfaces ξ0,�LRn and ξn−1,rLRn . These expressions are valid regardless to
which influence regionΩ(B1,2) the corresponding border collision bifurcation surfaces belong
and in which bifurcation scenarios these surfaces are involved in

ξ0,�LRn =
{
(
a, b, μ

) | |a| < 1, b < −1, μ = − bn − 1
bn+1 − 1

}

, (4.4)

ξn−1,rLRn =

{
(
a, b, μ

) | |a| < 1, b < −1, μ = −b
n−2(1 − a) − 1 + abn

bn−2(b − a) − 1 + abn

}

. (4.5)
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The orbits OLRn are not everywhere stable in their existence regions PLRn . The boundary
between the region in which an orbit OLRn is stable and the region in which it is unstable is
given by one of the bifurcation subspaces

θ±
LRn =

{(
a, b, μ

) | abn = ±1}. (4.6)

Note that an orbit OLRn involved in the period increment scenario with coexisting attractors
(that means with odd n for a > 0 and even n for a < 0) becomes unstable via degenerated
flip bifurcation [46] at the boundary θ−

LRn . By contrast, an orbit OLRn involved in the period
adding scenario (with odd n for a < 0 and even n for a > 0) becomes unstable at the boundary
θ+
LRn . Note that θ+

LRn represents a codimension-2 bifurcation given by the intersection curve
of the bifurcation surfaces ξ0,�LRn and ξn−1,rLRn located at the surface τenv (for details see [47]).

When dealing with the period increment scenario with coexisting attractors, it is
necessary to know, which boundaries of its regions correspond to which border collision
bifurcations. In the case a > 0 the upper boundary of the region PLR2n+1 is given by the surface
ξn−1,rLRn and the lower boundary by the surface ξ0,�LRn .

As one can see in Figure 2(c) the surfaces detected so far form the boundary between
Ωinc(B2) and the chaotic domain. In the case a > 0 this boundary consists of pieces of the
border collision bifurcation surfaces ξ0,�LRn and pieces of the stability boundaries θ−

LR2n+1 . The
boundary between the regionΩadd(B1) and the chaotic domain is given by the smooth surface

τenv =
{
(
a, b, μ

) | |a| < 1, b < −1, μ =
1 − a

a − b

}

, (4.7)

which follows from the condition f�(fr(0)) = fr(f�(0)). Note that τenv ≡ τ∞ for a = 0.

5. General Properties of the Chaotic Domain

Continuing the work reported in [24], we investigate the structure of (b, μ) parameter
subspace of system (1.3) for specific values of a. Typical examples for the bifurcation
scenarios calculated numerically by varying μ are shown in Figure 3. The presented examples
correspond to the lines marked with A and C in Figure 2(c). Note that the bifurcation
scenarios, which can be obtained for other values of a and b are in the most cases similar
to the presented examples.

As one can see, both diagrams have parts that are similar to each other, and parts
which differ. In the left part of both diagrams we observe the period adding structure
already mentioned in Section 4. For increasing values of μ there is a region which apparently
contains a two-band chaotic attractor, that is interspersed with chaotic attractors with higher
bandcounts. Increasing μ further, we observe a crisis bifurcation where the bands of the
two-band attractor merge and an one-band attractor emerges. Afterwards the two diagrams
begin to differ. In Figure 3(a), the one-band attractor persists until the dynamic becomes
periodic again at the boundary between chaotic domain and the region organized by the
period increment scenario with coexisting attractors as mentioned in Section 4. In Figure 3(b),
however, one more crisis bifurcation leads to the appearance of another two-band chaotic
attractor. Like the two-band attractor next to the period adding scenario, this attractor is
interrupted by chaotic attractors with higher bandcounts. The crises, which induce these
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Figure 4:Numerically calculated bandcount diagrams in the 2D parameter space for a = 0.42 (a), a = −0.42
(b) and b = −2.0 · · · − 1.0, μ = 0 · · · 3.6, showing the basic bifurcation structure of the chaotic domain. The
periodic domain is colored white, the chaotic domain in various shades of gray. The gray tones represent
the bandcount of the regions, calculated using the numeric approach reported in [48]. The lighter the gray
of a chaotic region the higher its bandcount is. The white lines in (a) show the locations of two bifurcation
scenarios, shown in Figures 9 and 14.

high-bandcount attractors look different than the crises, which induce the high-bandcount
attractors in the left part of the figure. Also, the whole structure is more complex.

Based on these observations, we divide the chaotic domain into three subregions. We
call the region adjacent to the period adding scenarioQadd, the single-band regionQ1 and the
region next to the period increment scenario Qinc.

It seems to be a hard if not an unsolvable task to explain the presented bifurcation
scenarios based on the one-dimensional bifurcation diagrams only. Since a one-dimensional
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bifurcation diagram is limited in the amount of information it can reveal about two-
dimensional structures in the parameter space, we determined bandcounts numerically using
the algorithm reported in [48] in relevant parts of a (b, μ)-plane (see Figure 4). Note that this
figure shows the same region in the parameter space as Figure 2. In this figure, the three
regions we have identified above are clearly visible, as are the structures within and the
boundaries between them. Furthermore it becomes clearly visible that the chaotic domain
shown as a homogeneous gray region in Figure 2 has a well-organized interior structure.

5.1. Region Boundaries

The outer boundaries of Qch are already given through the boundaries of the periodic
domain. One of these boundaries is defined through the surface τenv. The other boundary
is defined through the union of parts of the lower boundaries of the regions Ps

LR2n+1 and parts
of the stability boundaries θ−

LR2n+1 (see Section 4).
Our task is now to find the boundaries separating the region Q1 from Qadd and Qinc.

As one can see in Figure 3, the bifurcation which defines these boundaries represents a band-
merging crisis. Given the number of gaps in the attractor before the bifurcation—one—the
unstable periodic orbit involved in this crisis is the unstable fixed point xR, (see (4.2)), as
shown in Figure 5.

To calculate the crisis surfaces, the points of the appropriate kneading orbits are
needed. For the band-merging crisis at the smaller value of μ, these are xko

� = μ and
xko
�r

= bμ + μ + 1. This band-merging crisis can thus be calculated by any of the conditions
xR = xko

� and xR = xko
�r . This leads to the boundary surface

γadd =
{
(
a, b, μ

) | 0 < |a| < 1, b < −1, μ = −1
b

}

(5.1)

which separates the region Q1 from the region Qadd.
It is worth noticing that for the calculation of the other band-merging crisis surface

caused by the unstable fixed point xR we have to use points of the other kneading orbit.
As one can see in Figure 5, the kneading orbit points relevant for this crisis bifurcation are
xko
r2�

= a(b(μ + 1) + μ + 1) + μ and xko
r2�r

= b(a(b(μ + 1) + μ + 1) + μ) + μ + 1. Hence, the band-
merging crisis at the higher value of μ can be calculated by any of the conditions xR = xko

r2�

and xR = xko
r2�r

. This leads to the boundary surface

γinc =

{
(
a, b, μ

) | 0 < |a| < 1, b < −1, μ = −a − ab2 − 1
a − ab2 − b

}

(5.2)

which separates the region Q1 from the region Qinc. The location of the surfaces γadd and γinc
in the plane (b, μ) is shown in Figure 6.

5.2. Boundary Surface Properties

Let us consider some properties of the crisis surfaces γadd and γinc. It is noticeable that the
surface γadd can be seen as some kind of continuation of the curve τ∞ for the case a/= 0. Both
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Figure 5:Numerically calculated bifurcation diagram for a = 0.42, b = −1.37, μ = 0 · · · 3.4, showing a typical
part of the chaotic domain. The location of this scenario in the (b, μ)-plane is marked with B in Figure 2(c).
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Figure 6:Numerically calculated structure of the (b, μ)-plane for a = 0.42, b = −2.0 · · ·−1.0, μ = 0 · · · 3.6. The
two curves γadd and γinc are analytically calculated and show the band-merging crisis curves structuring
the chaotic domain. In the periodic domain, the curve γinc is shown dotted.

are defined through μ = −1/b, and differ only in the value of a at which they exist. Since the
value of μ in (5.1) does not depend on a, the location of the surface γadd is the same in all
(b, μ)-planes. Considering τenv, this means that the area of the chaotic region between γadd
and τenv tends to zero for |a| → 0 and increases for |a| → 1. Note that γadd and τenv never
intersect, since they can only coincide at a = 0.

The behavior of γinc is more complicated. Like γadd, it tends to τenv for |a| → 0 and is
located far away from it for |a| → 1. However, unlike γadd its interaction with the boundary
between the periodic and the chaotic domain is more sophisticated.

As described in Section 4, the periodic regions shrink for |a| → 1. It is not readily
apparent whether their boundary moves faster away from γadd than γinc, so it is possible that
γinc will intersect some periodic regions Ps

LRn for some values of a. That it indeed does so can
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be seen, for example, in Figure 6, which shows an intersection of γinc and the lower boundary
of a periodic region (PLR, to be precise) for a = 0.42. So the question arises whether it is
possible that γinc will intersect every periodic region PLR2n+1 for appropriate values of a.

To confirm this, let us calculate the intersection of γinc with the lowest point of a
stability region Ps

LRn . If this point can be found, γinc will intersect that region for smaller
absolute values of a, andwill not intersect it for larger values. To locate this point, we need the
border collision bifurcation surfaces ξ0,�LRn and the corresponding stability boundaries θ−

LRn .
In the case of a > 0, the lowest value of μ of a stability region Ps

LR2n+1 is at the
intersection of its lower boundary with the stability boundary. We get that value of μ as a
function of a and n by solving θ−

LRn for b and inserting it into ξ0,�LRn . Since we want γinc to
intersect Ps

LR2n+1 at the same point, we insert the same value b into γinc as well. This leads to:

ξ0,�LRn

∣
∣
∣
b=(−a−1)−1/n

=
1 + a

a
(
(−a)−(n+1)/n − 1

) ,

γinc
∣
∣
b=(−a−1)−1/n = − −a + (−a)1−2/n + 1

−a + (−a)1−2/n + (−a)−1/n
.

(5.3)

Note that (5.3) is valid only for a > 0 in combination with odd values of n as well as for a < 0
in combination with even values of n. By solving ξ0,�LRn |b=(−a−1)−1/n = γinc|b=(−a−1)−1/n for a, we get:

an
γinc = (−1)n+12−(1/2)n, (5.4)

which is the value of a at which γinc intersects the lowest point of the stability region Ps
LRn .

The largest value an
γinc can take is a1

γinc = 2−1/2 ≈ 0.7071. Because |an
γinc | decreases monotonically

for increasing n, approaching 0 for n → ∞, we can conclude that γinc intersects every region
Ps
LRn for small enough absolute values of a. Consequently, a transition from the period-(n+1)

orbit OLRn to one-band chaos (as shown in the right part of Figure 3(a) for n = 1) is possible
for any n.

Since γinc is the boundary between Q1 and Qinc, an intersection of γinc with a periodic
region Ps

LRn alters the general structure of Qch. Recall, that the intersection point of γinc with
the boundary of the periodic domain Ωinc(B2) depends on the parameter b. For larger values
of b than at the point of intersection, there is the region Qinc between Q1 and the period
increment regions. For smaller values of b than at the point of intersection, the periodic
domain overlaps with Q1 so that there is no Qinc for the values of b between an intersection
with a periodic region Ps

LRn and its stability boundary θ−
LRn . This is illustrated in Figure 7.

This explains the difference between the two bifurcation diagrams shown in Figure 3.
Figure 3(a) corresponds to a value of b, which lies between the intersection of γinc with the
boundary of a periodic region and the stability boundary belonging to that periodic region. At
values of b, which are not between such a point of intersection and the corresponding stability
boundary, all bifurcation diagrams of the chaotic domain calculated for constant values of a
and b will look similar to Figure 3(b). They will contain at least a two-band attractor, which
is adjacent to the region of period increment with coexisting attractors scenario.
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Figure 7: Analytically determined structure of the (b, μ)-plane for a = 0.23, b = −1.7 · · · − 1.4, μ = 0.5 · · · 1.8.
The band-merging crisis curve γinc intersects the periodic region Ps

LR3 . Between the two intersection points
marked with A and B, Q1 is adjacent to the periodic region. For values of b smaller than A or larger than
B, Q1 is adjacent to Qinc instead.

6. Bandcount Adding Region

At this point the question may arise, why we distinguish between the two regions Qadd and
Qinc. The main reason for that is that the bifurcation structure of these regions emerges at the
boundary to the corresponding adjacent periodic regions and depends strongly on the fact
how these periodic regions are structured.

In this section we turn to the bifurcation structure of the region Qadd, that is, the
bifurcation structure occurring at the boundary to the adjacent period adding scenario. We
will demonstrate below, that the bifurcation structure of this region is organized by the so-
called bandcount-adding scenario, initially reported in [23]. In general, the region Qadd is
bounded by the surfaces γadd and τenv (this can be seen in Figure 6 and in Figure 8 below).
The distance between these surfaces shrinks with decreasing absolute value of a, so that
the complete region of the bandcount-adding scenario shrinks more and more. It turns out,
however, that this is the only effect of the parameter a.

Note that the bifurcation structure of the chaotic domain near the boundary to a
periodic region organized by the period adding scenario in a different piecewise linear map is
investigated in detail in [23]. In the cited work the bandcount-adding scenario was described
and it is remarkable, although somehow expected, that the bifurcation structure in Qadd is
organized similarly.

6.1. Overall Bandcount Adding Structure

The bifurcation structure of the region Qadd is shown in Figure 8. As it was demonstrated
in [23], the overall bandcount-adding scenario is composed of two recursive, self-similar
structures, the actual bandcount-adding scenario and the bandcount doubling scenario
nested within. Note that we will denote the regions that form these scenarios as “bandcount-
adding regions” and “bandcount doubling regions”, respectively. The structure of the overall
bandcount-adding scenario is closely connected to the structure of the adjacent period adding
scenario. This is due to the fact that the stable orbits forming the period adding scenario in
the periodic domain are not destroyed at the boundary to the chaotic domain. Instead, at this
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Figure 8: Numerically calculated bandcount diagram in the 2D parameter space for a = 0.2, b = −2.3 · · · −
1.1, μ = 0.25 · · · 0.75. Both the period adding (gray lines) and the bandcount-adding (gray areas) scenarios
can be seen, separated by the boundary curve τenv. The white curves inside the white box show the
(analytically calculated) interior crisis curves ηr

LR4 and η�
LR4 , which are the boundaries of the bandcount-

adding regionQ7
LR4 . The other white curves show the interior crises corresponding to the respective labels.

The band-merging crisis curve γadd separates Qadd from Q1. Note that the region in the upper part is an
irregular region inside Q1. The marked rectangle is shown enlarged in Figure 10.

boundary the orbits become unstable and are responsible for the crisis bifurcations forming
the overall bandcount-adding scenario.

As an example in Figure 8 the region PLR4 is shown, where the 5-periodic orbit OLR4

is stable. The boundaries of this region are given by the border-collision bifurcation surfaces
ξ0,�LR4 and ξ3,rLR4 of this orbit. As one can see, both curves intersect the boundary τenv at the same
point. Remarkably, at this point the region Q7

LR4 originates, which is bounded by the crisis
bifurcation surfaces caused by the same orbit OLR4 but which is now unstable.

As one can clearly see in Figure 8, the described phenomenon occurs for each periodic
orbit, which is stable within the periodic domain. Since these orbits are organized by the
period adding scenario, the regions of multiband chaotic attractors are organized in a similar
way. Recall, that the infinite symbolic sequence adding scheme which organizes this scenario,
contains not only the first generation sequences, which are given in the considered case
by LRn with n even, but also of sequences of further generations, which result from the
concatenation of their corresponding parent sequences. For example, the second generation
sequences LRnLRn+2 result from the concatenation of their parent sequences LRn and
LRn+2. Consequently, the overall structure can be defined recursively and consists therefore
of an infinite number of generations. This fact is reflected in the structure of the chaotic
domain. This means that there is a first generation of regions that stretches over the complete
bandcount-adding region Qadd (namely the regions of the orbits with the sequences LRn,
n even) and there are regions of higher generations, which are located between the regions
of the lower generations. For example, the second generation regions are located between
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the first generation regions, the third generation regions are located between the second
generation regions, and so on, ad infinitum. Figure 8 shows this.

The procedure for the analytical calculation of the regions forming the overall
bandcount-adding scenario is described in detail in [23]. In this work it is shown that the
boundaries of these regions are given by interior crisis bifurcations, which occur at parameter
values where the corresponding unstable periodic orbits collide with the chaotic attractor. An
example for this is shown in Figure 9, by the collision of the period-5 orbit OLR4 with the 7-
band chaotic attractor. Note that the figure shows also that the orbit becomes virtual (which
means that one of its points leaves its domain of definition according to to the symbolic
sequence of the orbit, and therefore the orbit disappears) at the parameter values where one
of its points is located on the boundary of the chaotic attractor. The explanation for that lies
in the definition of border collision bifurcations, namely that one point of the orbit hits the
boundary x = 0. This means that another point is given by fd(0), with d ∈ {�, r}. However,
this is also a point of a kneading orbit of the system given by (1.3), which has the property to
jump between the boundaries of the chaotic attractor. Therefore, for system (1.3) at a border
collision bifurcation, which happens within the chaotic domain, one point of the colliding
orbit is always located at a boundary of the chaotic attractor.

Consequently, the boundaries of the region Q7
LR4 can be determined using the

condition that a point of the orbit OLR4 hits the boundary of the chaotic attractor, which
is given by an appropriate point of the kneading orbit. Since the investigated system is
piecewise linear, similar calculations can be performed for all basic orbits OLRn analytically.
In this way we obtain the boundaries of all regions Qn+3

LRn , which form the first generation of
the bandcount-adding scenario:

ηr
LRn =

{
(
a, b, μ

) | 0 < |a| < 1, b < −1, μ = −
(
bn+2 − 1

)
a − b2 + 1

(bn+3 − 1)a − b3 + b

}

, (6.1)

η�
LRn =

{
(
a, b, μ

) | 0 < |a| < 1, b < −1,

μ = −
(
bn+2 − bn

)
a2 +

(
bn − 2b2 + 1

)
a − 1 + b2

(bn+2 − bn)a2 +
(
bn+1 − 2b2 + 1

)
a − b + b3

}

.

(6.2)

As Figure 8 shows, the number of bands in each region Qn+3
LRn is equal to p + 2 where p is the

period of the periodic orbitOLRn causing the crisis bifurcations. This represents a difference to
the scenario described in [23], since in this work this number is equal to p + 1. The difference
is easily explained taking into account that the p-periodic orbit determines the number of
gaps between the bands, and hence the number of bands is p + 1. In the case of system (1.3)
considered here, there is one additional gap (see Figure 9) occupied by the unstable fixed
point xR, everywhere in Qadd.

In summary, a first generation region Qn+3
LRn of the overall bandcount-adding scenario

is induced by the orbit OLRn and hence bounded by the interior crisis surfaces η�
LRn , ηr

LRn . It
is located next to the stability region Ps

LRn and has a bandcount of n + 3.
The regions of the higher generations have similar properties. They are also induced

by unstable orbits that are stable in the adjacent periodic domain and they are also located
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Figure 9: Numerically calculated bifurcation diagram for a = 0.42, b = −1.32, μ = 0.3 · · · 0.5. The curves
show the unstable periodic orbitOLR4 (black lines), which collides with the chaotic attractor in two interior
crisis bifurcations, and the unstable fixed point xR (gray line), which occupies the remaining gap. Note that
the orbit is destroyed through border collisions at x = 0. Its nonexistent or virtual parts are shown dashed.
The location of this scenario in the (b, μ)-plane is marked with A in Figure 4(a).

next to the stability region of these orbits. The symbolic sequences of these orbits can be
determined using the infinite sequence adding scheme, as described in [24]. As an example,
for each n, between the first generation regionsQn+3

LRn andQn+5
LRn+2 there is a regionQ2n+6

LRnLRn+2 of
the second generation, and so on, ad infinitum. As an example for the regions of the second
generation the region Q14

LR4LR6 is labeled in Figure 8.

6.2. Nested Substructures

Within each of the regions forming the overall bandcount-adding structure, there is a nested
sequence of regions with higher bandcounts organized by the bandcount doubling scenario.
The boundaries of the regions in this scenario are induced by interior crisis bifurcations as
already pointed out in [23]. As an example, Figure 10 shows the bifurcation structures located
within the region Q7

LR4 . The first two regions of the bandcount doubling scenario are the
region Q17

LR2LR6 located in the middle part of Q7
LR4 and the region Q37

LR6LR4LR2LR4 located in
the middle part of Q17

LR2LR6 .
The regions forming the bandcount doubling scenario originate at the same point (the

intersection of the boundary surfaces with τenv) as their surrounding regions and are located,
roughly speaking, in the middle of them. Each region in the bandcount doubling scenario has
the property that it is induced by an orbit with a period that is twice as high as the period of
the orbit that induces the region surrounding it. Also, each of these regions contains the next
region, following the same rules concerning bandcount and location, and so on, ad infinitum.
Note that most of the regions in such a doubling-cascade are very hard to detect numerically
because their size decreases rapidly.
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Figure 10: Numerically calculated bandcount diagram in the 2D parameter space for a = 0.2, b =
−1.794 · · · − 1.49, μ = 0.468 · · · 0.536. The bandcount-adding regionQ7

LR4 is shown enlarged. The bandcount
doubling region Q17

LR2LR6 is visible in the middle. The first three regions of both nested bandcount-adding
structures to the left and to the right of Q17

LR2LR6 are labeled. The second bandcount doubling region
Q37

LR6LR4LR2LR4 is also labeled. The rectangle in Figure 8 shows where this figure is located in the overall
bandcount-adding scenario. The analytical Figure 11 corresponds to this image.

This shrinking of the regions is analogous to the behavior of the bandcount doubling
investigated in [23]. In this work, the scaling constant for the length of the regions is
analytically determined to be 2, whereas the scaling constant for the width of the regions does
not exist, because its value tends to∞ explaining the rapid shrinking of the size of the regions.
Since the expressions of the crisis bifurcations involved in the bandcount doubling scenario in
system (1.3) are significantly more complicated than it is the case for the system investigated
in [23], it is very difficult to determine the scaling constants analytically. However, since the
bandcount doubling regions in system (1.3) decrease in size in a similar way as the regions in
the cited work (with the length of the regions decreasing by an approximately constant factor
in each step in the sequence and the width of the regions decreasing stronger with each step),
we can assume that the scaling constants are similar too. This means, that there exists a finite
scaling constant corresponding to the length of the regions and there exists no finite scaling
constant corresponding to the width of the regions. The bandcount doubling regionsQ17

LR2LR6

and Q37
LR6LR4LR2LR4 shown in Figure 10 illustrate this.
The symbolic sequences of the orbits that induce the bandcount doubling regions can

be determined using the creation rules presented in [23]. Note that the orbits corresponding
to these sequences do not occur in the adjacent period adding scenario but emerge at the
boundary τenv between the periodic and the chaotic domain. Their regions of existence are
bounded by two border-collision bifurcation surfaces and can be determined in the same way
as it can be done for the orbits of the period adding scenario.

To give an example for the bandcount doubling scenario, we describe the first steps
of the scenario inside the region Q7

LR4 shown in Figure 10. The first region inside Q7
LR4 has
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a bandcount of 17 and is induced by the orbit OLR2LR6 . The number of bands in this region
results from the fact, that 5 gaps of the attractor are occupied by the orbit OLR4 , 10 further
gaps by the OLR2LR6 , and one gap by the fixed point xR.

Using the creation rules for the symbolic sequences mentioned above, it can be
easily shown that the next two steps of the scenario are caused by the orbits OLR6LR4LR2LR4

and OLR6LR4LR2LR6LR2LR4LR6LR2 with periods 20 and 40, respectively. The bandcounts in the
corresponding regions are 37 and 77, respectively, and can be explained by the number of
gaps of the multiband attractors which are occupied by the unstable periodic orbits involved
in the cascade up to a certain period including the unstable fixed point. Hence the bandcounts
are given by 37 = (20 + 10 + 5 + 1) + 1 and 77 = (40 + 20 + 10 + 5 + 1) + 1, respectively.

This concludes the description of the bandcount doubling scenario. However, there are
still nested substructures left to describe. As can be seen in Figure 10, there are several regions
located within the region Q7

LR4 on both sides of the bandcount doubling region Q17
LR2LR6 .

These regions form a nested bandcount-adding scenario. The symbolic sequences of the orbits
that induce these additional nested regions can be determined using the infinite sequence
adding scheme. The starting sequences of this adding scheme correspond to the sequences
of the bandcount doubling region and its surrounding region. Note that the sequences on
one side of the region Q17

LR2LR6 are slightly different from the sequences on the other side. In
both cases, the sequence of the surrounding region Q7

LR4 is concatenated several times, but
the sequence of the bandcount doubling region Q17

LR2LR6 in one case is shifted with respect to
the other case. This can be seen in Figure 10: while the symbolic sequences to the left of the
bandcount doubling region Q17

LR2LR6 form the family LR6LR2(LR4)n, the sequences to the
right form the family LR2LR6(LR4)n.

These families form the first generation of the nested bandcount-adding scenario.
Further generations result from them in the sameway as described for the overall bandcount-
adding scenario. Note that these nested bandcount-adding regions have all the properties of
the bandcount-adding regions described earlier. In particular, this means that each of these
regions contains its own bandcount doubling cascade, and each of these bandcount doubling
regions induce further nested bandcount-adding scenarios, which in turn contain bandcount
doubling regions, and so on, ad infinitum. Additionally, each bandcount doubling region
nested inside another region contains a nested bandcount-adding scenario, in a similar way
as described above. This process continues ad infinitum, leading to a self-similar structure of
the region Qadd.

7. Dynamics on the Boundary between the Period Adding Region and
the Chaotic Domain

Using the analytical formulations of the interior crisis surfaces confining the overall
bandcount-adding regionsQ|σ|+2

σ , we can observe that for each σ their right intersection point
denoted in the following by ζσ belongs to the boundary surface τenv. Recall that σ refers here
to any basic sequence LRn with n odd for a > 0, respectively even for a < 0, as well as to any
sequence which can be derived from a pair LRn, LRn+2 using the sequence adding scheme.
It can also be verified analytically that the surfaces of border collision bifurcation of the orbit
Oσ which causes these crises, intersect the boundary surface τenv at the same point. This is
illustrated by Figure 8 which shows the boundaries of the bandcount-adding region Q7

LR4

and the period adding region PLR4 . Since the orbit Oσ is stable within the periodic domain
and unstable in the chaotic one, the stability boundary θσ intersects τenv at the same point as
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well. This means for example that

ζLRn = ηr
LRn ∩ η�

LRn ∩ τenv = ξ0,�LRn ∩ ξn−1,rLRn ∩ τenv = θLRn ∩ τenv. (7.1)

Already this leads us to conclude that the points ζσ represent bifurcations with a codimension
larger than one.

Next let us consider a point ζσ as a function of the third parameter a. Recall that the
variation of a in the intervals (−1, 0) and (0, 1) does not change the topological structure of the
regionsΩadd(B1) andQadd. Hence, in the 3D parameter space (a, b, μ) each point at the curves
ζσ(a) with a ∈ (−1, 0) and a ∈ (0, 1) represents a codimension-2 bifurcation Furthermore, it
turns out that for any a ∈ (−1, 0) and a ∈ (0, 1) the points ζσ(a) represent codimension-
2 big bang bifurcations. Recall that the region Q

|σ|+2
σ contains an infinite number of nested

subregions with higher bandcounts (bandcount doubling and nested bandcount-adding
regions). All interior crisis surfaces bounding these regions originate from the point ζσ(a).
In fact, not only the interior crisis surfaces but also the border collision bifurcation surfaces of
the orbits responsible for these crises originate from the point ζσ(a). As a consequence, from
each point ζσ(a) at the boundary τenv originates an infinite number of existence regions of
everywhere unstable periodic orbits.

As an example, Figure 11 shows a few of the curves forming the bifurcation
structure emerging at the point ζLR4 (compare the the corresponding numeric results shown
in Figure 10). The figure demonstrates the analytically calculated interior crises curves
bounding the region Q7

LR4 and its nested substructures, namely the first two bandcount
doubling regions Q17

LR2LR6 , Q37
LR6LR4LR2LR4 , as well as the first nested bandcount-adding

regions Q5n+17
LR2LR6(LR4)n and Q5n+17

LR6LR2(LR4)n for n = 1, 2, 3. Additionally to these interior crises
curves the existence boundaries or the corresponding unstable periodic orbits are shown as
dashed curves. For sake of clarity only the border collision bifurcations involving the orbits
responsible for crises bounding the doubling regions are labeled. The remaining 12 dashed
curves define the border collision bifurcations involving the orbits responsible for crises
bounding the nested bandcount-adding regions. Note that only the curves ξ0,�LR4 and ξ3,rLR4 exist
on the right side of the stability boundary θ+

LR4 where they confine the period adding region
PLRn . All other border collision bifurcation curves originate from the point ζLR4 exist only on
the left side of θ+

LR4 .
The question arises, how the system (1.3) behaves at the codimension-2 big bang

bifurcations point ζσ . Calculating analytically the points of the orbit Oσ one obtains that
at the point ζσ the expressions for these points become 0/0 and hence indeterminate. As a
consequence of this, there exists an absorbing set with positive Lebesgue measure, where
each point belongs to an orbit Oσ . Since the point ζσ belongs to the stability boundary θ+

σ ,
each of these infinite number of coexisting orbits Oσ is neutral (neither stable nor unstable).
Among these orbits there are two special cases, namely the orbits undergoing the border
collision bifurcations, which confine the region Pσ . These two orbits represent both kneading
orbits which are in this case cyclic and represent the boundaries of the the absorbing set, so
that the points of the other orbits which coexist with them are located between them.

This is illustrated by Figure 12 where the system function and its fifth iterated are
shown at the point ζLR4 which is given for a = 0.2 by b = − 4

√
1/a ≈ −1.49534878, μ = (1 −

a)/(a − b) ≈ 0.47187930 (see (4.6) and (4.7)). In both Figures 12(a) and 12(b) the absorbing
set is marked on the horizontal axis. As one can see, this set consists of two intervals which
are bounded by the points of both kneading orbits starting with f�(0) and fr(0), as shown in
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−1.794 −1.49

μ

b

8,r
LR2LR6ξ
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θ+
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Figure 11: Analytically calculated bifurcation structure close to the big bang bifurcation point ζLR4 . Solid
curves (except the boundary curve τenv and the stability boundary θ+

LR4) refer to the interior crisis
bifurcation curves, dashed curves—to the border collision bifurcation curved. For more details see text.
The numerical Figure 10 corresponds to this image.

Figure 12(a). The behavior on the absorbing set becomes immediately clear by considering
the fifth iterated function. As one can see in Figure 12(b), on this set the fifth iterated function
coincide with the angle’s bisector. Hence, each point on the absorbing set is a neutral fixed
point for the fifth iterated and belongs to a neutral period-5 orbit of the original map. All these
period-5 orbits correspond to the same symbolic sequence LR4 as indicated in Figure 12(a).

Note finally that there is only a countable number of regions Pσ involved in the
period adding scenario, and hence only a countable number of curves ζσ on the boundary
surface τenv. In the remaining noncountable set the behavior is aperiodic, corresponding to
the limiting case (“infinite period”) of the period adding structure.

8. Bandcount Increment Region

In this section we now turn to the bifurcation structure of the region Qinc, that is, the
bifurcation structure occurring at the boundary to the adjacent period increment scenario.
As in the case of the bandcount-adding scenario, the parameter region Qinc containing the
so-called bandcount-increment scenario is bounded by the surfaces γinc and the envelope
confining the period increment region, which is now a composite surface and more
complicated than the envelope τenv confining the period adding region. The distance between
these surfaces shrinks with decreasing absolute value of a, so that also the complete region of
the bandcount-increment scenario shrinks more and more. As in the case of the bandcount-
adding scenario, this is the only effect of the parameter a.

The bandcount-increment scenario is much more complex than the bandcount-adding
scenario and is investigated in detail in [20–22] for a different piecewise linear map, namely



24 Discrete Dynamics in Nature and Society

f
(x
)

1

1

0

−1
−1

xko
rxko

rr

0
xko
ℓr

xko
ℓ

x

(a)

1

1

0

−1
−1

xko
rxko

rr

0
xko
ℓr

xko
ℓ

x

f
[5
] (
x
)

(b)

Figure 12: Behavior at the big bang bifurcation point ζLR4 : system function (a) and its fifth iterated (b).
On the horizontal axis the absorbing set containing an infinite number of coexisting neutral orbits OLR4 is
marked. In (a) three orbits are shown: two kneading orbits (in other words, the orbits OLR4 undergoing
border collision bifurcation) and one orbit located between them, which does not undergo a border
collision bifurcation.

for the map (1.1) in the case l = −1. The bandcount-increment scenario in the cited works and
the scenario investigated in this work share some properties, namely the triangular form of
the regions, the overlap of adjacent regions, and some of the structures occurring inside the
triangular regions.

The bandcount-increment scenario consists of triangular regions existing mainly
between two consecutive periodic regions Ps

LRn−2 and Ps
LRn . In Figure 13(a) some triangular

regions are labeled with their bandcounts 8, 10, and 12, using black numbers. There are also
some additional, smaller regions, which are disconnected from the bigger triangles andwhich
have also triangular shape. They are located directly below periodic regions and above the
larger triangles. In Figure 13(a) some of these regions are labeled with their bandcounts 6, 8
and 10, using white numbers.

To explore the scenario, we start by counting the bandcounts in a sequence of large
triangular regions (the results calculated numerically for b varied along the line marked with
B in Figure 4(a) are shown in Figure 14, together with an appropriate bifurcation diagram).
As can be seen, the bandcount of each region equals that of the preceding region increased by
2. The reason for that lies in the orbits that induce the crisis surfaces bounding the regions. As
Figure 14 shows, these orbits are Ou

LRn and collide with the attractor in band-merging crises
(not in interior crises, as it was the case for the bandcount-adding scenario).

Note that a region, which is induced by such an orbit Ou
LRn is not located adjacent to

the periodic region PLRn . Instead, it is located next to the periodic region PLRn−2 one step to
the left. This is illustrated in Figure 13(b), with Q8

LR5 being located next to PLR3 , Q10
LR7 next to

PLR5 , and so on.
The procedure to determine these crises analytically is similar to the determination of

the interior crises of the bandcount-adding scenario. We need to find appropriate kneading
orbits that form the boundary of the chaotic attractor at the collision point. Using these
kneading orbits, we can determine the collisions of a point of the unstable orbit with the
chaotic attractor. Proceeding in this way for all orbits OLRn we get the boundaries of all large
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triangular regions of the bandcount-increment scenario:

γ�LRn =

{
(
a, b, μ

) | |a| < 1, b < −1, μ = − abn − ab2 + b2 − 1
(abn − ab + b2 − 1)b

}

,

γ rLRn =

{
(
a, b, μ

) | |a| < 1, b < −1,

μ = −
(
bn+4 − bn+2

)
a2 +

(
bn+2 − b4 + b2 − 1

)
a − b2 + 1

(
bn+4 − bn+2

)
a2 +

(
bn+3 − b4 + b2 − 1

)
a − b3 + b

}

.

(8.1)

These two sets of band-merging crisis surfaces give us the upper and lower boundaries of the
large triangular regions. The remaining right vertical boundaries are given by the stability
boundaries of the adjacent periodic regions, so that the regions Qn+3

LRn are bordered by the
boundaries θ−

LRn−2 . These borders are labeled in Figure 13(b) for the triangular region Q8
LR5 .

This describes the larger triangular regions, but the smaller regions shown in Figure 13
remain unexplained. Considering the lower boundaries of these regions, we see that they are
induced by the same band-merging crises as the lower boundaries of the larger triangles.
Therefore, we conclude that the above-mentioned smaller triangular regions are not really a
separate phenomenon. In fact, they are part of the bigger triangles, which get overlapped by
periodic regions. So the boundaries of the smaller regions consist entirely of already known
bifurcation surfaces. A smaller region induced by the orbitOu

LRn has a lower boundary γrLRn , a
right boundary γ�LRn+2 (which are both band-merging crisis surfaces) and an upper boundary
ξ0,�LRn−2 (which is a border collision surface). This is also shown in Figure 13(b), with the smaller
region Q8

LR5 in the middle part of the image. Since the bandcount-increment scenario is
formed completely by the triangular regions, we will refer to them as “bandcount-increment
regions”.

A bandcount-increment region, which is not overlapped completely by its adjacent
periodic region consists simply of the bigger triangular part of the region connected to the
smaller part. The region Q12

LR9 shown in Figure 13(b) is an example for that.
If a bandcount-increment region is overlapped by its adjacent periodic region or not

depends on the value of a. For increasing a, less regions will be overlapped and vice versa.
It is possible for every bandcount-increment region to find feasible values of a, so that it gets
overlapped, and feasible values of a, so that it does not get overlapped.

This concludes the description of the bandcount-increment scenario. However, the
bandcount-increment region Qinc is far more complex than that. Explaining all existing
substructures is beyond the scope of this work. For this reason, further exploration of the
bandcount-increment region is left for subsequent works.

9. Summary

In this work the question, whether the bandcount-increment and the bandcount-adding
scenario in system (1.3) interact with each other, is answered. It is demonstrated that this
is not the case by determining that both scenarios exist in their own regions of the parameter
space, Qadd and Qinc, separated by the one-band attractor region Q1. This observation is
then followed by a detailed descriptions of the complete bandcount-adding scenario and the
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Figure 13: Parameter space diagram for a = 0.42, b = −1.45 · · · − 1.08, μ = 1.0 · · · 3.5. (a) shows the
numerically determined bandcounts, while (b) shows the corresponding analytically determined diagram.
In (a), regions are labeled with their bandcounts. The borders of two regions Q8

LR5 are completely labeled,
consisting of the band-merging crises γ�LR5 and γrLR5 , the stability border θ−

LR3 and the border collision ξ0,�LR3 .
Dotted lines show band-merging crisis curves inside periodic regions.

main structure of the bandcount-increment scenario. These descriptions confirm that no orbit
involved in the bandcount-increment scenario influences the bandcount-adding scenario, and
vice versa.

The descriptions of both scenarios also showed, that the bandcount-adding scenario
in system (1.3) behaves exactly in the same way as it does in the previously investigated case
(see [23]). However, for the bandcount-increment scenario the situation is more complicated.
Although the main structure of the bandcount-increment scenario in system (1.3) is very
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Figure 14: Bifurcation and bandcount diagrams for a = 0.42, b = −1.2 · · · − 1.07, μ = 1.7. Each curve shows
a single point of unstable periodic orbits of the formOLR2n+1 , each colliding with the attractor in two band-
merging crises. Only one point per orbit is shown, for the sake of clarity, but the other points of the orbits
also fit the gaps. Note that all orbits shown in this image, are destroyed in border collisions at x = 0.
Their virtual parts are shown dashed. The location of this scenario in the (b, μ)-plane is marked with B in
Figure 4(a).

similar to the previously investigated case (see [20–22]) there are remarkable differences
especially with respect to the substructures. The investigation of these substructures is
intricate and beyond the scope of this paper and is therefore left for future work.

List of Symbols

L/R: Symbols corresponding to points of a periodic orbit smaller/larger than 0,
respectively

Oσ : Periodic orbit corresponding to a symbolic sequence σ
xσ
k
: The kth point of a periodic orbit Oσ
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Qch: The chaotic domain
Qadd: The part of the chaotic domain organized by the bandcount-adding scenario
Qinc: The part of the chaotic domain organized by the bandcount-increment scenario
Q1: The part of the chaotic domain containing only a one-band attractor
Qk

σ : A region in the chaotic domain with bandcount k, which is bounded by crisis
bifurcations caused by the collision of the orbit Oσ with the chaotic attractor

xko
c···ba: A point of a kneading orbit corresponding to the sequence of iteration

fa ◦ fb ◦ · · · ◦ fc(0), with a, b, c ∈ {r/�}
Ω(B): The 3D influence region of the codimension-3 big bang bifurcation point B (see

Section 3)
M2D(B): The 2D manifold of the codimension-3 big bang bifurcation point B (see

Section 3)
M1D(B): The 1D manifold of the codimension-3 big bang bifurcation point B (see

Section 3)
Ωadd(B): The part of the influence region Ω(B)which is organized by the period adding

scenario (see Section 3)
Ωinc(B): The part of the influence region Ω(B)which is organized by the period increment

scenario (see Section 3)
τ∞: The boundary between M2D(B1) and M2D(B2) (see (4.1))
P : The parameter space region investigated in this work (see (3.2))
Pσ : A parameter space region in which the periodic orbit Oσ exists
Ps
σ : A subset of Pσ in which the periodic orbit Oσ is stable

ξk,dσ : A border collision caused by the periodic orbit Oσ , in which the kth point of the
orbit collides with the border from the left/right, with d ∈ {l, r}, respectively, (see
(4.4))

θ−
σ : A boundary at which the orbit Oσ becomes unstable via the eigenvalue −1. The

boundary is defined by (4.6) and is relevant for the period increment scenario
with coexisting attractors

θ+
σ : A boundary at which the orbit Oσ becomes unstable via the eigenvalue +1. The

boundary is defined by (4.6) and is relevant for the period adding scenario
τenv: The border between the region Ωadd(B1) and the chaotic domain (see (4.7))
γadd: The band-merging crisis which separates the region Q1 from the region Qadd (see

(5.1))
γinc: The band-merging crisis which separates the region Q1 from the region Qinc (see

(5.2))
γdσ : A band-merging crisis caused by the orbit Oσ , with d ∈ {l, r} (see (6.1))
ηd
σ : An interior crisis caused by the orbit Oσ , with d ∈ {l, r} (see (6.1))

an
γinc : The value of a at which γinc intersects the lowest point of the stability region Ps

LRn

(see (5.4))
ζσ : A point in parameter space at which the boundaries of the bandcount-adding

region corresponding to Oσ intersect the boundary surface τenv, as well as many
other bifurcation curves (see (7.1)).
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