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A class of drift-implicit one-step schemes are proposed for the neutral stochastic delay differential
equations (NSDDEs) driven by Poisson processes. A general framework for mean-square conver-
gence of the methods is provided. It is shown that under certain conditions global error estimates
for a method can be inferred from estimates on its local error. The applicability of the mean-square
convergence theory is illustrated by the stochastic θ-methods and the balanced implicit methods.
It is derived from Theorem 3.1 that the order of the mean-square convergence of both of them for
NSDDEs with jumps is 1/2. Numerical experiments illustrate the theoretical results. It is worth
noting that the results of mean-square convergence of the stochastic θ-methods and the balanced
implicit methods are also new.

1. Introduction

In stochastic numerical analysis, the order of convergence plays a crucial role in the design
of numerical algorithms. Unlike in the deterministic modelling situation, there exist in the
stochastic environment different types of convergence. Both in the literature and in practice,
most attention is focused on two major types of convergence, that is, strong convergence and
weak convergence. There is a rich literature on this subject; we here only mention [1–4] and
the references therein.

For stochastic differential equations (SDEs), Milstein [1] presented a fundamental
convergence theorem which established the order of mean-square convergence of explicit
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one-step methods. The conditions of this theorem use both properties of mean and mean-
square deviation of one-step approximation. The theorem showed that under certain
conditions global error estimates for a method can be inferred from estimates on its local
error. Buckwar [4] extended the convergence theory in [1] to stochastic functional differential
equations. Recently, Zhang and Gan [5] extend the theory to neutral stochastic differential
delay equations (NSDDEs). Therefore, the convergence theory in [1] and its generalization
have received some attention in the case of nonjump SDEs. However, in the jump-SDE
context, which is becoming increasingly important in mathematical finance [6–8], to our best
knowledge, no corresponding convergence theory of numerical methods for NSDDEs with
jumps has been presented in the literature. Motivated by the work of Zhang and Gan [5], our
aim is to establish a relationship between the consistent order and the convergence order of
the methods for the NSDDEs with jumps.

In this paper, a class of drift-implicit one-step schemes are proposed for NSDDEs
driven by Poisson processes. A general framework for mean-square convergence of the
methods is provided. It is shown that under certain conditions global error estimates for a
method can be inferred from estimates on its local error. The applicability of the theory about
mean-square convergence is illustrated by the stochastic θ-methods and the balanced implicit
methods. It is derived from Theorem 3.5 that the order of the mean square convergence of
both of them for NSDDEs with jumps is 12. It is worth noting that the results of mean-square
convergence of the stochastic θ-methods and the balanced implicit methods are also new.

2. Neutral Stochastic Delay Differential Equations with Jumps

Let (Ω,F, {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions (i.e., it is right continuous and F0 contains all the P-null sets). Let W(t) :=
(W1(t), . . . ,Wb(t))

T be a b-dimensional Wiener process, and N(t) is a scalar Poisson process
with intensity λ (λ > 0), both defined on the space (Ω,F, {Ft}t�0,P). And | · | is used to
denote both the norm in R

d and the trace norm (F-norm) in R
d×b. Also, C([t1, t2];Rd) is used

to represent the family of continuous mappings ψ from [t1, t2] to R
d. Finally, LpFt

([t1, t2];Rd) is
used to denote a family ofFt-measurable, C([t1, t2];Rd)-valued random variables ψ = {ψ(u) :
t1 ≤ u ≤ t2} such that ‖ψ‖p

E
:= supt1≤u≤t2E|ψ(u)|p <∞. E denote mathematical expectation with

respect to P.
Consider the neutral stochastic delay differential equations (NSDDEs) with Poisson-

driven jumps

d[x(t) −G(x(t − τ))] = f(x(t−), x(t− − τ))dt + g(x(t−), x(t− − τ))dW(t)

+ u
(
x
(
t−
)
, x
(
t− − τ))dN(t), t ∈ [0, T],

(2.1)

with initial data

x(t) = ψ(t), t ∈ [−τ, 0], (2.2)

where ψ(t) ∈ L2
F0
([−τ, 0];Rd). Here, τ > 0 is a constant, x(t−) denotes lims→ t−x(s), f : R

d ×
R
d → R

d, g : R
d × R

d → R
d×b, u : R

d × R
d → R

d, and G : R
d → R

d.
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By the definition of Itô-interpreted stochastic differential equations, the integral ver-
sion of (2.1) is expressed as follows:

x(t) = G(x(t − τ)) + x(0) −G(x(−τ)) +
∫ t

0
f
(
x
(
s−
)
, x
(
s− − τ))ds

+
∫ t

0
g
(
x
(
s−
)
, x
(
s− − τ))dW(s) +

∫ t

0
u
(
x
(
s−
)
, x
(
s− − τ))dN(s), t > 0.

(2.3)

Definition 2.1 (see [9]). An R
d-valued stochastic process x(t) on −τ ≤ t ≤ T is called a solution

to (2.1) with initial data (2.2) if it has the following properties:

(i) {x(t)}0≤t≤T is continuous and Ft-adapted;

(ii) {f(x(t), x(t − τ))} ∈ L1([0, T];Rd), {g(x(t), x(t − τ))} ∈ L2([0, T];Rd×b),
{u(x(t), x(t − τ))} ∈ L1([0, T];Rd);

(iii) x(t) = ψ(t), −τ ≤ t ≤ 0, and (2.3) holds for every t ∈ [0, T]with probability 1, where
Lp([0, T];Rd) denotes the family of Borel measurable functions � : [0, T] → R

d

such that
∫T
0 |�(t)|pdt <∞ a.s.

A solution {x(t)} is said to be unique if any other solution {x(t)} is indistinguishable
from {x(t)}, that is,

P{x(t) = x(t) ∀t ∈ [0 T]} = 1. (2.4)

In order to guarantee the existence and uniqueness of the solution, we impose the
following hypothesis.

Assumption 1 (global Lipschitz condition). There exists a positive constantK such that for all
x1, x2, y1, y2 ∈ R

d,

∣∣v
(
x1, y1

) − v(x2, y2
)∣∣2 � K

(
|x1 − x2|2 +

∣∣y1 − y2
∣∣2
)
, v = f, g or u. (2.5)

Assumption 2 (linear growth condition). There exists a positive constant L such that for all
x, y ∈ R

d,

∣∣v
(
x, y

)∣∣2 � L
(
1 + |x|2 + ∣∣y∣∣2

)
, v = f, g or u. (2.6)

Assumption 3. There is a constant η ∈ (0, 1) such that for all x1, x2 ∈ R
d

|G(x1) −G(x2)| ≤ η|x1 − x2|. (2.7)

Remark 2.2. In this paper, we always assume that η /= 0. Otherwise, the system (2.1) reduces
to the stochastic delay differential equations with jumps.

We use J1, J2, . . . to denote the constants which are independent of the stepsize h.
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Lemma 2.3. If Assumptions 1–3 hold, then (2.1) has a unique strong solution x(t) on t ≥ −τ , and
the solution of (2.1) satisfies

E

(

sup
−τ≤t≤T

|x(t)|2
)

≤ J1, (2.8)

where J1 is a positive constant which depends on constants T , η, L, and initial function ψ(t).

It is not hard to prove Lemma 2.3 in a similar way as the proof of Theorems 6.2.2 and
6.4.5 in [9].

Lemma 2.4. Let Assumptions 2 and 3 hold. Assume that the initial function ψ(t) is uniformly
Lipschitz L2-continuous, that is, there is a positive constantH such that

E
∣∣ψ(u1) − ψ(u2)

∣∣2 ≤ H(u1 − u2), if − τ ≤ u2 < u1 ≤ 0, (2.9)

then

E|x(t1) − x(t2)|2 ≤ Ĥ(t1 − t2), (2.10)

for all 0 ≤ t1 < t2 ≤ T with t1 − sτ ∈ [−τ, 0], t2 − sτ ∈ [−τ, 0], where the constant Ĥ depends on
constantsH, T , initial function ψ(t), and positive integer s.

Lemma 2.4 is a modified version of [10, Lemma 2.1]. In a similar way, it is not hard to
obtain the estimate (2.10).

In this paper, we will use the following inequality. For any a, c > 0 and 0 < α < 1, we
have

(a + c)2 ≤ a2

α
+

c2

1 − α.
(2.11)

3. Implicit One-Step Schemes

Define a mesh with uniform step h which satisfies τ = mh for an integer number m (for
convenience, we assume that m � 2), and suppose that q is a positive integer with q = T/h.
Let tn = nh, n = 0, 1, . . . , q. The drift-implicit one-step methods for the simulation of the
solution x(t) of (2.1) are defined as follows:

Yn+1 = G(Yn+1−m) −G(Yn−m) + Yn
+ Φf(h, Yn, Yn+1, Yn−m, Yn+1−m,ΔWn,ΔNn)

+ Φg(h, Yn, Yn−m,ΔWn,ΔNn) + Φu(h, Yn, Yn−m,ΔWn,ΔNn),

n = 0, 1, . . . , q − 1,

(3.1)
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where Yn is an approximation of the exact solution x(tn), and Φv (v = f , g, and u) are
increment functions.ΔWn =W(tn+1)−W(tn),ΔNn =N(tn+1)−N(tn), andΔWn is independ-
ent of ΔNn. Yn−m = ψ(tn − τ)when n −m � 0.

Remark 3.1. Now, we discuss the solvability of (3.1). If increment function Φf does not
depend on Yn+1, it is not difficult to find that the approximations Yn can be computed
iteratively. If Φf depends on Yn+1, in order to guarantee the existence and uniqueness of a
solution, the general approach is to assume Lipschitz continuity of Φf with respect to Yn+1
with the Lipschitz constant less than 1, and then to apply Banach’s contraction mapping
principle [4].

We denote by Y (tn+1) the value that is obtained when the exact solution values are
inserted into the right-hand side of (3.1), that is,

Y (tn+1) = G(x(tn+1 − τ)) −G(x(tn − τ)) + x(tn)

+ Φf(h, x(tn), x(tn+1), x(tn − τ), x(tn+1 − τ),ΔWn,ΔNn)

+ Φg(h, x(tn), x(tn − τ),ΔWn,ΔNn) + Φu(h, x(tn), x(tn − τ),ΔWn,ΔNn),

n = 0, 1, . . . , q − 1.

(3.2)

We introduce the following definitions, which are presented in the literature, see [1, 3],
for example.

Definition 3.2. The local error of method (3.1) is the sequence of random variables

δn+1 := x(tn+1) − Y (tn+1), n = 0, 1, . . . , q − 1. (3.3)

The global error of method (3.1) is the sequence of random variables

εn := x(tn) − Yn, n = 0, 1, . . . , q. (3.4)

Definition 3.3. The numerical method (3.1) is said to be consistent with order p1 in the mean
and with order p2 in the mean square sense if the following estimates hold with p2 � 1/2 and
p1 � p2 + 1/2:

max
0≤n≤q−1

‖E(δn+1 | Ftn)‖L2
≤ H0h

p1 , as h −→ 0,

max
0≤n≤q−1

‖δn+1‖L2
≤ H1h

p2 , as h −→ 0,
(3.5)

where the constantsH0 andH1 do not depend on h but may depend on T and the initial data.
Here, ‖z‖L2 := (E|z|2)1/2.
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Definition 3.4. The numerical method (3.1) is said to be convergent with order p in the mean
square sense, on the mesh points, if the following estimate holds:

max
1≤n≤q

‖εn‖L2
≤ H2h

p, as h −→ 0, (3.6)

where the constantH2 does not depend on h but may depend on T and the initial data.

In order to obtain the main result, the following properties of the increment functions
are required. There exist positive constants Lf such that for xi, yi ∈ R

d (i = 1, 2, 3, 4),

∣
∣Φf(h, x1, x2, x3, x4,ΔWn,ΔNn) −Φf

(
h, y1, y2, y3, y4,ΔWn,ΔNn

)∣∣ ≤ hLf
4∑

i=1

∣
∣xi − yi

∣
∣,

(3.7)

and there exist the positive constants Lg, Lu, Lu such that for all Ftn-measurable random
variables x1, x3, y1, y3 ∈ R

d,

E
∣∣Φg(h, x1, x3,ΔWn,ΔNn) −Φg

(
h, y1, y3,ΔWn,ΔNn

)∣∣2

≤ hLg
[
E
∣∣x1 − y1

∣∣2 + E
∣∣x3 − y3

∣∣2
]
,

(3.8)

E
∣∣Φu(h, x1, x3,ΔWn,ΔNn) −Φu

(
h, y1, y3,ΔWn,ΔNn

)∣∣2

≤ hLu
[
E
∣∣x1 − y1

∣∣2 + E
∣∣x3 − y3

∣∣2
]
,

(3.9)

E
(
Φg(h, x1, x3,ΔWn,ΔNn) −Φg

(
h, y1, y3,ΔWn,ΔNn

) | Ftn

)
= 0, (3.10)

∣∣E
[
Φu(h, x1, x3,ΔWn,ΔNn) −Φu

(
h, y1, y3,ΔWn,ΔNn

) | Ftn

]∣∣

≤ hLu
[∣∣x1 − y1

∣∣ +
∣∣x3 − y3

∣∣].
(3.11)

Now, we state our result on the convergence of the one-step method (3.1).

Theorem 3.5. Suppose that Assumption 3 and the conditions (3.7)–(3.11) hold. Assume that the
one-step method (3.1) is consistent with order p1 in the mean and order p2 in the mean square sense,
then the method (3.1) is convergent with order p = p2 − 1/2 in the mean square sense.

Proof. By (3.4), we have

εn+1 = ε̂n+1 + [G(x(tn+1 − τ)) −G(Yn+1−m)], (3.12)

where ε̂n+1 is defined as follows:

ε̂n+1 = x(tn+1) −G(x(tn+1 − τ)) − [Yn+1 −G(Yn+1−m)]. (3.13)



Discrete Dynamics in Nature and Society 7

Squaring and taking expectation on both sides of (3.12), using Assumption 3 and (2.11), we
have

E|εn+1|2 ≤ 1
1 − ηE|ε̂n+1|2 + 1

η
E|G(x(tn+1 − τ)) −G(Yn+1−m)|2

≤ 1
1 − ηE|ε̂n+1|2 + ηE|x(tn+1 − τ) − Yn+1−m|2

=
1

1 − ηE|ε̂n+1|2 + ηE|εn+1−m|2.

(3.14)

It follows from (3.1), (3.2), and (3.13) that

ε̂n+1 = x(tn+1) −G(x(tn+1 − τ)) − Y (tn+1) + Y (tn+1) − [Yn+1 −G(Yn+1−m)]

= x(tn+1) − Y (tn+1) + x(tn) −G(x(tn − τ))
+ Φf(h, x(tn), x(tn+1), x(tn − τ), x(tn+1 − τ),ΔWn,ΔNn)

+ Φg(h, x(tn), x(tn − τ),ΔWn,ΔNn) + Φu(h, x(tn), x(tn − τ),ΔWn,ΔNn)

− Yn +G(Yn−m) −Φf(h, Yn, Yn+1, Yn−m, Yn+1−m,ΔWn,ΔNn)

−Φg(h, Yn, Yn−m,ΔWn,ΔNn) −Φu(h, Yn, Yn−m,ΔWn,ΔNn)

= δn+1 + ε̂n + Rn,

(3.15)

where

Rn = Φf(h, x(tn), x(tn+1), x(tn − τ), x(tn+1 − τ),ΔWn,ΔNn)

−Φf(h, Yn, Yn+1, Yn−m, Yn+1−m,ΔWn,ΔNn)

+ Φg(h, x(tn), x(tn − τ),ΔWn,ΔNn) −Φg(h, Yn, Yn−m,ΔWn,ΔNn)

+ Φu(h, x(tn), x(tn − τ),ΔWn,ΔNn) −Φu(h, Yn, Yn−m,ΔWn,ΔNn).

(3.16)

Squaring and taking expectation on both sides of (3.15) yields

E|ε̂n+1|2 ≤ E|ε̂n|2 + 2E|δn+1|2 + 2E|Rn|2 + 2E〈δn+1, ε̂n〉 + 2E〈ε̂n, Rn〉. (3.17)

Wewill now estimate the separate terms in (3.17) individually. Without loss of generality, we
can assume that 0 < h < 1. We notice that the method (3.1) is consistent with order p2 in the
mean square sense; thus, there exists a constant J2 such that

E|δn+1|2 ≤ J2h2p2 . (3.18)
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By (3.7)–(3.9), we obtain

E|Rn|2 ≤ 3E
∣
∣Φf(h, x(tn), x(tn+1), x(tn − τ), x(tn+1 − τ),ΔWn,ΔNn)

−Φf(h, Yn, Yn+1, Yn−m, Yn+1−m,ΔWn,ΔNn)
∣
∣2

+ 3E
∣
∣Φg(h, x(tn), x(tn − τ),ΔWn,ΔNn) −Φg(h, Yn, Yn−m,ΔWn,ΔNn)

∣
∣2

+ 3E|Φu(h, x(tn), x(tn − τ),ΔWn,ΔNn) −Φu(h, Yn, Yn−m,ΔWn,ΔNn)|2

≤ 3h2L2
fE(|x(tn) − Yn| + |x(tn+1) − Yn+1| + |x(tn − τ) − Yn−m|

+|x(tn+1 − τ) − Yn+1−m|)2+3hLg
(
E|x(tn) − Yn|2+E|x(tn − τ)−Yn−m|2

)

+ 3hLu
(
E|x(tn) − Yn|2 + E|x(tn − τ) − Yn−m|2

)

≤
(
12h2L2

f + 3hLg + 3hLu
)(

E|x(tn) − Yn|2 + E|x(tn − τ) − Yn−m|2
)

+ 12h2L2
f

(
E|x(tn+1) − Yn+1|2 + E|x(tn+1 − τ) − Yn+1−m|2

)

=
(
12h2L2

f + 3hLg + 3hLu
)(

E|εn|2 + E|εn−m|2
)
+ 12h2L2

f

(
E|εn+1|2 + E|εn+1−m|2

)
,

(3.19)

which, by the inequality (3.14), yields

E|Rn|2 ≤
(
12h2L2

f + 3hLg + 3hLu
)( 1

1 − ηE|ε̂n|2 + ηE|εn−m|2
)

+
(
12h2L2

f + 3hLg + 3hLu
)
E|εn−m|2

+ 12h2L2
f

(
1

1 − ηE|ε̂n+1|2 + ηE|εn+1−m|2
)
+ 12h2L2

fE|εn+1−m|2

≤
(
12h2L2

f + 3hLg + 3hLu
)(

E|ε̂n|2 + E|εn−m|2
)
max

{
1

1 − η , 1 + η
}

+ 12h2L2
f

(
E|ε̂n+1|2 + E|εn+1−m|2

)
max

{
1

1 − η , 1 + η
}

≤
(
12TL2

f + 3Lg + 3Lu
)
h
(
E|ε̂n|2 + E|εn−m|2 + E|ε̂n+1|2

+E|εn+1−m|2
)
max

{
1

1 − η , 1 + η
}

= J3h
(
E|ε̂n|2 + E|εn−m|2 + E|ε̂n+1|2 + E|εn+1−m|2

)
,

(3.20)

where J3 = (12TL2
f
+ 3Lg + 3Lu)max{1/1 − η, 1 + η}.
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Since method (3.1) is consistent with order p1 in the mean square, there exists a
constant J4 such that

(
E|E(δn+1 | Ftn)|2

)1/2 ≤ J4hp1 . (3.21)

Noticing that ε̂n is Ftn-measurable and by (3.21), we arrive at

2E(〈ε̂n, δn+1〉) = 2E[E(〈ε̂n, δn+1〉 | Ftn)]

≤ 2E|E(〈ε̂n, δn+1〉 | Ftn)| = 2E|〈ε̂n,E(δn+1 | Ftn)〉|

≤ 2
(
hE|ε̂n|2

)1/2(
h−1E|E(δn+1 | Ftn)|2

)1/2

≤ hE|ε̂n|2 + h−1E|E(δn+1 | Ftn)|2

≤ hE|ε̂n|2 + (J4)2h2p1−1

= hE|ε̂n|2 + J5h2p1−1,

(3.22)

where J5 = (J4)
2. Applying the inequality |E(x | F)|2 ≤ E(|x|2 | F), (3.7), (3.10), and (3.11)

yields

|E(Rn | Ftn)|2 =
∣∣∣E
[
Φf(h, x(tn), x(tn+1), x(tn − τ), x(tn+1 − τ),ΔWn,ΔNn)

−Φf(h, Yn, Yn+1, Yn−m, Yn+1−m,ΔWn,ΔNn)

+ Φg(h, x(tn), x(tn − τ),ΔWn,ΔNn) −Φg(h, Yn, Yn−m,ΔWn,ΔNn)

+Φu(h, x(tn), x(tn − τ),ΔWn,ΔNn) −Φu(h, Yn, Yn−m,ΔWn,ΔNn) | Ftn

]∣∣∣
2

=
∣∣E
[
Φf(h, x(tn), x(tn+1), x(tn − τ), x(tn+1 − τ),ΔWn,ΔNn)

−Φf(h, Yn, Yn+1, Yn−m, Yn+1−m,ΔWn,ΔNn) | Ftn

]

+E
[
Φu(h, x(tn), x(tn − τ),ΔWn,ΔNn) −Φu(h, Yn, Yn−m,ΔWn,ΔNn) | Ftn

]∣∣2

≤ 2E
[∣∣∣Φf(h, x(tn), x(tn+1), x(tn − τ), x(tn+1 − τ),ΔWn,ΔNn)

−Φf(h, Yn, Yn+1, Yn−m, Yn+1−m,ΔWn,ΔNn)
∣∣2 | Ftn

]

+ 2
∣∣∣E
[
Φu(h, x(tn), x(tn − τ),ΔWn,ΔNn) −Φu(h, Yn, Yn−m,ΔWn,ΔNn) | Ftn

]∣∣∣
2

≤ 2h2
(
Lf
)2

E

[
(|x(tn) − Yn| + |x(tn+1) − Yn+1| + |x(tn − τ) − Yn−m|

+ |x(tn+1 − τ) − Yn+1−m|)2 | Ftn

]

+ 2h2(Lu)2[|x(tn) − Yn| + |x(tn − τ) − Yn−m|]2

≤ 8h2
(
Lf
)2[|εn|2 + E

(
|εn+1|2 | Ftn

)
+ |εn−m|2 + |εn+1−m|2

]

+ 4h2(Lu)2
[
|εn|2 + |εn−m|2

]



10 Discrete Dynamics in Nature and Society

=
[
8h2

(
Lf
)2 + 4h2(Lu)2

]
|εn|2 + 8h2

(
Lf
)2

E

(
|εn+1|2 | Ftn

)

+
[
8h2

(
Lf
)2 + 4h2(Lu)2

]
|εn−m|2 + 8h2

(
Lf
)2|εn+1−m|2.

(3.23)

Here, the fact used has been that x(tn), x(tn − τ), x(tn+1 − τ), Yn, Yn−m, Yn+1−m are Ftn-
measurable. Using (3.14) and (3.23), we arrive at

2E(〈ε̂n, Rn〉) = 2E[E(〈ε̂n, Rn〉 | Ftn)]

= 2[E〈ε̂n,E(Rn | Ftn)〉] ≤ 2E[|ε̂n| · |E(Rn | Ftn)|]

≤ 2
(
hE|ε̂n|2

)1/2(
h−1E|E(Rn | Ftn)|2

)1/2

≤ hE|ε̂n|2 + h−1E|E(Rn | Ftn)|2

≤ hE|ε̂n|2 +
[
8h
(
Lf
)2 + 4h(Lu)2

]
E|εn|2 + 8h

(
Lf
)2

E|εn+1|2

+
[
8h
(
Lf
)2 + 4h(Lu)2

]
E|εn−m|2 + 8h

(
Lf
)2

E|εn+1−m|2

≤ hE|ε̂n|2 +
[
8h
(
Lf
)2 + 4h(Lu)2

][ 1
1 − ηE|ε̂n|2 + ηE|εn−m|2

]

+ 8h
(
Lf
)2
[

1
1 − ηE|ε̂n+1|2 + ηE|εn+1−m|2

]

+
[
8h
(
Lf
)2 + 4h(Lu)2

]
E|εn−m|2 + 8h

(
Lf
)2

E|εn+1−m|2

=
[
1 +

(
8
(
Lf
)2 + 4(Lu)2

) 1
1 − η

]
hE|ε̂n|2 + 8

(
Lf
)2 1

1 − ηhE|ε̂n+1|2

+
(
8
(
Lf
)2 + 4(Lu)2

)(
1 + η

)
hE|εn−m|2 + 8

(
Lf
)2(1 + η

)
hE|εn+1−m|2

≤
[
1 +

(
8
(
Lf
)2 + 4(Lu)2

)
max

{
1

1 − η , 1 + η
}]

h,

[
E|ε̂n|2 + E|ε̂n+1|2 + E|εn+1−m|2 + E|εn−m|2

]

= J6h
[
E|ε̂n|2 + E|ε̂n+1|2 + E|εn+1−m|2 + E|εn−m|2

]
,

(3.24)
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where J6 = 1+(8(Lf)
2+4(Lu)

2)max{1/(1−η), 1+η}. Inserting (3.18), (3.20), (3.22), and (3.24)
into (3.17) yields

E|ε̂n+1|2 ≤ E|ε̂n|2 + 2J2h2p2 + 2J3h
(
E|ε̂n|2 + E|εn−m|2 + E|ε̂n+1|2 + E|εn+1−m|2

)

+ hE|ε̂n|2 + J5h2p1−1 + J6h
(
E|ε̂n|2 + E|ε̂n+1|2 + E|εn+1−m|2 + E|εn−m|2

)

= (2J3 + J6)hE|ε̂n+1|2 + (1 + (1 + 2J3 + J6)h)E|ε̂n|2

+ (2J3 + J6)h
(
E|εn+1−m|2 + E|εn−m|2

)
+ (2J2 + J5)h2p2 .

(3.25)

The following proof is analogous to that of Theorem 3.1 in [5]; thus, it is not hard to derive
the convergence result. The proof is completed.

Remark 3.6. Notice that if u(·) = 0 in (2.1), then (2.1) reduces to the NSDDEs without jumps,
our Theorem 3.5 coincides with Theorem 3.1 in [5], that is to say, Theorem 3.5 generalizes
Theorem 3.1 in [5] to the case of NSDDEs with jumps.

4. The Examples

Theorem 3.5 presents the convergence result about the general implicit one-step methods for
NSDDEs with jumps. In this section, we discuss the applicability of the theory presented in
the previous section. We will give the convergence orders of the stochastic θ-methods and the
balanced implicit methods.

Example 4.1. Consider the stochastic θ-methods for system (2.1),

Yn+1 = G(Yn+1−m) + Yn −G(Yn−m)

+
[
(1 − θ)f(Yn, Yn−m) + θf(Yn+1, Yn+1−m)

]
h

+ g(Yn, Yn−m)ΔWn + u(Yn, Yn−m)ΔNn, n = 0, 1, . . . , q − 1,

(4.1)

wherem = τ/h, 0 ≤ θ ≤ 1.

Lemma 4.2. Let Assumption 1 hold, then the stochastic θ-methods (4.1) are consistent with order
p1 = 3/2 in the mean and order p2 = 1 in the mean square sense.

Proof. Combining (2.1), (3.2) with (4.1) yields

δn+1 = x(tn+1) − Y (tn+1)

=
∫ tn+1

tn

[
f(x(s), x(s − τ)) − f(x(tn), x(tn − τ))

]
ds

+
∫ tn+1

tn

[
g(x(s), x(s − τ)) − g(x(tn), x(tn − τ))

]
dW(s)
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+
∫ tn+1

tn

[u(x(s), x(s − τ)) − u(x(tn), x(tn − τ))]dN(s)

− θh[f(x(tn+1), x(tn+1 − τ)) − f(x(tn), x(tn − τ))
]
.

(4.2)

Noticing the compensated Poisson process, Ñ(t) =N(t) − λt, which satisfies

E

(∫b

a

u(s)dÑ(s) | Fa

)

= 0. (4.3)

Using Assumption 1, (4.3), Hölder inequality, Lemma 2.4, the properties of condi-
tional expectation, and Jenson’s inequality: |E(x | F)|2 ≤ E(|x|2 | F), we compute that

E|E(δn+1 | Ftn)|2 ≤ 5E

∣∣∣∣∣
E

(∫ tn+1

tn

[
f(x(s), x(s − τ)) − f(x(tn), x(tn − τ))

]
ds | Ftn

)∣∣∣∣∣

2

+ 5E

∣∣∣∣∣
E

(∫ tn+1

tn

[
g(x(s), x(s − τ)) − g(x(tn), x(tn − τ))

]
dW(s) | Ftn

)∣∣∣∣∣

2

+ 5E

∣∣∣∣∣
E

(∫ tn+1

tn

[u(x(s), x(s − τ)) − u(x(tn), x(tn − τ))]dÑ(s) | Ftn

)∣∣∣∣∣

2

+ 5λ2E

∣∣∣∣∣
E

(∫ tn+1

tn

[u(x(s), x(s − τ)) − u(x(tn), x(tn − τ))]ds | Ftn

)∣∣∣∣∣

2

+ 5h2E
∣∣E
(
f(x(tn+1), x(tn+1 − τ)) − f(x(tn), x(tn − τ)) | Ftn

)∣∣2

≤ 5E

⎡

⎣E

⎛

⎝

∣∣∣∣∣

∫ tn+1

tn

f(x(s), x(s − τ)) − f(x(tn), x(tn − τ))ds
∣∣∣∣∣

2

| Ftn

⎞

⎠

⎤

⎦

+ 5λ2E

⎡

⎣E

⎛

⎝

∣∣∣∣∣

∫ tn+1

tn

u(x(s), x(s − τ)) − u(x(tn), x(tn − τ))ds
∣∣∣∣∣

2

| Ftn

⎞

⎠

⎤

⎦

+ 5h2E
[
E

(∣∣f(x(tn+1), x(tn+1 − τ)) − f(x(tn), x(tn − τ))
∣∣2 | Ftn

)]

≤ 5
(
1 + λ2

)
Kh

∫ tn+1

tn

E

(
|x(s) − x(tn)|2 + |x(s − τ) − x(tn − τ)|2

)
ds
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+ 5h2KE

(
|x(tn+1) − x(tn)|2 + |x(tn+1 − τ) − x(tn − τ)|2

)

≤
[
10
(
1 + λ2

)
KĤ + 10KĤ

]
h3,

(4.4)

E|δn+1|2 ≤ 4hE

∫ tn+1

tn

∣
∣f(x(s), x(s − τ)) − f(x(tn), x(tn − τ))

∣
∣2ds

+ 4E
∫ tn+1

tn

∣
∣g(x(s), x(s − τ)) − g(x(tn), x(tn − τ))

∣
∣2ds

+ 8λ
∫ tn+1

tn

E|u(x(s), x(s − τ)) − u(x(tn), x(tn − τ))|2ds

+ 8λ2h
∫ tn+1

tn

E|u(x(s), x(s − τ)) − u(x(tn), x(tn − τ))|2ds

+ 4h2E
∣∣f(x(tn+1), x(tn+1 − τ)) − f(x(tn), x(tn − τ))

∣∣2

≤
(
4h + 4 + 8λ + 8λ2h

)
K

∫ tn+1

tn

E

(
|x(s) − x(tn)|2 + |x(s − τ) − x(tn − τ)|2

)
ds

+ 4Kh2E
(
|x(tn+1) − x(tn)|2 + |x(tn+1 − τ) − x(tn − τ)|2

)

≤ 8KĤ
(
1 + 2T + 2λ + 2λ2T

)
h2,

(4.5)

where the compensated Poisson process Ñ(t) =N(t) − λt satisfies

E

∣∣∣∣∣

∫ t2

t1

u(x(s))dÑ(s)

∣∣∣∣∣

2

= λ
∫ t2

t1

E|u(x(s))|2ds. (4.6)

Hence, the stochastic θ-methods (4.1) are consistent with order 3/2 in the mean and order 1
in the mean square sense. The proof is completed.

Theorem 4.3. Let Assumption 1 hold, then the stochastic θ-methods (4.1) are convergent with order
p = 1/2 in the mean square sense.

Proof. Lemma 4.2 shows that the stochastic θ-methods (4.1) are consistent with order p1 = 3/2
in the mean and order p2 = 1 in the mean square sense. In order to prove that the stochastic
θ-methods (4.1) are convergent with order p = 1/2 in the mean square sense, by Theorem 3.5,
we only need to verify the conditions (3.7)–(3.11).
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From (4.1), we find that

Φf(h, Yn, Yn+1, Yn−m, Yn+1−m,ΔWn,ΔNn) =
[
(1 − θ)f(Yn, Yn−m) + θf(Yn+1, Yn+1−m)

]
h,

Φg(h, Yn, Yn−m,ΔWn,ΔNn) = g(Yn, Yn−m)ΔWn,

Φu(h, Yn, Yn−m,ΔWn,ΔNn) = u(Yn, Yn−m)ΔNn.

(4.7)

For the random variables xi, yi ∈ R
d (i = 1, 2, 3, 4), by Assumption 1, we have

∣
∣Φf(h, x1, x2, x3, x4,ΔWn,ΔNn) −Φf

(
h, y1, y2, y3, y4,ΔWn,ΔNn

)∣∣

=
∣
∣[(1 − θ)f(x1, x3) + θf(x2, x4)

]
h − [(1 − θ)f(y1, y3

)
+ θf

(
y2, y4

)]
h
∣
∣

≤
√
Kh

4∑

i=1

∣
∣xi − yi

∣
∣.

(4.8)

Noticing that E|ΔWn|2 = bh, E|ΔNn|2 = λh(1+λh), and the random variables x1, x3, y1, y3 are
Ftn-measurable, we derive that

E
∣∣Φg(h, x1, x3,ΔWn,ΔNn) −Φg

(
h, y1, y3,ΔWn,ΔNn

)∣∣2

≤ E
∣∣g(x1, x3)ΔWn − g

(
y1, y3

)
ΔWn

∣∣2

≤ bKhE
∣∣x1 − y1

∣∣2 + E
∣∣x3 − y3

∣∣2,

(4.9)

E
∣∣Φu(h, x1, x3,ΔWn,ΔNn) −Φu

(
h, y1, y3,ΔWn,ΔNn

)∣∣2

≤ E
∣∣u(x1, x3)ΔNn − u

(
y1, y3

)
ΔNn

∣∣2

≤ λ(1 + λT)Kh
[
E
∣∣x1 − y1

∣∣2 + E
∣∣x3 − y3

∣∣2
]
.

(4.10)

From (4.8)–(4.10), we see that the increment functions of the stochastic θ-methods (4.1)
satisfy the inequalities (3.7)–(3.9) with Lf =

√
K, Lg = bK, and Lu = λ(1 + λT)K. Noting

that ΔWn,ΔNn are independent of Ftn and x1, x3, y1, and y3 are Ftn-measurable, then using
|E(x | F)| ≤ E(|x| | F), we find that

E
[
Φg(h, x1, x3,ΔWn,ΔNn) −Φg

(
h, y1, y3,ΔWn,ΔNn

) | Ftn

]

= E
[
g(x1, x3)ΔWn − g

(
y1, y3

)
ΔWn | Ftn

]

=
[
g(x1, x3) − g

(
y1, y3

)]
E(ΔWn | Ftn) = 0,

∣∣E
[
Φu(h, x1, x3,ΔWn,ΔNn) −Φu

(
h, y1, y3,ΔWn,ΔNn

) | Ftn

]∣∣

=
∣∣E
[
u(x1, x3)ΔNn − u

(
y1, y3

)
ΔNn | Ftn

]∣∣

=
∣∣[u(x1, x3) − u

(
y1, y3

)]∣∣ · E(ΔNn | Ftn)

≤ λ
√
Kh
[∣∣x1 − y1

∣∣ +
∣∣x3 − y3

∣∣].

(4.11)
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Here, the fact used has been that EΔWn = 0 and EΔNn = λh. From above, we find that
the increment functions of the stochastic θ-methods (4.1) satisfy the estimations (3.10) and
(3.11) with Lu = λ

√
K. Therefore, the conditions (3.7)–(3.11) are satisfied. By Lemma 4.2 and

Theorem 3.5, it is not difficult to find that the stochastic θ-methods (4.1) are convergent with
order p = 1/2 in the mean square sense. The proof is completed.

Remark 4.4. For the case ofG(·) = 0, (2.1) reduces to the stochastic delay differential equations
with jumps

dx(t) = f
(
x
(
t−
)
, x
(
t− − τ))dt + g(x(t−), x(t− − τ))dW(t)

+ u
(
x
(
t−
)
, x
(
t− − τ))dN(t), 0 < t < T,

x(t) = ψ(t), −τ ≤ t ≤ 0,

(4.12)

where ψ ∈ L2
F0
([−τ, 0];Rd).

Theorem 4.3 implies that the stochastic θ-methods for (4.12) are convergent with order
p = 1/2, which coincides with Theorem 3.2 in [11].

Example 4.5. Consider the balanced implicit methods for system (2.1),

Yn+1 = G(Yn+1−m) + Yn −G(Yn−m) + f(Yn, Yn−m)h

+ g(Yn, Yn−m)ΔWn + u(Yn, Yn−m)ΔNn

+ C(Yn, Yn−m)[Yn −G(Yn−m) − Yn+1 +G(Yn+1−m)].

(4.13)

Here, the d × d matrix C(Yn, Yn−m) is given by

C(Yn, Yn−m) = C0(Yn, Yn−m)h + C1(Yn, Yn−m)|ΔWn| = C0nh + C1n|ΔWn|, (4.14)

where the C0n = C0(Yn, Yn−m), C1n = C1(Yn, Yn−m) are, in general matrix, called control fun-
ctions which are often chosen as constants.

Furthermore, the control functions must satisfy some conditions.

Assumption 4. The C0(x, y) and C1(x, y) represent bounded d×d-matrix-valued functions for
x, y ∈ R

d. For any real numbers α0 ∈ [0, α], α1 ≥ 0, where α ≥ h for all step sizes h considered
and x, y ∈ R

d, the matrix M(x, y) = I + α0C0(x, y) + α1C1(x, y) has an inverse and satisfies
the condition

∣∣∣
(
M
(
x, y

))−1∣∣∣ ≤ H <∞. (4.15)
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Here, I is the unit matrix, and H is a positive constant. Notice that if C0n, C1n satisfy
Assumption 4, the methods (4.13) are well defined and can be rewritten as

Yn+1 = G(Yn+1−m) + Yn −G(Yn−m) + [I + C(Yn, Yn−m)]−1

× (f(Yn, Yn−m)h + g(Yn, Yn−m)ΔWn + u(Yn, Yn−m)ΔNn

)
.

(4.16)

Lemma 4.6 (see [12]). If F(y,ω) is independent of F, y ∈ R
d, ω ∈ Ω, E(F(y,ω)) = ϕ(y), and ς

is F-measurable, then E(F(ς,ω) | F) = ϕ(ς).

For simplicity, from now on, we suppose that C0n, C1n in (4.14) are constants, that is to
say, C0n = C0, C1n = C1.

Lemma 4.7. Let Assumptions 1, 2, and 4 hold, then the balanced implicit methods (4.13) are
consistent with order p1 = 3/2 in the mean and order p2 = 1 in the mean square sense.

Proof. Without loss of generality, we can assume that 0 < h < 1. From Lemma 4.2, we know
that the Euler-Maruyama method is consistent with order 3/2 in the mean, thus using (4.4),
we have

E

[∣∣∣∣E
[
x(tn+1) − Y

B
(tn+1) | Ftn

]∣∣∣∣

2
]

= E

{∣∣∣∣E
[
x(tn+1) − Y

E
(tn+1) | Ftn

]
+ E

[
Y
E
(tn+1) − Y

B
(tn+1) | Ftn

]∣∣∣∣

2
}

≤ 2E

[∣∣∣∣E
[
x(tn+1) − Y

E
(tn+1) | Ftn

]∣∣∣∣

2
]

+ 2E

[∣∣∣∣E
[
Y
E
(tn+1) − Y

B
(tn+1) | Ftn

]∣∣∣∣

2
]

≤
[
20
(
1 + λ2

)
KĤ + 20KĤ

]
h3 + 2E

[∣∣∣∣E
[
Y
E
(tn+1) − Y

B
(tn+1) | Ftn

]∣∣∣∣

2
]

,

(4.17)

where Y
E
(tn+1) and Y

B
(tn+1) are defined as follows:

Y
E
(tn+1) = G(x(tn+1 − τ)) + x(tn) −G(x(tn − τ)) + f(x(tn), x(tn − τ))h

+ g(x(tn), x(tn − τ))ΔWn + u(x(tn), x(tn − τ))ΔNn,

Y
B
(tn+1) = G(x(tn+1 − τ)) + x(tn) −G(x(tn − τ)) + [I + Cn]−1

× (f(x(tn), x(tn − τ))h + g(x(tn), x(tn − τ))ΔWn + u(x(tn), x(tn − τ))ΔNn

)
,

(4.18)
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where Cn = C0h + C1|ΔWn|. By (4.18), we have

Y
E
(tn+1) − Y

B
(tn+1) =

(
I − [I + Cn]−1

)

·(f(x(tn), x(tn − τ))h + g(x(tn), x(tn − τ))ΔWn+u(x(tn), x(tn−τ))ΔNn

)

= [I + Cn]−1 · ((I + Cn) − I)
·(f(x(tn), x(tn − τ))h + g(x(tn), x(tn − τ))ΔWn+u(x(tn), x(tn−τ))ΔNn

)

= [I + Cn]−1 · Cn

·(f(x(tn), x(tn − τ))h + g(x(tn), x(tn − τ))ΔWn+u(x(tn), x(tn−τ))ΔNn

)
.

(4.19)

Noticing that x(tn), x(tn − τ) are Ftn-measurable, ΔWn is independent of Ftn , and using
Lemma 4.6, we find that

E

[
(I + Cn)−1 · Cn · g(x(tn), x(tn − τ))ΔWn | Ftn

]
= 0. (4.20)

We notice that C0 and C1 are constants; thus, there exists a positive constant B, such that
|Ci| ≤ B (i = 0, 1). Since ΔWn,ΔNn are independent of Ftn , by Assumption 4, (4.19), (4.20),
|E(x | F)| ≤ E(|x| | F), E|ΔWn| ≤

√
bh, and EΔNn = λh, we obtain

∣∣∣∣E
[
Y
E
(tn+1) − Y

B
(tn+1) | Ftn

]∣∣∣∣

≤ ∣∣f(x(tn), x(tn − τ))
∣∣h · E

(∣∣∣(I + Cn)−1
∣∣∣ · |C0h + C1|ΔWn|| | Ftn

)

+ |u(x(tn), x(tn − τ))| · E
(∣∣∣(I + Cn)−1

∣∣∣ · |C0h + C1|ΔWn|| ·ΔNn | Ftn

)

≤ ∣∣f(x(tn), x(tn − τ))
∣∣Hh · E(|C0h + C1|ΔWn|| | Ftn)

+ |u(x(tn), x(tn − τ))|H · E(|C0h + C1|ΔWn|| ·ΔNn | Ftn)

≤ (∣∣f(x(tn), x(tn − τ))
∣∣ + |u(x(tn), x(tn − τ))|λ

)
Hh3/2B

(√
h +

√
b
)
.

(4.21)

It follows from Assumption 2, Lemma 2.3, and (4.21) that

E

[∣∣∣∣E
[
Y
E
(tn+1) − Y

B
(tn+1) | Ftn

]∣∣∣∣

2
]

≤ 2H2B2
(√

T +
√
b
)2
h3
[
E
∣∣f(x(tn), x(tn − τ))

∣∣2 + E|u(x(tn), x(tn − τ))|2λ2
]

≤ 2LH2B2
(
1 + λ2

)(√
T +

√
b
)2
(1 + 2J1)h3.

(4.22)
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Inserting (4.22) into (4.17) yields

E

[∣
∣
∣
∣E
[
x(tn+1) − Y

B
(tn+1) | Ftn

]∣∣
∣
∣

2
]

≤
(
20
(
1 + λ2

)
KĤ + 20KĤ + 4LH2B2

(
1 + λ2

)(√
T +

√
b
)2
(1 + 2J1)

)
h3,

(4.23)

which implies that the balanced implicit methods (4.13) are consistent with order 3/2 in the
mean. In the following, we will show that the balanced implicit methods (4.13) are consistent
with order 1 in the mean square sense. Using Assumptions 2 and 4, Lemma 2.3, |Ci| ≤ B
(i = 0, 1), E|ΔWn|2 = bh, E|ΔWn|4 ≤ 3b2h2, EΔN2

n = λh(1 + λh), and (4.19), we compute that

E

[∣
∣
∣
∣Y

E
(tn+1) − Y

B
(tn+1)

∣
∣
∣
∣

2
]

≤ 3h2H2
E

(
|C0h + C1|ΔWn||2 ·

∣∣f(x(tn), x(tn − τ))
∣∣2
)

+ 3H2
E

(
|C0h + C1|ΔWn||2 ·

∣∣g(x(tn), x(tn − τ))
∣∣2|ΔWn|2

)

+ 3H2
E

(
|C0h + C1|ΔWn||2 · |u(x(tn), x(tn − τ))|2ΔN2

n

)

≤ 3h2H2
E

((
2|C0|2h2 + 2|C1|2|ΔWn|2

)
· ∣∣f(x(tn), x(tn − τ))

∣∣2
)

+ 3H2
E

((
2|C0|2h2|ΔWn|2 + 2|C1|2|ΔWn|4

)
· ∣∣g(x(tn), x(tn − τ))

∣∣2
)

+ 3H2
E

((
2|C0|2h2 + 2|C1|2|ΔWn|2

)
· |u(x(tn), x(tn − τ))|2ΔN2

n

)

≤ 3h2H2
(
2B2h2 + 2B2bh

)
E

[∣∣f(x(tn), x(tn − τ))
∣∣2
]

+ 3H2
(
2B2h2bh + 2B2 · 3b2h2

)
E

[∣∣g(x(tn), x(tn − τ))
∣∣2
]

+ 3H2λh(1 + λh)
(
2B2h2 + 2B2bh

)
E

[
|u(x(tn), x(tn − τ))|2

]

≤ 6H2B2L
[
T2 + 2bT + 3b2 + λ(1 + λT)(T + b)

]
(1 + 2J1)h2.

(4.24)

Theorem 4.3 implies that the Euler-Maruyama method is convergent with order p = 1/2.
Thus, by (4.5) and (4.24), we have

E

[∣∣∣∣x(tn+1) − Y
B
(tn+1)

∣∣∣∣

2
]

≤ 2E

[∣∣∣∣x(tn+1) − Y
E
(tn+1)

∣∣∣∣

2
]

+ 2E

[∣∣∣∣Y
E
(tn+1) − Y

B
(tn+1)

∣∣∣∣

2
]

≤
[
16KĤ

(
1 + 2T + 2λ + 2λ2T

)
+ 12H2B2L

×
[
T2 + 2bT + 3b2 + λ(1 + λT)(T + b)

]
(1 + 2J1)

]
h2.

(4.25)

The proof is completed.
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Theorem 4.8. Let Assumptions 1–4 hold, then the balanced implicit methods (4.16) are convergent
with order p = 1/2 in the mean square sense.

Proof. By (4.16), the increment functions Φf , Φg , and Φu of the balanced implicit methods
(4.16) are given as follows:

Φf(h, Yn, Yn+1, Yn−m, Yn+1−m,ΔWn,ΔNn) = [I + C(Yn, Yn−m)]−1f(Yn, Yn−m)h, (4.26)

Φg(h, Yn, Yn−m,ΔWn,ΔNn) = [I + C(Yn, Yn−m)]−1g(Yn, Yn−m)ΔWn,

Φu(h, Yn, Yn−m,ΔWn,ΔNn) = [I + C(Yn, Yn−m)]−1u(Yn, Yn−m)ΔNn.
(4.27)

For xi, yi ∈ R
d (i = 1, 2, 3, 4), by Assumptions 1–4, (4.26), we arrive at

∣∣Φf(h, x1, x2, x3, x4,ΔWn,ΔNn) −Φf

(
h, y1, y2, y3, y4,ΔWn,ΔNn

)∣∣

=
∣∣∣[I + C0h + C1|ΔWn|]−1f(x1, x3)h − [I + C0h + C1|ΔWn|]−1f

(
y1, y3

)
h
∣∣∣

≤ H
√
Kh
(∣∣x1 − y1

∣∣ +
∣∣x3 − y3

∣∣).

(4.28)

Noticing that E|ΔWn|2 = bh, EΔN2
n = λh(1 + λh), the random variables x1, x3, y1, and y3 are

Ftn-measurable and using Assumptions 1–4, (4.27), we obtain

E
∣∣Φg(h, x1, x3,ΔWn,ΔNn) −Φg

(
h, y1, y3,ΔWn,ΔNn

)∣∣2

= E

∣∣∣[I + Cn)]
−1g(x1, x3)ΔWn − [I + Cn]−1g

(
y1, y3

)
ΔWn

∣∣∣
2

≤ H2bKh
[
E
∣∣x1 − y1

∣∣2 + E
∣∣x3 − y3

∣∣2
]
,

(4.29)

E
∣∣Φu(h, x1, x3,ΔWn,ΔNn) −Φu

(
h, y1, y3,ΔWn,ΔNn

)∣∣2

= E

∣∣∣[I + Cn]−1u(x1, x3)ΔNn − [I + Cn]−1u
(
y1, y3

)
ΔNn

∣∣∣
2

≤ H2Kλ(1 + λT)h
[
E
∣∣x1 − y1

∣∣2 + E
∣∣x3 − y3

∣∣2
]
.

(4.30)

Since ΔWn,ΔNn are independent of Ftn and the random variables x1, x3, y1, and y3 are Ftn-
measurable; thus, by the inequality |E[x | F]| ≤ E[|x| | F], EΔNn = λh, and Lemma 4.6, we
compute that

E
[
Φg(h, x1, x3,ΔWn,ΔNn) −Φg

(
h, y1, y3,ΔWn,ΔNn

) | Ftn

]

= E

[
(I + Cn)−1g(x1, x3)ΔWn | Ftn

]
− E

[
(I + Cn)−1g

(
y1, y3

)
ΔWn | Ftn

]

= 0,

(4.31)
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∣
∣E
[
Φu(h, x1, x3,ΔWn,ΔNn) −Φu

(
h, y1, y3,ΔWn,ΔNn

) | Ftn

]∣∣

≤ E

∣
∣
∣[I + Cn]−1u(x1, x3)ΔNn − [I + Cn]−1u

(
y1, y3

)
ΔNn | Ftn

∣
∣
∣

≤ ∣∣u(x1, x3) − u
(
y1, y3

)∣∣ · E
[∣∣
∣(I + Cn)−1

∣
∣
∣ ·ΔNn | Ftn

]

≤ H
√
Kλh

[∣∣x1 − y1
∣
∣ +
∣
∣x3 − y3

∣
∣].

(4.32)

From (4.28)–(4.32), we see that the increment functions of the balanced implicit methods
(4.13) satisfy the conditions (3.7)–(3.11) with Lf = H

√
K, Lg = H2Kb, Lu = H2Kλ(1 + λT),

and Lu = H
√
Kλ. A combination of Lemma 4.7 and Theorem 3.5 leads to the conclusion that

the balanced implicit methods (4.13) are convergent with order p = 1/2 in the mean square
sense. The proof is completed.

Remark 4.9. For the case of G(·) = 0 and τ = 0, (2.1) reduces to the stochastic differential
equations with jumps

dx(t) = f
(
t, x
(
t−
))
dt + g

(
t, x
(
t−
))
dW(t) + u

(
t, x
(
t−
))
dN(t), 0 < t < T,

x
(
0−
)
= x0.

(4.33)

From Theorem 4.8, it is not difficult to find that the balanced implicit methods for (4.33) are
convergent with order p = 1/2 in the mean square sense, which coincides with Theorem 2.1
in [13].

5. Numerical Experiments

In this section, several numerical examples are given to illustrate our theoretical results in the
previous sections. Consider the nonlinear equation

d[(x(t) − x(t − 1))] =
[
−x(t) + x(t − 1)

1 + x2(t − 1)

]
dt + [sin(x(t)) + cos(x(t − 1))]dW(t)

+
1
2
x(t)dN(t), t ∈ [0, T],

(5.1)

with initial data

x(t) ≡ 1, t ∈ [−1, 0]. (5.2)

To show the convergence of the θ-methods (4.1) and the balanced implicit methods
(4.16), we choose θ = 0.5, C0 = 1, and C1 = 0.5. In all the numerical experiments, we
identify the numerical solution using very small stepsize h = Δt as the exact solution and
compare this with the numerical approximations using h = 4Δt, 8Δt, 16Δt, 32Δt, 64Δt for
Δt = 2−14 over 2000 different discretized Brownian paths. The mean-square errors εr =
ε21+rΔt, r = 1, 2, 3, 4, 5, all measured at time T = 1, are estimated by trajectory averaging, that is,
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Figure 1: The convergence of the numerical methods. (a) Stochastic θ-method (4.1); (b) the balanced
implicit methods (4.16).

εr ∼= 1/2000
∑2000

j=1 |xr,T (ωj) − Yr,q(ωj)|2. We plot our approximation to
√
εr against h on a log-

log scale in Figure 1. For reference, a dashed line of slope one-half is added in two graphs. In
Figure 1., we show the convergence of the θ-method (4.1) in the left picture and the balanced
implicit methods (4.16) in the right picture, respectively.

We see that the slopes of the two curves appear to match well in two pictures in
Figure 1, which is consistent with the strong order of one-half implied in Theorem 4.3 and
Theorem 4.8.

6. Conclusion

In this paper, we consider a family of implicit one-step methods for the NSDDEs with
jumps. A relationship between the consistent order and the convergence order is established.
A general framework for mean-square convergence of the methods is provided. The
applicability of the mean-square convergence theory is illustrated by the stochastic θ-
methods and the balanced implicit methods. We have generalized the existing results. The
examples presented in Section 4 show that the main result in this paper can be applied not
only to semi-implicit methods but also to full implicit methods.
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