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This study attempts to characterize and predict stock index series in Shenzhen stock market
using the concepts of multivariate local polynomial regression. Based on nonlinearity and chaos
of the stock index time series, multivariate local polynomial prediction methods and univariate
local polynomial prediction method, all of which use the concept of phase space reconstruction
according to Takens’ Theorem, are considered. To fit the stock index series, the single series changes
into bivariate series. To evaluate the results, the multivariate predictor for bivariate time series
based on multivariate local polynomial model is compared with univariate predictor with the
same Shenzhen stock index data. The numerical results obtained by Shenzhen component index
show that the prediction mean squared error of the multivariate predictor is much smaller than
the univariate one and is much better than the existed three methods. Even if the last half of the
training data are used in the multivariate predictor, the prediction mean squared error is smaller
than the univariate predictor. Multivariate local polynomial prediction model for nonsingle time
series is a useful tool for stock market price prediction.

1. Introduction

In many theoretical and practical problems, complex nonlinear systems exist everywhere. It
is suitable for stock price short-term prediction that stock market can be seen as a nonlinear
dynamical system [1–3]. Researchers in economics and finance have been interested in
predicting stock price behavior for many years. A variety of forecasting methods have
been proposed and implemented. Among them, nonlinear prediction method is a new
method developed in the last decades [4, 5]. Nonlinear system prediction posed a significant
challenge for the complex system analyst, since the nonlinear structure tends to be very
intricate and nonuniform.
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Although frequently referred to as unpredictable deterministic behavior, complex
nonlinear systems can in fact be forecast over limited time scales. In many situations, it
is hard to build up exact analytic model for complex systems (such as the stock market
and the electric load) because their constructions are very intricate and the information
available is incomplete and inaccurate. Complex systems are usually analyzed by time
series observed or measured from the systems. Most prediction methods can be grouped
into global and local methods. The class of local nonlinear prediction methods is based
on next neighbor searches and is introduced by Lorenz [6]. Many introductions to next
neighbor techniques have been published. A very effective local prediction method has
been proposed for the multivariate time series case and achieved satisfactory results
[7]. In this paper, multivariate local polynomial prediction method for multivariate time
series [8–10] is applied to Shenzhen stock market in China. Multivariate local polynomial
regression prediction methods based on kernel smoothing techniques including mean,
linear, polynomial, and Backpropagation (BP) neural networks are analyzed and applied to
predict stock price behavior. We also compare the accuracy of different prediction methods
mentioned in this paper. The model combines the advantages of traditional local, weighted,
multivariate prediction methods. The results show that the multivariate local polynomial
prediction method has lower mean squared error compared with the univariate predictor
based on univariate local polynomial regression (U-LPR) and most of the traditional
ones (such as the local mean prediction, local linear prediction, and BP neural networks
prediction).

The remainder of this paper is organized as follows. Section 2 describes the data
examined in this study. In Section 3, the multivariate local polynomial estimator is
applied to obtain multivariate complex nonlinear predictor. The selection of the time
delay, the embedding dimension, the order of multivariate local polynomial function, the
kernel function, and the bandwidth are also described. The applications and discussions
for Shenzhen stock index time series are given in Section 4. Conclusions are drawn in
Section 5.

2. Data

As is well known, data of the stock market, for example, stock prices, often shows greatly
complicated behavior; therefore, it is very difficult to predict its movement accurately.
In order to set up a good prediction model about such financial indices, to seek a
suitable variable affecting price index is important. Daily Shenzhen component index
data are sourced from Shenzhen stock market. Nonlinearity of stock market index time
series has been tested in many literatures [1–3], so we can apply the prediction method
given in this paper to fit and predict the index. To apply the proposed scheme, besides
the component index, the change index is also considered to suit the multivariate
situation, since it is one of the key factors influencing the dealer’s mind. Shenzhen
component index and the return index were selected, and we used the multivariate local
polynomial prediction method to predict the Shenzhen component index. We selected 1091
data points from the Shenzhen component index and the increment index individually
from January 4, 2006 to June 30, 2010, and we denote the Shenzhen component index
(ShCpIn) by P and the change index by ΔP . From this, we have the two variants time
series {Pn} and ΔPn (where ΔPn = Pn − Pn−1). The original data points are shown in
Figure 1.
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Figure 1: Result of Shenzhen component index.

3. Multivariate Nonlinear Time Series Predictor with
Local Polynomial Regression

3.1. Phase Space Reconstruction Model

Takens’ theorem is the 1981 delay embedding theorem of Takens [11]. In mathematics, a
delay embedding theorem gives the conditions under which a chaotic dynamical system can
be reconstructed from a sequence of observations of the state of a dynamical system. The
reconstruction preserves the properties of the dynamical system that do not change under
smooth coordinate changes. Phase space reconstruction model [12–14] has been studied
and applied to many fields. Suppose that we have an M-dimensional time series {xn}Nn=1 =
{x1,n, x2,n, . . . , xM,n}Nn=1. As in the case of univariate time series (when M = 1), the phase space
reconstruction can be described by

Vn =
{
x1,n, x1,n−τ1 , . . . , x1,n−(m1−1)τ1 ;x2,n, x2,n−τ2 , . . . , x2,n−(m2−1)τ2 ;

. . . ;xM,n, xM,n−τM , . . . , xM,n−(mM−1)τM
}
,

n = J0, J0 + 1, . . . ,N; J0 = max1≤i≤M{(mi − 1)τi + 1},

(3.1)

where τi, mi (i = 1, 2, . . . ,M) are the time delays and the embedding dimensions, respectively.
Following Takens’ delay embedding theorem, if m =

∑M
i=1 mi or each mi is large enough, there

exists an M-dimensional continued vector mapping f : Rm → Rm, such that

Vn+1 = f
(
Vn

)
, (3.2)
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or there exists an M-dimensional continued function fi: Rm → R, such that

xi,n+1 = fi
(
Vn

)
i = 1, 2, . . . ,M. (3.3)

Thus, the evolution from Vn to xi,n+1 reflects the motion of the original unknown
dynamics. This means that the geometrical characteristics of the strange attractor in the
reconstructed space are equivalent to the original state space. So any differential or
topological invariant quantities computed for the reconstructed strange attractor are identical
to those in the original state space.

3.2. Prediction Model Based on Multivariate Local Polynomial Regression

Multivariate local polynomial fitting is an attractive method both from theoretical and
practical point of view. Multivariate local polynomial method has a small mean squared error
compared with the Nadaraya-Watson estimator which leads to an undesirable form of the bias
and the Gasser-Muller estimator which has to pay a price in variance when dealing with a
random design model. Multivariate local polynomial fitting also has other advantages. The
method adapts to various types of designs such as random and fixed designs and highly
clustered and nearly uniform designs. Furthermore, there is an absence of boundary effects:
the bias at the boundary stays automatically of the same order as the interior, without the use
of specific boundary kernels. The local polynomial approximation approach is appealing on
general scientific grounds; the least squares principle to be applied opens the way to a wealth
of statistical knowledge and thus easy generalizations. All the above-mentioned assertions or
advantages can be found in literatures [8, 15–18]. In this section, we briefly outline the idea
of the extension of multivariate local polynomial fitting to multivariate nonlinear time series
forecasting.

Suppose that the state vector at time T is VT . Time p later than T on attractor is fitted
by the function

xi,T+p = fi
(
VT

)
. (3.4)

Our purpose is to obtain the estimation x̂i,T+p = f̂i(VT ) of function fi. In this paper, we
use the dth order multivariate local polynomial fi(V ) to predict the value of the fixed-point
VT . The polynomial function can be described as

fi
(
V
) ≈

∑

0≤|j|≤d

1
j!
D

(j)
fi
(
VT

)(
V − VT

)j
=

∑

0≤|j|≤d
bj

(
VT

)(
V − VT

)j
, (3.5)
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where

j =
(
j1, j2, . . . , jm

)
, j! = j1!j2! · · · jm!,

∣
∣∣j
∣
∣∣ =

m∑

l=1

jl,
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· · ·
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1 v
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2 · · ·v
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(j)
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(
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)
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V
)
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j1
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2 · · ·∂v

jm
m
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(
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1
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(j)
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(3.6)

In the multivariate prediction method, the change of VT with time on the attractor
is assumed to be the same as those of nearby points, VTa(a = 1, 2, . . . , A), according to the
distance order. Using A pairs of (VTa , xi,Ta+p), for which the values are already known, the
coefficients of fi are determined by minimizing

A∑

a=1

⎡

⎢
⎣xi,Ta+p −

∑

0≤
∣∣∣j
∣∣∣≤d

bj

(
VT

)(
VTa − VT

)j

⎤

⎥
⎦

2

·KH

(
VTa − VT

)
. (3.7)

For the weighted least squared problem, when XTWX is inverse, the solution can be
described by

B̂ =
(
XTWX

)−1
XTWY, (3.8)

where

Y =
(
yi,T1+p, yi,T2+p, . . . , yi,TA+p

)T
, yi,Ta+p = xi,Ta+p,

B =
(
b0

(
VT

)
, b1

(
VT

)
, . . . , bd

(
VT

))T
,

W = diag
{
KH

(
VT1 − VT

)
, KH

(
VT2 − VT

)
, . . . , KH

(
VTA − VT

)}
,

(3.9)

and X is the A × S (S =
∑

0≤|j|≤d |j|/j!),

X =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

1
(
VT1 − VT

)1
· · ·

(
VT1 − VT

)d

1
(
VT2 − VT

)1
· · ·

(
VT2 − VT

)d

...
...

. . .
...

1
(
VTA − VT

)1
· · ·

(
VTA − VT

)d

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

, (3.10)
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then we can get the estimation x̂i,T+p = f̂i(VT),

x̂i,T+p = f̂i
(
VT

)
= Ei

(
XTWX

)−1
XTWY, (3.11)

where Ei = (1, 0, 0, . . . , 0)1×S.
There are several important issues about the bandwidth, the order of multivariate local

polynomial function, and the kernel function which have to be discussed.

3.3. Parameters Estimations and Selections

We calculate the time delays τi with the mutual information method [19] separately for each
univariate time series {xi,n}Nn=1, i = 1, 2, . . . ,M. The mutual information method is based
on linear statistics, not taking into account nonlinear dynamical correlations. Therefore, it
is advocated that one look for the fist minimum of the time delayed mutual information.

There are many of the embedding dimensions algorithms [12, 20]. In univariate time
series {xi,n}Nn=1, i = 1, 2, . . . ,M, a popular method that is used for finding the embedding
dimensions mi is the so-called false nearest-neighbor method [21, 22]. Here, we apply this
method to the multivariate case.

For the multivariate local polynomial predictor, there are three important problems
which have significant influence on the prediction accuracy and computational complexity.
First of all, there is the choice of the bandwidth matrix, which plays a rather crucial role.
The bandwidth matrix H is taken to be a diagonal matrix. For simplification, the bandwidth
matrix is designed into H = hIm. In theory, there exists an optimal bandwidth hopt in the
meaning of mean squared error, such that

hopt = arg min
h

∫ (
fi
(
x
) − f̂i

(
x
))2

dx. (3.12)

Another issue in multivariate local polynomial fitting is the choice of the order of the
polynomial. Since the modeling bias is primarily controlled by the bandwidth, this issue is
less crucial, however. For a given bandwidth h, a large value of d would expectedly reduce
the modeling bias, but would cause a large variance and a considerable computational cost.
Since the bandwidth is used to control the modeling complexity, and due to the sparsity of
local data in multidimensional space, a higher-order polynomial is rarely used. So, we apply
the local quadratic regression to fit the model (i.e., d = 2).

The third issue is the selection of the kernel function. In this paper, we choose the
optimal spherical Epanechnikov kernel function [8, 15], which minimizes the asymptotic mean
square error (MSE) of the resulting multivariate local polynomial estimators, as our kernel
function.

4. Practical Applications and Discussions

In the following, we apply our prediction algorithms to Shenzhen stock index series. The
forecast variables here are close price and its change index data.

For the nonlinear stock index time series {xn}Nn=1 = {Pn,ΔPn}Nn=1, divide N into two
parts: T and L. The former T data are used to construct a model and estimate the coefficients,



Discrete Dynamics in Nature and Society 7

which are called the trained sets; the latter L data are used to make forecasting, which are
called prediction sets. Make the prediction of xi,T+p to be x̂i,T+p. This prediction is defined as
p-step prediction. For the purpose of simplification, we only predict the first variable.

Furthermore, in order to evaluate the prediction accuracy and effectiveness, we apply
the following indices, namely, the mean squared prediction error (MSE)

eMSE =
1
L

L∑

l=1

(xi,T+l − x̂i,T+l)
2, (4.1)

and the absolute error

ei(n) = xi,n − x̂i,n. (4.2)

The former 1000 data are used as the training sets and the latter 91 data are used as the
prediction sets. We apply the normalized method to the original time series, then the formula
is as follows:

Pi,j ←−
Pi,j − Pi,min

Pi,max − Pi,min
. (4.3)

For Shenzhen component index {Pn}1000
n=1 , we obtain the optimal time delay τ = 14

and the minimum embedding dimension m = 4, and we reconstruct a phase space with
(Pn, Pn−14, Pn−28, Pn−42).

In nonlinear time series prediction, most existing methods used phase space
reconstruction of univariate time series for prediction. Theoretically, if embedding dimension
and delay time are selected reasonably, univariate time series can achieve satisfactory
prediction results. But for most actual problems, because the length of acquired time series is
limited, and often time series involves noise, the reconstructed phase space of univariate time
series cannot very accurately describe the evolutionary track of state variables of dynamic
systems. In addition, often we do not know whether univariate time series contains complete
information of dynamic systems for phase space reconstruction, and multivariate time series
usually contains more complete system information than univariate time series. So, phase
space reconstruction of multivariate time series can reconstruct a more accurate phase space.
Literatures [5, 19, 20] have verified that multivariate time series forecasting methods based on
phase space reconstruction can get more accurate prediction. This paper applies phase space
reconstruction methods of multivariate time series and multivariate polynomial regression to
fit and predict Shenzhen stock index series.

We combine Shenzhen component index and change index into one multivariate time
series to predict the evolvement of component index according to Section 2. Firstly, two
component series are obtained by combination of initial Shenzhen index time series and
the time series of consecutive differences. Then based on the embedding dimensions and
time delays are multivariate phase space is reconstructed, and the proposed methods are
used to fit and predict the multivariate time series. For the multivariate nonlinear time series
{Pn,ΔPn}1000

n=1 , we obtain the optimal time delay τ1 = 14, τ2 = 6 and the minimum embedding
dimension m1 = 4, m2 = 1 according to the methods of Section 3.3, and we reconstruct a
multivariate phase space with (Pn, Pn−14, Pn−28, Pn−42;ΔPn).
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Figure 2: Predicted result of Shenzhen component index (1000 fitting data).
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Figure 3: Absolute error of one-step prediction (1000 fitting data).

Mean squared prediction errors with univariate data are shown in Table 1. BPNN
predictor is defined as BP neural networks predictor with the hidden layer consists of 12
neurons and the training times are 900 times. The LM predictor denotes the local mean
predictor. The LL predictor is the abbreviation of the local linear predictor. The three local
approaches are compared with the U-LPR predictor using the same the number of nearest
neighbors 200 (i.e., A = 200). From Table 1, we can conclude that the prediction results
of U-LPR predictor are significantly better than the three traditional methods in the same
univariate data.

In order to further discuss the influence of different reconstructed vector data on
prediction with the same data from complex nonlinear Shenzhen stock market, the prediction
errors are shown in Table 2. From Table 2, we can see that the predicted results with M-LPR
method are better than the U-LPR one.

The results from Figures 2–5 show that the proposed multivariate nonlinear stock
index time series predictor based on multivariate local polynomial fitting is effective, even in
only the last half of the fitting data, the method performs well for the prediction of complex
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Figure 4: Predicted result of Shenzhen component index (500 fitting data).
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Figure 5: Absolute error of one-step prediction (500 fitting data).

multivariate nonlinear stock index time series. Figure 2 is the one-step prediction results with
1000 fitting data, and Figure 3 is its absolute error. Figure 4 is the one-step prediction results
with just the last 500 fitting data, and Figure 5 is its absolute error. From Figures 2–5, we
know that a big fitting data obtain a small mean squared error. This is one of the advantages
of nonparametric approaches, that is to say, the more fitting data can make the prediction
results more accurate.

5. Conclusion

In this brief, we have presented a new method for the prediction of multivariate nonlinear
complex systems for stock market index time series based on multivariate local polynomial
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Table 1: MSE of four kinds of predictors.

Method LM predictor LL predictor BPNN predictor U-LPR predictor
eMSE 2.38 9.62 × 10−2 8.33 × 10−2 2.81 × 10−2

Table 2: MSE using both methods.

P Training data points Two different methods eMSE

1 1000 U-LPR 2.81 × 10−2

1 500 U-LPR 3.13 × 10−2

1 1000 M-LPR 2.01 × 10−3

1 500 M-LPR 3.07 × 10−3

10 1000 U-LPR 7.62 × 10−2

10 500 U-LPR 9.65 × 10−2

10 1000 M-LPR 8.04 × 10−3

10 500 M-LPR 9.19 × 10−3

regression with kernel smoothing technique. The multivariate local polynomial and weighted
least squared method are applied to the nonlinear complex system prediction. The univariate
predictor has been compared with the multivariate forecasting based on the multivariate local
polynomial fitting in the same stock index data. Comparisons with the conventional three
predictors have also been made. The results obtained by Shenzhen component index system
have indicated that the prediction mean squared error of the M-LPR predictor is much smaller
than the U-LPR one, even if the last half of the fitting data is used in the former one, and the
proposed method is also much better than most of the existed methods including the local
mean prediction, local linear prediction, and BP neural networks prediction.
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