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According to the different effects of biological and chemical control, we propose a model for
Holling I functional response predator-prey system concerning pest control which adopts different
control methods at different thresholds. By using differential equation geometry theory and the
method of successor functions, we prove that the existence of order one periodic solution of such
system and the attractiveness of the order one periodic solution by sequence convergence rules
and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our
main results which show that our method used in this paper is more efficient and easier than the
existing ones for proving the existence of order one periodic solution.

1. Introduction

More and more scholars have paid close attention, and studied impulsive differential
equation since the 1980s. Impulsive differential equation theory, especially the one in a fixed
time, has been deeply developed and widely applied in various fields through years of
research [1–5]. In population dynamical system, Tang et al. [6] discussed the stage-structure
system for single population with birth pulse and got the existence and stability of periodic
solution; Liu et al. [7–9] studied the impulse control strategy of Lotka-Volterra system; he
also set up and discussed the Holling type II predator-prey model with impulse control
strategy. Ballinger and Liu [10] discussed the persistence of population model with impulse
effect. Tang and Cheke [11] first proposed the “Volterra” model with state-dependence,
and they applied this model to pest management and proved existence and stability of
periodic solution of first and second orders. Then, Liu et al. [12] also proposed bait-dependent
digestive model with state pulse, and the model had the existence of positive periodic
solution and stability of orbit. Recently, Jiang and Liu et al. [12–14] have proposed pest
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management model with state pulse and phase structure and several predator-prey models
with state pulse and had the existence of semitrivial periodic solution and positive periodic
solution and stability of orbit.

In consideration of predator-prey capacity, Holling [15] proposes three different pre-
dations with functional response based on experiments; the average predator-prey system
with Holling response is as follows:

x′(t) = xg(x) − yφ(x),
y′(t) = −dy + eyφ(x),

(1.1)

where x represents the prey’s density, while y is the predator’s; g(x) is the unit rate of prey
density in lack of predators; φ(x) is the Holling functional response, among which Holling
type I functional response is

φ(x) =

{
cx, x ≤ x0,

cx0, x > x0,
(1.2)

where c is a constant; when the amount of prey is greater than certain threshold value x0,
predatory rate is a constant. Referring to [15] for details.

As the Lotka-Volterra predator-prey system with Holling functional response is
more practical, many authors have studied it [12, 14, 15]. The researches mostly focus
on Lotka-Volterra predator-prey model with Holling type II or Holling type III functional
response in contrast to the model with Holling type I. This paper sets up a state-dependent
impulsive mathematical model concerning pest control which adopts different control
methods at different thresholds and adopts new mathematic method to study existence and
attractiveness of order one periodic solution of such system; thus the following pest-control
model with Holling type-I functional response is set up:

x′(t) = rx(t) − cx(t)y(t),
y′(t) = −dy(t) + ecx(t)y(t),

x ≤ x0,

x′(t) = rx(t) − cx0y(t),
y′(t) = −dy(t) + ecx0y(t),

x > x0,
x /=h1, h2 or x = h1, y > y∗,

Δx(t) = 0,
Δy(t) = δ,

x = h1, y ≤ y∗,

Δx(t) = −αx(t),
Δy(t) = −βy(t) + q,

x = h2,

(1.3)

where r, c, d, e, h1, and h2 are all positive constants, x(t) and y(t) represent the densities of
prey (pest) and predator (natural enemy), respectively; r is the intrinsic growth rate of the
prey; d denotes the death rate of the predator; (α, β) ∈ (0, 1) represent the proportion of killed
prey and predator by spraying pesticides respectively, δ > 0 is the number of natural enemies
released at this time th1 , when the amount of the prey reaches the threshold h1 at time th1 ,
control measures are taken (releasing natural enemies) and the amount of predator abruptly
turns to y(th1) + δ. When the amount of prey reaches the threshold h2 at time th2 , control
measures are taken and the amount of prey and predator abruptly turns to (1 − α)h2 and
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(1−β)y(th2), respectively.Δx = x(t+)−x(t),Δy = y(t+)−y(t), x(t+) = limw→ 0x(t+w),y(t+) =
limw→ 0y(t +w). Referring to [12] for details.

2. Preliminaries

We first consider the model (1.3)without impulse effects:

x′(t) = rx(t) − cx(t)y(t),
y′(t) = −dy(t) + ecx(t)y(t),

x ≤ x0,

x′(t) = rx(t) − cx0y(t),
y′(t) = −dy(t) + ecx0y(t).

x > x0.

(2.1)

We consider the following function:

V
(
x, y

)
=
∫x

x∗

−d + eφ(s)
φ(s)

ds +
∫y

y∗

s − y∗

s
ds, (2.2)

we can easily know that V (x, y) is positive definite in the first quartile and fits for all con-
ditions of Lyapunov function.

We can get that

V ′(x, y) =
exy∗

φ(x)
(
φ(x) − φ(x∗)

)(φ(x∗)
x∗ − φ(x)

x

)
. (2.3)

It is easily proved that V ′(x, y) ≡ 0 on condition that x ≤ x0; so all solutions of model
(1.3) form a set {(x, y)/V (x, y) ≤ V (x0, y

∗)} are closed trajectory V (x, y) = C, where 0 < C <
V (x0, y

∗).
Since V ′(x, y) > 0 on condition that x > x0; so the trajectory of system (2.1) passes

through closed curve V (x, y) = C when it is out of the curve V (x, y) = V (x0, y
∗).

Therefore, we observe the straight line:

L
(
x, y

)
= y + x − n, n > 0, x0 < x ≤ h. (2.4)

The derivative of L(x, y) along (2.1) is that

L′(x, y)/L=0 = x′ + y′ = −dy + ecx0y + rx − ecx0

= −(dn − ecx0n + cx0n + cx0h − dx0) − (ecx0 − r − cx0)

≤ dh − ecx2
0 + rh + cx0h − (d − ecx0 + cx0)n.

(2.5)

We have that L′/L=0 < 0 on condition that n > ((dh − ecx2
0 + rh + cx0h)/(d − ecx0 + cx0)).

Therefore, we can get the following Lemma.

Lemma 2.1. The system (2.1) possesses:
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(I) two steady states 0(0, 0)—saddle point, and R(d/ec, r/c) = R(x∗, y∗)—stable centre on
the condition that x ≤ x0 and that d ≤ ecx0;

(II) the trajectory of system (2.1) goes across the straight line y+x−n = 0 from the right to the
left on condition that x0 ≤ x ≤ h and that n > ((dh− ecx2

0 + rh+ cx0h)/(d− ecx0 + cx0))
and intersects with the straight line x = x0.

Definition 2.2. Suppose that the impulse setM and the phase setN are both lines, as shown in
Figure 1. Define the coordinate in the phase setN as follows: denote the point of intersection
Q between N and x-axis as O, then the coordinate of any point A in N is defined as the
distance between A and Q and is denoted by yA. Let C denote the point of intersection
between the trajectory starting from A and the impulse set M, and let B denote the phase
point of C after impulse with coordinate yB. Then, we define B as the successor point of A,
and then the successor function [16] of point A is that f(A) = yB − yA.

Lemma 2.3. In system (1.3), if there existA ∈ N, B ∈ N satisfying successor function f(A)f(B) <
0, then there must exist a point P (P ∈ N) satisfying f(P) = 0 the function between the point of A
and the point of B, thus there is an order one periodic solution in system (1.3).

In this paper, we assume that the condition d ≤ ecx0 holds. By the biological
background of system (1.3), we only consider D = {(x, y) : x ≥ 0, y ≥ 0}.

This paper is organized as follows. In the next section, we present some basic
definitions and important lemmas as preliminaries. In Section 3, we prove the existence for
an order one periodic solution of system (1.3). The sufficient conditions for the attractiveness
of order one periodic solutions of system (1.3) are obtained in Section 4. At last, we state
conclusion, and the main results are carried out to illustrate the feasibility by numerical
simulations.
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3. Existence of Order One Periodic Solution

In this section, we shall investigate the existence of an order one periodic solution of system
(1.3) by using the successor function defined in this paper. For this goal, we denote

M1 =

{(
x, y

)
x

= h1, 0 ≤ y ≤ r

c
+ δ

}
,

M2 =
{(

x, y
) | x = h2, y ≥ 0

}
,

N1 = I(M1) =
{(

x, y
) | x = h1,

r

c
< y ≤ r

c
+ δ

}
,

N2 = I(M2) =
{(

x, y
) | x = (1 − α)h2, y ≥ 0

}
.

(3.1)

Isoclinic line is denoted respectively by lines:

L1 =
{(

x, y
) | y =

r

c
, 0 ≤ x ≤ x0

}
,

L2 =
{(

x, y
) | x =

d

ec
, 0 ≤ x ≤ x0, y ≥ 0

}
,

L3 =
{(

x, y
) | y =

r

cx0
x, x > x0, y ≥ r

c

}
.

(3.2)

For the convenience, if P ∈ Ω − M, F(P) is defined as the first point of intersection of
C+(P) and M, that is, there exists a t1 ∈ R+ such that F(P) = Π(P, t1) ∈ M, and for
0 < t < t1, Π(P, t) /∈ M; if B ∈ N,R(B) is defined as the first point of intersection of
C−(P) and N, that is, there exists a t2 ∈ R+ such that R(B) = Π(B,−t2) ∈ N, and for
−t < t < 0, Π(B, t) /∈ N.

For any point P , denote yP as its ordinate. If the point P(h, yP ) ∈ M, pulse occurs at the
point P , the impulsive function transfers the point P into P+ ∈ N. Without loss of generality,
we assume the initial point of the trajectory lies in phase set N unless otherwise specified.

According to the practical significance, in this paper we assume that the set N always
lies in the left side of stable centre R, that is, h1 < r/c, (1 − α)h2 < r/c.

In the light of the different position of the set N1 and the set N2, we consider the
following three cases.

Case 1 (0 < h1 < d/ec). In this case, set M1 and N1 are both in the left side of stable center
R (as shown in Figure 2). Take a point B(h1, r/c + ε) ∈ N1 above A, where ε > 0 is small
enough, then there must exist a trajectory passing through B which intersects with the set
M1 at point P1(h1, yp1), we have yp1 < r/c. Since p1 ∈ M1, pulse occurs at the point P1,
the impulsive function transfers the point P1 into P+

1 (h1, yp1 + δ) and P+
1 must lie above B;

therefore, inequation a/b + ε < yp1 + δ holds, thus the successor function of B is that f(B) =
yp1 + δ − (r/c + ε) > 0.

On the other hand, the trajectory with the initial point P+
1 intersects with M1 at

point P2(h1, yp2), in view of vector field and disjointness of any two trajectories, we know
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yp2 < yp1 < r/c. Supposing that the point P2 is subject to impulsive effects to point P+
2 (h1, yp+2

),
where yp+2

= yp2 + δ, the position of P+
2 has the following two cases.

Subcase 1.1 (r/c < yp2 + δ < yp1 + δ). In this case, the point P+
2 lies above the point A and

under P+
1 , we have f(P+

1 ) = yp2 + δ − (yp1 + δ) < 0.
By Lemma 2.3, there exists an order one periodic solution of system (1.3), whose initial

point is between B and P+
1 in set N1.

Subcase 1.2 (r/c ≥ yp2 + δ (as shown in Figure 2)). The point P+
2 lies below the point A, that

is, P+
2 ∈ M1, then pulse occurs at the point P+

2 , the impulsive function transfers the point P+
2

into P++
2 (h1, yp2 + 2δ).
If r/c < yp2 + 2δ < yp1 + δ, like the analysis of Subcase 1.1, there exists an order one

periodic solution of system (1.3).
If r/c > yp2 + 2δ, that is, P++

2 ∈ M1; we repeat the above process until there exists
k ∈ Z+ such that P++

2 jumps to Pi+
2 ((h1, yp2 + (k + 2)δ) after k times’ impulsive effects which

satisfies r/c < yp2 + (k + 2)δ < yp1 + δ. Like the analysis of Subcase 1.1, there exists an order
one periodic solution of system (1.3).

Now we can summarize the above results in the following theorem.

Theorem 3.1. If d < ec, 0 < h1 < d/ec, then there exists an order one periodic solution of the system
(1.3).

Remark 3.2. It shows from the proved process of Theorem 3.1 that the number of natural
enemies should be selected appropriately, which aims to reduce releasing impulsive times
to save manpower and resources.
Case 2 (h2 < d/ec). In this case, sets M2 and N2 are both in the left side of stable center R, in
the light of the different position of the set N2, we consider the following two cases.
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Subcase 2.1 (0 < h1 < (1 − α)h2 < h2). In this case, the set N2 is in the right side of M1 (as
shown in Figure 3). The trajectory passing through point A which tangents to N2 at point A
intersects with the set M2 at point P0(h2, yp0). Since the point P0 ∈ M2, then impulse occurs
at point P0, supposing the point P0 is subject to impulsive effects to point P+

0 ((1 − α)h2, yP+
0
),

where yP+
0
= (1 − β)yP0 + q, the position of P+

0 has the following three cases.

(1) (1 − β)yP0 + q > r/c: Take a point B1((1 − α)h2, ε + r/c) ∈ N2 above A, where
ε > 0 is small enough. Then there must exist a trajectory passing through the
point B1 which intersects with M2 at point P1(h2, yP1). In view of continuous
dependence of the solution on initial value and time, we know that yP1 < yP0 , and
the point P1 is close to P0 enough, so we have the point P+

1 close to P+
0 enough

and yP+
1

< yP+
0
, then we obtain f(B1) = yP+

1
− yB1 > 0. On the other hand, the

trajectory passing through point B which tangents to N1 at point B intersect with
N2 at point S. Set F(S) = P2(h2, yP2) ∈ M2. Denote the coordinates of impulsive
point P+

2 ((1 − α)h2, yP+
2
) corresponding to the point P2(h2, yP2). If yS ≥ yP+

0
, then

yP+
2
< yP+

0
. So we obtain f(S) = yP+

2
− yS < 0. There exists an order one periodic

solution of system (1.3), whose initial point is between the point B1 and the point S
in set N2. If yS < yP+

0
and yP+

2
> yS, from the vector field of system (1.3), we know

that the trajectory of system (1.3)with any initiating point on theN2 will ultimately
stay in Γ1 after one impulsive effect (as shown in Figure 4). Therefore, there is no
an order one periodic solution of system (1.3);

(2) (1 − β)yP0 + q < r/c (as shown in Figure 5): In this case, the point P+
0 lies below

the point A, that is, (1 − β)yP0 + q < r/c, thus the successor function of the point
A is f(A) = (1 − β)yP0 + q − r/c < 0. Take another point B1((1 − α)h2, ε) ∈ N2,
where ε > 0 is small enough. Then there must exist a trajectory passing through the
point B1 which intersects with M2 at a point P1(h2, yP1) ∈ M2. Supposing the point
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P1(h2, yP1) is subject to impulsive effects to point P+
1 ((1 − α)h2, yP+

1
), then we have

yP+
1
> ε, so we have f(C1) = yP+

1
− ε > 0. From Lemma 2.3, there exists an order one

periodic solution of system(1.3), whose initial point is between B1 and A in set N2;

(3) (1 − β)yP0 + q = r/c: P+
0 coincides with A, and the successor function of A is that

f(A) = 0, so there exists an order one periodic solution of system (1.3)which is just
a part of the trajectory passing through the A.
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Now we can summarize the above results in the following theorem.

Theorem 3.3. Assuming that d < ecx0, 0 < h1 < (1 − α)h2 < h2 < d/ec.
If (1 − β)yP0 + q ≤ r/c, there exists an order one periodic solutions of the system (1.3).
If (1 − β)yP0 + q > r/c and yS ≥ yP+

0
or yS < yP+

0
and yP+

2
≤ yS, there exists an order one

periodic solutions of the system (1.3).

Subcase 2.2 (0 < (1 − α)h2 < h1 < h2). In this case, the set N2 is in the left side of N1. Any
trajectory from initial point (x+

0 , y
+
0 ) ∈ N2 will intersect with M1 at some point with time

increasing. Like the analysis of Case 1, the trajectory from initial point (x+
0 , y

+
0 ) ∈ N2 on the

set N2 will stay in the region Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1}. Similarly, any trajectory
from initial point (x+

0 , y
+
0 ) ∈ Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2}will stay in the regionΩ1 after

one impulsive effect or free from impulsive effect.

Theorem 3.4. If d < ecx0 and 0 < (1 − α)h2 < h1 < h2 < d/ec, there is no order one periodic
solutions to the system (1.3), and the trajectory with initial point (x+

0 , y
+
0 ) ∈ Ω0 = {(x, y) | x ≥

0, y ≥ 0, x ≤ h2} will stay in the region Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1}.

Case 3 (d/ec < h2 ≤ x0). In this case, the set M2 is in the right side of stable center R. In the
light of the different position of N2, we consider the following two subject cases.

Subcase 3.1 (h1 < (1 − α)h2). In this case, the set M2 is in the right side of R. Then there exists
a unique closed trajectory Γ1 of system (1.3)which contains the point R and is tangent toM2

at the point A.
Since Γ1 is a closed trajectory, we take the minimal value δmin of abscissas at the

trajectory Γ1, namely, δmin ≤ x holds for any abscissas of Γ1.

(1) h1 < (1−α)h2 < δmin: In this case, there is a trajectory, which contains the pointR and
is tangent to theN2 at the point B intersecting with M2 at a point P1(h2, yP1) ∈ M2.
Suppose point P1 is subject to impulsive effects to point P+

1 ((1 − α)h2, yP+
1
), here

yP+
1
= (1 − β)yP1 + q. Like the analysis of Subcase 2.1, we can prove that there exists

an order one periodic solution to the system (1.3) in this case (as shown in Figure 6);
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(2) h1 < δmin < (1 − α)h2: In this case, denote the closed trajectory Γ1 of system (1.3)
intersecting with the setN2 two point A1((1 − α)h2, yA1) and A2((1 − α)h2, yA2) (as
shown in Figure 7). Since A ∈ M2, impulse occurs at the point A. Suppose point A
is subject to impulsive effects to point P+

0 ((1−α)h2, yP+
0
), here yP+

0
= (1−β)(r/c) + q.

If (1 − β)(r/c) + q < yA2 , the point P+
0 lies below the point A2. Like the analysis of

(2) of Subcase 2.1, we can prove that there exists an order one periodic solution to
the system (1.3) in this case. If (1−β)(r/c) + q > yA1 , the point P

+
0 is above the point

A1. Suppose the trajectory passing through point B which tangents to N1 at point
B intersects with N2 at a point S. Like the analysis of (1) of Subcase 2.1, we obtain
sufficient conditions of existence of order one periodic solution to the system (1.3);

(3) yA2 < (1−β)(r/c) + q < yA1 : In this case, we note that the point P+
0 must lie between

the point A1 and the point A2 (as shown in Figure 8). Take a point B1 ∈ M2 such
that B1 jumps to A2 after the impulsive effect and denote A2 = B+

1 . Since yP+
0
> yB+

1
,

we have yA > yB1 . Let R(B1) = B+
2 ∈ N2, take a point B2 ∈ M2 such that B2 jumps
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to B+
2 after the impulsive effects, then we have yB+

1
> yB+

2
, yB1 > yB2 . This process

continues until there exists a B+
K ∈ N2(K ∈ Z+) satisfying yB+

k
< q. So we obtain

a sequence {B+
k
}k=1,2,...,K of set M2 and a sequence {Bk}k=1,2,...,K of set N2 satisfying

R(Bk−1) = B+
k
∈ N2, yB+

k−1 > yB+
k
. In the following, we will prove that the trajectory

of system (1.3) with any initiating point of set N2 will ultimately stay in Γ1. From
the vector field of system (1.3), we know the trajectory of system (1.3) with any
initiating point between the point A1 and A2 will be free from impulsive effect and
ultimately will stay in Γ1. For any point below A2, it must lie between B+

k and B+
k−1,

here k = 2, 3 . . . , K + 1 and A2 = B+
1 . After k times’ impulsive effects, the trajectory

with this initiating point will arrive at some point of the set N2 which must be
between A1 and A2, and then ultimately stay in Γ1. Denote the intersection of the
trajectory passing through the point B which tangents to N1 at point B with the
set N2 at point S((1 − α)h2, yS) (Figure 7). The trajectory of system (1.3) with any
initiating point on segment A1S intersects with the set N2 at some point below A2

with time increasing, so just like the analysis above we obtain it will ultimately stay
in Γ1. Therefore, for any point below S will ultimately stay in region Γ1 with time
increasing.

Now we can summarize the above results as the following theorem.

Theorem 3.5. Assuming that d < ecx0, h1 < δmin < (1 − α)h2 < d/ec < h2 ≤ x0 and yA2 <
(1 − β)(r/c) + q < yA1 , there is no periodic solution in system (1.3) and the trajectory with any
initiating point below S will stay in Γ1 or in the region Ω1 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h1}.

Case 4 (x0 < h2). In this case, denote the intersection of the line L1 with the set N at
point B((1 − α)h2, r/c), and the intersection between the line L3 and the set M2 at point
A(h2, rh2/cx0) (as shown in Figure 9). By Lemma 2.3 and means of qualitative analysis, there
exists a unique closed trajectory Γ2 of system (1.3)which is tangent to the setM2 at the point
A and has minimal value λmin at the line L1. In the light of the different position of the setN2,
we consider the following two cases.

Subcase 4.1 (0 < h1 < (1 − α)h2 < λmin). In this case, there exists a unique trajectory of system
(1.3) which is tangent to the set N2 at the point B. Set F(B) = P1 ∈ M2, then pulse occurs
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at point P1, the impulsive function transfers the point P1 into P+
1 . Like the analysis of (1) of

Subcase 2.1, we can prove that there exists an order one periodic solution in system (1.3) in
this case.

Subcase 4.2 (h1 < λmin < (1 − α)h < x0 < h2). In this case, let the closed trajectory Γ2 of system
(1.3) intersectsN2 at two pointA1((1−α)h, yA1) andA2((1−α)h, yA2). Like the analysis of (2)
of Subcase 3.1, we can prove that there exists an order one periodic solution in system (1.3) in
this case; like the analysis of (3) of Subcase 3.1 we can prove that there is no periodic solution
in system (1.3).

4. Attractiveness of the Order One Periodic Solution

In this section, under the condition of existence of order one periodic solution to system (1.3)
and the initial value of pest population x(0) ≤ h2, we discuss its attractiveness. We focus on
Cases 1 and 2; by similar method we can obtain similar results about Cases 3 and 4.

Theorem 4.1. Assuming that d < cex0, h1 < h2 < r/c and δ ≥ r/c. If yP+
0
> yP+

2
> yP+ or

yP+
0
< yP+

2
< yP+ , then

(I) there exists a unique order one periodic solution of system (1.3);

(II) If (1 − α)h2 < h1, order one periodic solution of system (1.3) is attractive in the region
Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2}.

Proof. By the derivation of Theorem 3.1, we know that there exists an order one periodic
solution of system (1.3). We assume that trajectory P̂P+ and segment PP+ formulate an order
one periodic solution of system (1.3), that is, there exists a P+ ∈ N2 such that the successor
function of P+ satisfies f(P+) = 0. First, wewill prove the uniqueness of the order one periodic
solution.

We take any two points C1(h1, yC1) ∈ N1, C2(h1, yC2) ∈ N1 satisfying yC2 > yC1 > yA,
then we obtain two trajectories whose initiate points are C1 and C2 intersect with the set M1

at two pointsD1(h1, yD1) andD2(h1, yD2), respectively (Figure 10). In view of the vector field
of system (1.3) and the disjointness of any two trajectories without impulse, we know that
yD1 > yD2 . Suppose the pointsD1 andD2 are subject to impulsive effect to pointsD+

1 (h1, yD+
1
)

andD+
2 (h2, yD+

2
), respectively, thenwe have yD+

1
> yD+

2
and f(C1) = yD+

1
−yC1 , f(C2) = yD+

2
−yC2 ,

so we get f(C1) − f(C2) < 0, thus we obtain that the successor function f(x) is decreasing
monotonously in N1; therefore there is a unique point P+ ∈ N1 satisfying f(P+) = 0, and the
trajectory ̂P+PP+ is a unique order one periodic solution of system (1.3).

Next we prove the attractiveness of the order one periodic solution ̂P+PP+ in the re-
gion Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2}. We focus on the case yP+

0
> yP+

2
> yP+ ; by similar

method we can obtain similar results about case yP+
0
< yP+

2
< yP+ (Figure 11).

Take any point P+
0 (h1, yP+

0
) ∈ N1 above P+. Denote the first intersection point

of the trajectory from initiating point P+
0 (h1, yP+

0
) with the set M1 at P1(h1, yP1), and

the corresponding consecutive points are P2(h1, yP2), P3(h1, yP3), P4(h1, yP4), . . ., respectively.
Consequently, under the effect of impulsive function I, the corresponding points after pulse
are P+

1 (h1, yP+
1
), P+

2 (h1, yP+
2
), P+

3 (h1, yP+
3
), . . .
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Due to conditions yP+
0
> yP+

2
> yP+ , yP+

k
= yPk + δ, δ ≥ a/b and disjointness of any two

trajectories, we get a sequence {P+
k
}k=1,2,... of the set N1 satisfying

yP+
1
< yP+

3
< · · · < yP+

2k−1 < yP+
2k+1

< · · · < yP+ < · · · < yP+
2k
< yP+

2k−2 < · · · < yP+
2
< yP+

0
. (4.1)
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So the successor function f(P+
2k−1) = yP+

2k
− yP+

2k−1 > 0 and f(P+
2k) = yP+

2k+1
− yP+

2k
< 0 hold. Series

{yP2k−1}k=1,2,... increases monotonously and has upper bound, so limk→∞yP+
2k−1 exists. Next we

will prove limk→∞yP+
2k−1 = yP+ . Set limk→∞P2k−1 = C+, we will prove P+ = C+. Otherwise

P+ /=C+, then there is a trajectory passing through the point C+ which intersects the set M1

at point C̃, then we have yC̃ > yP , yC̃+ > yP+ . Since f(C+) ≥ 0 and P+ /=C+, according to the
uniqueness of the periodic solution, then we have f(C+) = yC̃+ −yC+ > 0, thus yC+ < yP+ < yC̃+

hold. Analogously, let trajectory passing through the point C+ which intersects the set M1 at

point ˜̃C, and the corresponding consecutive points is
˜̃̃
C, then yC̃ > y ˜̃̃

C
> yp > y ˜̃C, yC̃+ > y ˜̃̃

C
+ >

y ˜̃C+ > yp+ > yC+ , then we have f( ˜̃C+
) = y ˜̃̃

C
+ − y ˜̃C+ > 0, this contradicts to the fact that C+ is a

limit of sequence {P+
2k−1}k=1,2,..., so we obtain P+ = C+. Therefore, we have limk→∞yP+

2k−1 = yP+ .
Similarly, we can prove limk→∞yP+

2k
= yP+ .

From above analysis, we know that there exists a unique order one periodic solution
in system (1.3), and the trajectory from initiating any point of the N1 will ultimately tend to
be order one periodic solution ̂P+PP+.

Any trajectory from initial point (x+
0 , y

+
0 ) ∈ Ω0 = {(x, y) | x ≥ 0, y ≥ 0, x ≤ h2} will

intersect with N1 at some point with time increasing on the condition that (1 − α)h2 < h1 <
h2 < d/b(λ−dh); therefore, the trajectory from initial point onN1 ultimately tends to be order
one periodic solution ̂P+PP+. Therefore, order one periodic solution ̂P+PP+ is attractive in the
region Ω0. This completes the proof.

Remark 4.2. Assuming that d < ecx0, h1 < h2 < d/ec and δ ≥ r/c, if yP+ < yP+
0
< yP+

2
or

yP+ > yP+
0
> yP+

2
, then the order one periodic solution is unattractive.

Theorem 4.3. Assuming that d < ecx0, h1 < (1 − α)h2 < h2 < d/ec and yP+
0
< yA (as shown in

Figure 12), then
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(I) there exists an odd number of order one periodic solutions of system (1.3) with initial value
between C+

1 and A in setN2;

(II) if (1− α)h2 < h1 and the periodic solution is unique, then the periodic solution is attractive
in region Ω2, here Ω2 is open region which is constituted by trajectory ĜB, segment BH,
segmentHE, and segment EG.

Proof. (I) due to the (2) of Subcase 2.1, f(A) < 0 and f(C+
1 ) > 0 and the continuous successor

function f(x), there exists an odd number of root satisfying f(x) = 0, then we can get that
there exists an odd number of order one periodic solutions of system (1.3) with initial value
between C+

1 and A in set N2;
(II) by the derivation of Theorem 3.3, we know that there exists an order one periodic

solution of system (1.3) whose initial point is between C+
1 and P+

0 in the set N2. Assume
trajectory P̂+P and segment PP+ formulate the unique order one periodic solution of system
(1.3) with initial point P+ ∈ N2.

On the one hand, take a point C+
1 ((1 − α)h2, yC+

1
) ∈ N2 satisfying yC+

1
= ε < q and

yC+
1
< yP+ . The trajectory passing through the point C+

1 ((1 − α)h2, ε) which intersects with set
M2 at point C2(h2, yC2), that is, F(C

+
1 ) = C2 ∈ M2, then we have yC2 < yP , thus yC+

2
< yP+ .

Since yC+
2
= (1−β)yC2+q > ε, so we obtain f(C+

1 ) = yC+
2
−yC+

1
= yC+

2
−ε > 0; set F(C+

2 ) = C3 ∈ M2,
because yC+

1
< yC+

2
< yP+ , we know that yC2 < yC3 < yP , then we have yC+

2
< yC+

3
< yP+ and

f(C+
2 ) = yC+

3
− yC+

2
> 0. This process is continuing, then we get a sequence {C+

k}k=1,2,... of the
set N2 satisfying

yC+
1
< yC+

2
< · · · < yC+

k
< · · · < yP+ (4.2)

and f(C+
k
) = yC+

k+1
−yC+

k
> 0. Series {yC+

k
}k=1,2,... increases monotonously and has upper bound,

so limk→∞yC+
k
exists. Like the proof of Theorem 4.1, we can prove limk→∞yC+

k
= yP+ .

On the other hand, set F(P+
0 ) = D1 ∈ M2, then D1 jumps to D+

1 ∈ N2 under the
impulsive effects. Since yP+ < yP+

0
< yA, we have yP < yD1 < yP0 , thus we obtain yP+ <

yD+
1
< yP+

0
, f(P+

0 ) = yD+
1
− yP+

0
< 0. Set F(D+

1 ) = D2 ∈ M2, then D2 jumps to D+
2 ∈ N2 under

the impulsive effects. We have yP+ < yD+
2
< yD+

1
. This process is continuing, we can obtain a

sequence {D+
k}k=1,2... of the set N2 satisfying

yP+
0
> yD+

1
> yD+

2
> · · · > yD+

k
> · · · > yP+ (4.3)

and f(D+
k
) = yD+

k+1
−yD+

k
< 0. Series {yD+

k
}
k=1,2,...

decreases monotonously and has lower bound,
so limk→∞yD+

k
exists. Similarly, we can prove limk→∞yD+

k
= yP+ .

Any point Q ∈ N2 below A must be in some interval [yD+
k+1
, yD+

k
)
k=1,2,...

, [yD+
1
, yP+

0
),

[yP+
0
, yA), [yC+

k
, yC+

k+1
)
k=1,2,...

. Without loss of generality, we assume that the point Q ∈
[yD+

k+1
, yD+

k
). The trajectory with initiating point Q moves between trajectory ̂D+

k
Dk+1 and

̂D+
k+1Dk+2 and intersects withM2 at some point between Dk+2 and Dk+1, under the impulsive

effects it jumps to the point of N2 which is between [yD+
k+2
, yD+

k+1
), then trajectory Π̃(Q, t)

continues to move between trajectory ̂D+
k+1Dk+2 and ̂D+

k+2Dk+3. This process can be continued
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unlimitedly. Since limk→∞yD+
k
= yP+ , the intersection sequence of trajectory Π̃(Q, t) with the

set N2 will ultimately tend to be the point P+. Similarly, if Q ∈ [yC+
k
, yC+

k+1
), we also can get

the intersection sequence of trajectory Π̃(Q, t), and the setN2 will ultimately tend to be point
P+. Thus the trajectory from initiating any point below A ultimately tends to be the unique
order one periodic solution ̂P+PP+.

Denote the intersection of the trajectory passing through the point B which tangents
to N1 at the point B, and the set N2 by a point S((1 − α)h2, yS). The trajectory from any
initiating point on segmentASwill intersect with the setN2 at some point belowAwith time
increasing, so like the analysis above we obtain that the trajectory from any initiating point
on segment ASwill ultimately tend to be the unique order one periodic solution ̂P+PP+.

Since the trajectory with any initiating point of the Ω2 will definitely intersect with set
N2. From the above analysis, we know that the trajectorywith any initiating point on segment
ASwill ultimately tend to be order one periodic solution ̂P+PP+. Therefore, the unique order
one periodic solution ̂P+PP+ is attractive in the region Ω2. This completes the proof.

Remark 4.4. Assuming that d < ecx0, h1 < (1−α)h2 < h2 < d/ec and yC+
1
< yA < yP+

0
, the order

one periodic solution with initial point between A and P+
0 is unattractive.

5. Conclusion

In this paper, a state-dependent impulsive dynamical model with Holling I functional
response predator-prey concerning different control methods at different thresholds is
proposed; we find a new method to study existence and attractiveness of order one periodic
solution of such system. We define semicontinuous dynamical system and successor function
and demonstrate the sufficient conditions that system (1.3) exists order one periodic solution
with differential geometry theory and successor function. Besides, we successfully prove
the attractiveness of the order one periodic solution by sequence convergence rules and
qualitative analysis. In order to testify the validity of our results, we consider the following
example:

x′(t) = 0.4x(t) − 0.6x(t)y(t),
y′(t) = −0.2y(t) + 0.3x(t)y(t),

x ≤ 0.8,

x′(t) = 0.4x(t) − 0.48y(t),
y′(t) = −0.6y(t) + 0.24y(t),

x > 0.8,
x /=h1, h2 or x = h1, y > y∗,

Δx(t) = 0,
Δy(t) = 0.8,

x = h1, y ≤ y∗,

Δx(t) = −0.5x(t),
Δy(t) = −0.2y(t) + 0.5,

x = h2,

(5.1)

where 0 < h1 < h2 < x∗. Now, we consider the impulsive effects influences on the dynamics
of system (5.1).

Example 5.1. Existence and attractiveness of order one periodic solution.
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Figure 13: The time series and phase diagram for system (1.3) starting from initial value (0.45, 0.25) (red),
(0.4, 0.2) (green), and (0.3, 0.1) (blue) 0 < h1 < h2 < x∗.

We set h2 = 0.6, (1 − α)h2 < h2 < x∗, initiating points are (0.45, 0.25) (red), (0.4, 0.2)
(green), and (0.3, 0.1) (blue), respectively. Figure 13 shows that the conditions of Theorems
3.1 and 4.1 hold, system (1.3) exists order one periodic solution, and the trajectory from
different initiating must ultimately tend to be the order one periodic solution. Therefore,
order one periodic solution is attractive.

Example 5.2. Existence and attractiveness of positive periodic solution.
We set h1 = 0.3, h2 = 0.6, h1 < (1 − α)h2 < x∗ < h2 < x0, initiating points are

(0.45, 0.25) (red), (0.4, 0.2) (green), and (0.3, 0.1) (blue), respectively. Figure 14 shows that
the conditions of Theorems 3.3 and 4.3 hold, system (1.3) exists order one periodic solution,
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Figure 14: The time series and phase diagram for system (1.3) starting from initial value (0.45, 0.25) (red),
(0.4, 0.2) (green), and (0.3, 0.1) (blue) h1 < (1 − α)h2 < x∗ < h2 < x0.

and the trajectory from different initiating must ultimately tend to be the order one periodic
solution. Therefore, order one periodic solution is attractive.

Example 5.3. Existence and attractive of positive periodic solutions.
We set h1 = 0.3, h2 = 0.8, h1 < (1 − α)h2 < x∗ < h2, initiating points are (0.4, 0.1) (red),

(0.4, 0.2) (green), and (0.4, 0.15) (blue) as shown in Figure 15. Therefore, the conditions of
Theorem 3.3 and Theorem 4.3 hold, so system (1.3) exists order one periodic solution, and it
is attractive.

Example 5.4. Existence and attractive of positive periodic solutions.
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Figure 15: The time series and phase diagram for system (1.3) starting from initial value (0.4, 0.1) (red),
(0.4, 0.2) (green), and (0.4, 0.15) (blue) h1 = 0.3, h2 = 0.8, h1 < (1 − α)h2 < x∗ < h2.

We set h1 = 0.3, h2 = 1.5, h1 < (1 − α)h2 < x∗ < x0 < h2, initiating points are (0.9, 0.2)
Figure 16 shows that results of Case 4 are valid.

These results show that the state-dependent impulsive effects contribute significantly
to the richness of the dynamics of the model. Our results show that, in theory, a pest can be
controlled such that its population size is no larger than its ET by applying effects impulsively
once, twice, or at most, a finite number of times, or according to a periodic regime. The
methods of the theorems are proved to be new in this paper, and these methods are more
efficient and easier to operate than the existing research methods which have been applied
to the models with impulsive state feedback control [12–15], so they are deserved further
promotion.
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Figure 16: The time series and phase diagram for system (1.3) starting from initial value (0.9, 0.2)h1 =
0.3, h2 = 1.5, h1 < (1 − α)h2 < x∗ < x0 < h2.
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