
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2012, Article ID 271672, 12 pages
doi:10.1155/2012/271672

Research Article
Multiple Periodic Solutions of Delayed
Predator-Prey Systems with Type IV Functional
Responses on Time Scales

Shengbin Yu,1 Haihui Wu,1 and Jiangbin Chen2

1 Sunshine College, Fuzhou University, Fujian, Fuzhou 350015, China
2 Zhicheng College, Fuzhou University, Fujian, Fuzhou 350002, China

Correspondence should be addressed to Shengbin Yu, yushengbin.8@163.com

Received 11 August 2011; Accepted 26 December 2011

Academic Editor: Cengiz Çinar
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With the help of a continuation theorem based on Gaines andMawhin’s coincidence degree, easily
verifiable criteria are established for the existence of multiple positive periodic solutions of delayed
predator-prey systems with type IV functional responses on time scales. Our results not only unify
the existing ones but also widen the range of applications.

1. Introduction

As was pointed out by Berryman [1], the dynamic relationship between predators and their
prey has long been and will continue to be one of the dominant themes in both ecology
and mathematical ecology due to its universal existence and importance. At first sight,
these problems may appear to be simple mathematically. However, in fact, they are often
very challenging and complicated. Also, Zhen and Ma [2] argued that the environmental
fluctuation is important in an ecosystem, and more realistic models require the inclusion of
the effect of environmental changes, especially environmental parameters which are time
dependent and periodically changing (e.g., seasonal changes, food supplies, etc.). Hence,
just as pointed out by Freedman and Wu [3] and Kuang [4], it would be of great interest and
importance to study the existence of periodic solutions for systems with periodic delay. Much
progress has been made in this direction (see, e.g., [5–8] and the references cited therein).

In 1959, in order to describe behavior of different kinds of species, Holling [9]
proposed three types of functional response functions. However, some authors [10] have
also described a type IV functional response that is humped and that declines at high prey
densities. This decline may occur due to prey group defense or prey toxicity. Recently, Chen
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[11] has studied the following periodic predator-prey system with a type IV functional
response:

ẋ(t) = x(t)
[
b1(t) − a1(t)x(t − τ1(t)) −

c(t)y(t − σ(t))
(x2(t)/n) + x(t) + a

]
,

ẏ(t) = y(t)
[
−b2(t) + a2(t)x(t − τ2(t))

(x2(t − τ2(t))/n) + x(t − τ2(t)) + a

]
,

(1.1)

where c, σ, aj , bj , and τj (j = 1, 2) are continuous ω-periodic functions with c(t) ≥
0, σ(t) ≥ 0, aj(t) ≥ 0, and τj ≥ 0,

∫ω
0 c(t)dt > 0, and

∫ω
0 bj(t)dt > 0, n and a are positive

constants. The growth functions bj may change sign, since the environment fluctuates
randomly. Under bad conditions, bj may be negative.

Considering that discrete time models governed by difference equations are more
appropriate than continuous ones when the populations have nonoverlapping generations,
Zhang et al. [12] studied the following discrete time predator-prey system:

x(k + 1) = x(k) exp
[
b1(k) − a1(k)x(k − τ1(k)) −

c(k)y(k − σ(k))
(x2(k)/n) + x(k) + a

]
,

y(k + 1) = y(k) exp
[
−b2(k) + a2(k)x(k − τ2(k))

(x2(k − τ2(k))/n) + x(k − τ2(k)) + a

]
,

(1.2)

where, for i = 1, 2, bi : Z → R, c, ai : Z → R
+, τi, σ : Z → Z

+ are all ω-periodic.
On the other hand, recently, Bohner et al. [13] pointed out that it is unnecessary

to explore the existence of periodic solutions of some continuous and discrete population
models in separate ways. One can unify such studies in the sense of dynamic equation on
general time scales. The theory of calculus on time scales, which has recently received a
lot of attention, was initiated by Hilger in his Ph.D. Thesis in 1988 [14] in order to unify
continuous and discrete analysis. Although there has been much research activity concerning
the oscillation (nonoscillation) of solutions and periodic solution of differential equation on
time scales (or measure chains) (see, e.g., [15–29]), there are few results dealing with multiple
periodic solutions of predator-prey systems with time delay.

Motivated by the above work, we consider the following system on time scales T:

xΔ(t) = b1(t) − a1(t) exp{x(t − τ1(t))} −
c(t) exp

{
y(t − τ(t))

}
exp{2x(t)}/n + exp{x(t)} + a

,

yΔ(t) = −b2(t) +
a2(t) exp{x(t − τ2(t))}

exp{2x(t − τ2(t))}/n + exp{x(t − τ2(t))} + a
,

(1.3)

where, for i = 1, 2, bi : T → R, c, ai, τi, τ : T → R
+ are ω-periodic functions. n and a are

positive constants.
The main purpose of this paper is to derive a set of easily verifiable sufficient

conditions for the existence of multiple positive periodic solutions of (1.3). The method used
here will be the coincidence degree theory developed by Gaines and Mawhin [30].

In (1.3), set z1(t) = exp{x(t)}, z2(t) = exp{y(t)}. If T = R, then (1.3) reduces to (1.1).
Also, if T = Z, then (1.3) becomes (1.2). Thus, our results also show that it is unnecessary to
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explore the existence of periodic solutions of continuous and discrete population models in
separate ways. One can unify such studies in the sense of dynamic equations on time scales.

The paper is arranged as follows. In Section 2, we present some preliminary results
such as the calculus on time scales and the continuation theorem in coincidence degree theory.
In Section 3, we prove our main result.

2. Preliminaries

In this section, we give a short introduction to the time scales calculus and recall the
continuation theorem from coincidence degree theory.

First, let us present some foundational definitions and results from the calculus on
time scales, for proofs and further explanation and results, we refer to the paper by Hilger
[14].

Definition 2.1. A time scale is an arbitrary nonempty closed subset T of the real numbers R.
The set T inherits the standard topology of R.

Definition 2.2. For t ∈ T, one defines the forward jump operator σ : T → T by

σ(t) := inf{s ∈ T : s > t}, (2.1)

while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}. (2.2)

In this definition we put inf ∅ = sup T (i.e., σ(t) = t if T has a maximum t) and
sup ∅ = inf T (i.e., ρ(t) = t if T has a minimum t), where ∅ denotes the empty set. If σ(t) > t,
we say that t is right-scattered, while if ρ(t) < t we say that t is left-scattered. Points that are
right-scattered and left-scattered at the same time are called isolated. Also, if t < sup T and
σ(t) = t, then t is called right-dense, and if t > inf T and ρ(t) = t, then t is called left-dense.
Points that are right-dense and left-dense at the same time are called dense.

Definition 2.3. A function f : T → R is said to be rd-continuous if it is continuous at right-
dense points in T and its left-sided limits exist (finite) at left-dense points in T. The set of
rd-continuous functions is denoted by Crd = Crd(T) = Crd(T,R).

Definition 2.4. Suppose f : T → R is a function, and let t ∈ T. Then one defines fΔ(t), the
delta-derivative of f at t, to be the number (provided it exists) with the property that, given
any ε > 0, there is a neighborhood U of t (i.e.,U = (t − δ, t + δ) ∩ T) for some δ > 0 such that

∣∣∣[f(σ(t)) − f(s)
] − fΔ(t)[σ(t) − s]

∣∣∣ ≤ ε|σ(t) − s| ∀s ∈ U. (2.3)

Thus, f is said to be delta-differentiable if its delta-derivative exists. The set of functions f :
T → R that are delta-differentiable and whose delta-derivative are rd-continuous functions
is denoted by C1

rd = C1
rd(T) = C1

rd(T,R).
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Definition 2.5. A function F : T → R is called a delta-antiderivative of f : T → R provided
FΔ = f(t), for all t ∈ T. Then, one writes

∫ s

r

f(t)Δt := F(s) − F(r) ∀s, r ∈ T. (2.4)

Definition 2.6. One says that a time scale T is ω-periodic, if t ∈ T implies t +ω ∈ T.

Lemma 2.7. Every rd-continuous function has an antiderivative.

Lemma 2.8. If a, b ∈ T, α, β ∈ R, and f, g ∈ Crd(T), then

(i)
∫b
a[αf(t) + βg(t)]Δt = α

∫b
a f(t)Δt + β

∫b
a g(t)Δt;

(ii) if f(t) ≥ 0 for all a ≤ t < b, then
∫b
a f(t)Δt ≥ 0;

(iii) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then | ∫ba f(t)Δt| ≤ ∫ba g(t)Δt.

For convenience, one now introduces some notations to be used throughout this paper.
Let

κ = min{[0,∞) ∩ T}, Iω = [κ, κ +ω] ∩ T, gu = sup
t∈T

g(t),

gl = inf
t∈T

g(t), g =
1
ω

∫
Iω

g(t)Δt =
∫κ+ω

κ

g(t)Δt,

(2.5)

where g ∈ Crd(T) is an ω-periodic real function.
In order to obtain the existence of positive periodic solutions of (1.3), for the reader’s

convenience, we will summarize in the following a few concepts and results from [30] that
will be basic for this paper.

Let X, Z be normed vector spaces, L : Dom L ⊂ X → Z a linear mapping, and
N : X → Z a continuous mapping. The mapping L will be called a Fredholm mapping of
index zero if dim Ker L = Codim Im L < +∞ and Im L is closed in Z. If L is a Fredholm
mapping of index zero, there exist continuous projectors P : X → X and Q : Z → Z
such that Im P = Ker L, Im L = Ker Q = Im (I − Q). It follows that L | Dom L ∩ Ker P :
(I − P)X → Im L is invertible. We denote the inverse of that map by KP . Let Ω be an open
bounded subset of X; the mapping N will be called L-compact on Ω if QN(Ω) is bounded
and KP (I − Q)N : Ω → X is compact. Since Im Q is isomorphic to Ker L, there exists an
isomorphism J : ImQ → KerL.

Lemma 2.9 (continuation theorem). Let L be a Fredholm mapping of index zero, and let N be
L-compact on Ω. Suppose

(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ ∂Ω;

(b) QNx/= 0 for each x ∈ ∂Ω ∩ Ker L and

deg{JQN, Ω ∩ Ker L, 0}/= 0. (2.6)

Then the equation Lx = Nx has at least one solution lying in Dom L ∩Ω.
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Now, we give a lemma which will be useful in our following proof. The proofs of the
lemmas can be found in [13].

Lemma 2.10. Let t1, t2 ∈ Iω and t ∈ T. If f : T → R is ω-periodic, then

f(t) ≤ f(t1) +
∫
Iω

∣∣∣fΔ
∣∣∣Δs, f(t) ≥ f(t2) −

∫
Iω

∣∣∣fΔ
∣∣∣Δs. (2.7)

3. Existence of Periodic Solutions

The goal of this section is to establish sufficient conditions on the existence of periodic
solution for system (1.3), where, for i = 1, 2, bi, c, ai, τi, τ are rd-continuous functions.
Firstly, we always assume that

a2 > b2

(
1 + 2

√
a

n

)
exp

{(
|b1| + b1

)
ω
}
. (H1)

For further convenience, we define the following six positive numbers:

l± =
n
[
a2 exp

{(
|b1| + b1

)
ω
}
− b2

]
±
√
n2
[
a2 exp

{(
|b1| + b1

)
ω
}
− b2

]2 − 4nab2
2

2b2
,

u±=
n
[
a2−b2 exp

{(
|b1|+b1

)
ω
}]

±
√
n2
[
a2−b2 exp

{(
|b1|+b1

)
ω
}]2−4nab22exp

{
2
(
|b1|+b1

)
ω
}

2b2 exp
{(

|b1| + b1
)
ω
}

v± =
n
(
a2 − b2

)
±
√
n2
(
a2 − b2

)2 − 4nab2
2

2b2
.

,

(3.1)

It is easy to show that

l− < v− < u− < u+ < v+ < l+. (3.2)

We now come to the main result of this paper.

Theorem 3.1. In addition to (H1), assume further that

a1l+ exp
{(

|b1| + b1
)
ω
}
< b1 (H2)

holds and the system (1.3) has at least two ω-periodic solutions.
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Proof. In order to apply Lemma 2.9 (continuation theorem) to (1.3), we first define

X = Z =
{(

x, y
)T | x, y ∈ Crd, x(t +ω) = x(t), y(t +ω) = y(t)

}
,

∥∥∥(x, y)T∥∥∥ = max
t∈Tω

|x(t)| +max
t∈Tω

∣∣y(t)∣∣
(3.3)

for any (x, y) ∈ X (or Z). Then X, Z are both Banach spaces when they are endowed with
the above norm ‖ · ‖.

For
[ x
y
] ∈ X, we define

N

[
x

y

]
=

[
N1(t)

N2(t)

]
=

⎡
⎢⎢⎢⎢⎣
b1(t) − a1(t) exp{x(t − τ1(t))} −

c(t) exp
{
y(t − τ(t))

}
exp{2x(t)}/n + exp{x(t)} + a

−b2(t) +
a2(t) exp{x(t − τ2(t))}

exp{2x(t − τ2(t))}/n + exp{x(t − τ2(t))} + a

⎤
⎥⎥⎥⎥⎦,

L

[
x

y

]
=

[
xΔ

yΔ

]
, P

[
x

y

]
= Q

[
x

y

]
=

⎡
⎢⎢⎢⎢⎣

1
ω

∫
Iω

x(t)Δt

1
ω

∫
Iω

y(t)Δt

⎤
⎥⎥⎥⎥⎦ =

[
x

y

]
.

(3.4)

Then, it follows that

Ker L =
{(

x, y
)T ∈ X | (x, y)T = (h1, h2)

T ∈ R
2 for t ∈ T

}
,

Im L =

{(
x, y

)T ∈ X |
∫
Iω

x(t)Δt = 0,
∫
Iω

y(t)Δt t ∈ T

}
is closed in Z,

dim Ker L = 2 = Codim Im L,

(3.5)

and P, Q are continuous projectors such that

Im P = Ker L, Ker Q = Im L = Im(I −Q). (3.6)

Therefore, L is a Fredholm mapping of index zero. Furthermore, the generalized
inverse (to L) KP : Im L → Ker P ∩Dom L reads

KP

[
x

y

]
=

⎡
⎢⎢⎢⎣

∫ t

κ

x(s)Δs − 1
ω

∫κ+ω

κ

∫ t

κ

x(s)ΔsΔt

∫ t

κ

y(s)Δs − 1
ω

∫κ+ω

κ

∫ t

κ

y(s)ΔsΔt

⎤
⎥⎥⎥⎦. (3.7)
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Thus,

QN

[
x

y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
ω

∫κ+ω

κ

[
b1(s) − a1(s) exp{x(t − τ1(s))} −

c(s) exp
{
y(s − τ(s))

}
exp{2x(s)}/n + exp{x(s)} + a

]
Δs

1
ω

∫κ+ω

κ

[
−b2(s) +

a2(s) exp{x(t − τ2(s))}
exp{2x(s − τ2(s))}/n + exp{x(s − τ2(s))} + a

]
Δs

⎤
⎥⎥⎥⎥⎥⎥⎦
,

KP (I −Q)N

[
x

y

]
=

⎡
⎢⎢⎢⎢⎣

∫ t

κ

N1(s)Δs − 1
ω

∫κ+ω

κ

∫ t

κ

N1(s)ΔsΔt −
(
t − κ − 1

ω

∫κ+ω

κ

(t − κ)Δt

)
N1

∫ t

κ

N2(s)Δs − 1
ω

∫κ+ω

κ

∫ t

κ

N2(s)ΔsΔt −
(
t − κ − 1

ω

∫κ+ω

κ

(t − κ)Δt

)
N2

⎤
⎥⎥⎥⎥⎦.

(3.8)

Obviously,QN andKP (I−Q)N are continuous. It is not difficult to show thatKP (I −Q)N(Ω)
is compact for any open bounded set Ω ⊂ Z by using the Arzela-Ascoli theorem. Moreover,
QN(Ω) is clearly bounded. Thus,N is L-compact on Ωwith any open bounded set Ω ⊂ Z.

Now we reach the position to search for an appropriate open bounded subset Ω for
the application of the continuation theorem (Lemma 2.9). Corresponding to the operator
equation Lx = λNx, Ly = λNy, λ ∈ (0, 1), we have

xΔ(t) = λ

[
b1(t) − a1(t) exp{x(t − τ1(t))} −

c(t) exp
{
y(t − τ(t))

}
exp{2x(t)}/n + exp{x(t)} + a

]
,

yΔ(t) = λ

[
−b2(t) +

a2(t) exp{x(t − τ2(t))}
exp{2x(t − τ2(t))}/n + exp{x(t − τ2(t))} + a

]
.

(3.9)

Suppose that (x(t), y(t))T ∈ X is a solution of system (3.9) for a certain λ ∈ (0, 1). Integrating
(3.2) over the set Iω, we obtain

b1ω =
∫
Iω

[
a1(t) exp{x(t − τ1(t))} +

c(t) exp
{
y(t − τ(t))

}
exp{2x(t)}/n + exp{x(t)} + a

]
Δt, (3.10)

b2ω =
∫
Iω

[
a2(t) exp{x(t − τ2(t))}

exp{2x(t − τ2(t))}/n + exp{x(t − τ2(t))} + a

]
Δt. (3.11)
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It follows from (3.9)–(3.11) that

∫
Iω

∣∣∣xΔ(t)
∣∣∣Δt <

∫
Iω

|b1(t)|Δt +
∫
Iω

[
a1(t) exp{x(t − τ1(t))} +

c(t) exp
{
y(t − τ(t))

}
exp{2x(t)}/n + exp{x(t)} + a

]
Δt

=
(
|b1| + b1

)
ω,

(3.12)
∫
Iω

∣∣∣yΔ(t)
∣∣∣Δt <

∫
Iω

|b2(t)|Δt +
∫
Iω

[
a2(t) exp{x(t − τ2(t))}

exp{2x(t − τ2(t))}/n + exp{x(t − τ2(t))} + a

]
Δt

=
(
|b2| + b2

)
ω.

(3.13)

Note that (x(t), y(t))T ∈ X, then there exist ξi, ηi ∈ Iω, i = 1, 2, such that

x(ξ1) = min
t∈Iω

x(t), x
(
η1
)
= max

t∈Iω
x(t),

y(ξ2) = min
t∈Iω

y(t), y
(
η2
)
= max

t∈Iω
y(t).

(3.14)

Then, By (3.11) and (3.14), we have

b2ω ≤
∫
Iω

[
a2(t) exp

{
x
(
η1
)}

exp{2x(ξ1)}/n + exp{x(ξ1)} + a

]
Δt =

a2ω exp
{
x
(
η1
)}

exp{2x(ξ1)}/n + exp{x(ξ1)} + a
, (3.15)

that is,

x
(
η1
) ≥ ln

[
b2
(
exp{2x(ξ1)}/n + exp{x(ξ1)} + a

)
a2

]
. (3.16)

According to (3.12), (3.16), and Lemma 2.10, we derive

x(t) ≥ x
(
η1
) −
∫
Iω

∣∣∣xΔ
∣∣∣Δt > ln

[
b2
(
exp{2x(ξ1)}/n + exp{x(ξ1)} + a

)
a2

]
−
(
|b1| + b1

)
ω.

(3.17)

In particular, we have

x(ξ1) > ln

[
b2
(
exp{2x(ξ1)}/n + exp{x(ξ1)} + a

)
a2

]
−
(
|b1| + b1

)
ω (3.18)

or

b2
n

exp{2x(ξ1)} −
(
a2 exp

{
|b1| + b1

}
− b2

)
exp{x(ξ1)} + b2a < 0. (3.19)
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According to (H1), we have

ln l− < x(ξ1) < ln l+. (3.20)

Similarly, we also can obtain

x
(
η1
)
< ln u− or x

(
η1
)
< ln u+. (3.21)

From (3.12) and (3.20) and Lemma 2.10, one has

x(t) ≤ x(ξ1) +
∫
Iω

∣∣∣xΔ
∣∣∣Δt < ln l+ +

(
|b1| + b1

)
ω

def= M1. (3.22)

This, combined with (3.10) and (3.14), gives

b1ω ≥ cω exp
{
y(ξ2)

}
exp{2M1}/n + exp{M1} + a

, (3.23)

b1ω ≤ a1ω exp{M1} +
cω exp

{
y
(
η2
)}

a
. (3.24)

It follows from (3.23) that

y(ξ2) ≤ ln

{
b1
[
exp{2M1}/n + exp{M1} + a

]
c1

}
. (3.25)

This, together with (3.13) and Lemma 2.10, yields

y(t)≤ y(ξ2)+
∫
Iω

∣∣∣yΔ
∣∣∣Δt<ln

{
b1
[
exp{2M1}/n+exp{M1}+a

]
c1

}
+
(
|b2| + b2

)
ω

def= M2. (3.26)

Moreover, because of (H2), it follows from (3.24) that

y
(
η2
) ≥ ln

a
[
b1 − a1l+ exp

{(
|b1| + b1

)
ω
}]

c
. (3.27)

This, together with (3.13) and Lemma 2.10 again, yields

y(t) ≥ y
(
η2
) −
∫
Iω

∣∣∣yΔ
∣∣∣Δt ≥ ln

a
[
b1 − a1l+ exp

{(
|b1| + b1

)
ω
}]

c
−
(
|b2| + b2

)
ω

def= m2.

(3.28)
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It follows from (3.26) and (3.28) that

max
t∈Iω

∣∣y(t)∣∣ < max{|m2|, |M2|} def= M. (3.29)

Obviously, ln l±, ln u±, M1, and M are independent of λ.
Now, let us consider QNz1 with z1 = (x, y)T ∈ R. Note that

QNz1 =

⎡
⎢⎢⎢⎣
b1ω − a1ω exp{x} − cω exp

{
y
}

exp{2x}/n + exp{x} + a

−b2ω +
a2ω exp{x}

exp{2x}/n + exp{x} + a

⎤
⎥⎥⎥⎦. (3.30)

By virtue of (H1) and (H2), we can show that QNz1 = 0 has two distinct solutions z11 =

(lnv−, ln((b1 − a1v−)(v2
−/n + v− + a)/c))

T
and z12 = (lnv+, ln((b1 − a1v+)(v2

−/n+ v+ + a)/c))T .
Choose C > 0 such that

C > max

⎧⎪⎨
⎪⎩

∣∣∣∣∣∣∣

(
b1 − a1v−

)(
v2
−/n + v− + a

)
c

∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣

(
b1 − a1v+

)(
v2
−/n + v+ + a

)
c

∣∣∣∣∣∣∣

⎫⎪⎬
⎪⎭. (3.31)

Let

Ω1 =
{(

x, y
) ∈ X | x(t) ∈ (ln l−, ln u−), max

t∈Iω

∣∣y(t)∣∣ < M + C

}
,

Ω2 =
{(

x, y
)∈X |min

t∈Iω
x(t)∈(ln l−, ln l+),max

t∈Iω
x(t)∈(lnu+,M1) and max

t∈Iω

∣∣y(t)∣∣<M+C
}
.

(3.32)

Then both Ω1 and Ω2 are bounded open subsets of X. It follows from (3.2) and (3.31) that
z11 ∈ Ω1 and z12 ∈ Ω2. With the help of (3.2), (3.20)–(3.22), (3.29), and (3.31), it is easy to
see that Ω1 ∩ Ω2 = ∅, and Ωi satisfy the requirement (a) in Lemma 2.9 for i = 1, 2. Moreover,
QNz/= 0 for z ∈ ∂Ωi ∩ Ker L. A direct calculation shows that

deg{JQN,Ωi ∩ Ker L, 0} = (−1)i+1 /= 0. (3.33)

Here, J can be the identity mapping since Im P = Ker L. So far, we have proved that Ωi

verifies all the requirements in Lemma 2.9. Hence (1.3) has at least two ω-periodic solutions.
This completes the proof.

Remark 3.2. In (1.3), set z1(t) = exp{x(t)}, z2(t) = exp{y(t)}. When T = R, then (1.3) reduces
to (1.1). Also, if T = Z, then (1.3) becomes (1.2). Hence, our result unifies the main results
of [11, Theorem 2.2] and [12, Theorem 2.1]. Moreover, our result will also be useful when
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T = hZ = {hk | k ∈ Z}, where h > 0 and h/= 1; however, [11, Theorem 2.2] and [12,
Theorem 2.1] are not applicable. In this case, we have

gu = max
0≤k≤ω/h−1

g (hk), gl = min
0≤k≤ω/h−1

g (hk),

g =
1
ω

ω/h−1∑
k=0

g(hk)h, fΔ(t) =
f(t + h) − f(t)

h
,

(3.34)

for every ω-periodic sequence of positive real numbers, g with ω > 1 and t ∈ T.

Remark 3.3. According to the above proof, we also can obtain that Theorem 3.1 is true for the
following general system:

xΔ(t) = b1(t) − a1(t) exp(x(t − τ1(t))) −
c(t) exp

{
y(t − τ(t))

}
exp{2x(t − τ2(t))}/n + exp{x(t − τ2(t))} + a

,

yΔ(t) = −b2(t) +
a2(t) exp{x(t − τ3(t))}

exp{2x(t − τ4(t))}/n + exp{x(t − τ4(t))} + a
.

(3.35)

Moreover, just the same as the authors in [11, 12] point out, Theorem 3.1 will remain valid if
some or all terms are replaced by terms with discrete time delays, distributed delays (finite
or infinite), state-dependent delays, or deviating arguments. That is to say that time delays of
any type or the deviating arguments can have no effect on the existence of positive periodic
solutions.
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