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Using fixed point methods, we prove the generalized Hyers-Ulam stability of homomorphisms in
C∗-algebras and Lie C∗-algebras and of derivations on non-Archimedean C∗-algebras and Non-
Archimedean Lie C∗-algebras for an m-variable additive functional equation.

1. Introduction and Preliminaries

By a non-Archimedean field we mean a field K equipped with a function (valuation) | · | from
K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r + s| ≤ max{|r|, |s|} for all
r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. By the trivial valuation we mean the
mapping | · | taking everything but 0 into 1 and |0| = 0. Let X be a vector space over a field
K with a non-Archimedean nontrivial valuation | · |. A function ‖ · ‖ : X → [0,∞) is called a
non-Archimedean norm if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) for any r ∈ K, and x ∈ X, ‖rx‖ = |r|‖x‖;
(iii) the strong triangle inequality (ultrametric) holds; namely,

∥
∥x + y

∥
∥ ≤ max

{‖x‖,∥∥y∥∥}. (1.1)

for all x, y ∈ X.
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Then (X, ‖ · ‖) is called a non-Archimedean normed space. From the fact that

‖xn − xm‖ ≤ max
{∥
∥xj+1 − xj

∥
∥ : m ≤ j ≤ n − 1

}

(n > m) (1.2)

holds, a sequence {xn} is a Cauchy sequence if and only if {xn+1 − xn} converges to zero in
a non-Archimedean normed space. By a complete non-Archimedean normed space we mean
one in which every Cauchy sequence is convergent.

For any nonzero rational number x, there exists a unique integer nx ∈ Z such that
x = (a/b)pnx , where a and b are integers not divisible by p. Then |x|p := p−nx defines a non-
Archimedean norm on Q. The completion of Q with respect to the metric d(x, y) = |x − y|p is
denoted by Qp, which is called the p-adic number field.

A non-Archimedean Banach algebra is a complete non-Archimedean algebra A which
satisfies ‖ab‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A. For more detailed definitions of non-Archimedean
Banach algebras, we refer the reader to [1, 2].

IfU is a non-Archimedean Banach algebra, then an involution onU is a mapping t → t∗

from U into U which satisfies

(i) t∗∗ = t for t ∈ U;

(ii) (αs + βt)∗ = αs∗ + βt∗;

(iii) (st)∗ = t∗s∗ for s, t ∈ U.

If, in addition, ‖t∗t‖ = ‖t‖2 for t ∈ U, then U is a non-Archimedean C∗-algebra.
The stability problem of functional equations was originated from a question of Ulam

[3] concerning the stability of group homomorphisms: let (G1, ∗) be a group and let (G2, �, d)
be a metric group (a metric which is defined on a set with group property) with the metric
d(·, ·). Given ε > 0, does there exist a δ(ε) > 0 such that, if a mapping h : G1 → G2 satisfies
the inequality d(h(x ∗ y), h(x) � h(y)) < δ for all x, y ∈ G1, then there is a homomorphism
H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1? If the answer is affirmative, we would
say that the equation of homomorphismH(x ∗ y) = H(x) �H(y) is stable (see also [4–6]).

We recall a fundamental result in fixed point theory. Let Ω be a set. A function d :
Ω ×Ω → [0,∞] is called a generalized metric on Ω if d satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ Ω;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ Ω.

Theorem 1.1 (see [7]). Let (Ω, d) be a complete generalized metric space and let J : Ω → Ω be
a contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ Ω, either
d(Jnx, Jn+1x) = ∞ for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Γ = {y ∈ Ω | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Γ.
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In this paper, using the fixed point method, we prove the generalized Hyers-Ulam
stability of homomorphisms and derivations in non-Archimedean C∗-algebras and non-
Archimedean Lie C∗-algebras for the following additive functional equation (see [8]):

m∑

i=1

f

⎛

⎝mxi +
m∑

j=1,j /= i

xj

⎞

⎠ + f

(
m∑

i=1

xi

)

= 2f

(
m∑

i=1

mxi

)

(m ∈ N, m ≥ 2). (1.3)

2. Stability of Homomorphisms and Derivations in C∗-Algebras

Throughout this section, assume that A is a non-Archimedean C∗-algebra with norm ‖ · ‖A
and that B is a non-Archimedean C∗-algebra with norm ‖ · ‖B.

For a given mapping f : A → B, we define

Dμf(x1, . . . , xm) :=
m∑

i=1

μf

⎛

⎝mxi +
m∑

j=1,j /= i

xj

⎞

⎠ + f

(

μ
m∑

i=1

xi

)

− 2f

(

μ
m∑

i=1

mxi

)

(2.1)

for all μ ∈ T
1 := {ν ∈ C : |ν| = 1} and all x1, . . . , xm ∈ A.

Note that a C-linear mapping H : A → B is called a homomorphism in non-
Archimedean C∗-algebras if H satisfies H(xy) = H(x)H(y) and H(x∗) = H(x)∗ for all
x, y ∈ A.

We prove the generalized Hyers-Ulam stability of homomorphisms in non-
Archimedean C∗-algebras for the functional equation Dμf(x1, . . . , xm) = 0.

Theorem 2.1. Let f : A → B be a mapping for which there are functions ϕ : Am → [0,∞),
ψ : A2 → [0,∞) and η : A → [0,∞) such that |m| < 1 is far from zero and

∥
∥Dμf(x1, . . . , xm)

∥
∥
B ≤ ϕ(x1, . . . , xm), (2.2)

∥
∥f
(

xy
) − f(x)f(y)∥∥B ≤ ψ(x, y), (2.3)

∥
∥f(x∗) − f(x)∗∥∥B ≤ η(x) (2.4)

for all μ ∈ T
1 and x1, . . . , xm, x, y ∈ A. If there exists an L < 1 such that

ϕ(mx1, . . . , mxm) ≤ |m| Lϕ(x1, . . . , xm), (2.5)

ψ
(

mx,my
) ≤ |m|2Lψ(x, y), (2.6)

η(mx) ≤ |m|Lη(x) (2.7)

for all x, y, x1, . . . , xm ∈ A, then there exists a unique homomorphismH : A → B such that

∥
∥f(x) −H(x)

∥
∥
B ≤ 1

|m| − |m|Lϕ(x, 0, . . . , 0) (2.8)

for all x ∈ A.
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Proof. It follows from (2.5), (2.6), (2.7) and L < 1 that

lim
n→∞

1
|m|n ϕ(m

nx1, . . . , m
nxm) = 0, (2.9)

lim
n→∞

1

|m|2n
ψ
(

mnx,mny
)

= 0, (2.10)

lim
n→∞

1
|m|n η(m

nx) = 0 (2.11)

for all x, y, x1, . . . , xm ∈ A.
Let us define Ω to be the set of all mappings g : A → B and introduce a generalized

metric on Ω as follows

d
(

g, h
)

= inf
{

k ∈ (0,∞) :
∥
∥g(x) − h(x)∥∥B < kφ(x, 0, . . . , 0), ∀x ∈ A}. (2.12)

It is easy to show that (Ω, d) is a generalized complete metric space (see [9]).
Now we consider the function J : Ω → Ω defined by Jg(x) = (1/m)g(mx) for all

x ∈ A and g ∈ Ω. Note that for all g, h ∈ Ωwe have

d
(

g, h
)

< k =⇒ ∥∥g(x) − h(x)∥∥B < kφ(x, 0, . . . , 0)

=⇒
∥
∥
∥
∥

1
m
g(mx) − 1

m
h(mx)

∥
∥
∥
∥
B
<

k

|m| φ(mx, 0, . . . , 0)

=⇒
∥
∥
∥
∥

1
m
g(mx) − 1

m
h(mx)

∥
∥
∥
∥
B
< kLφ(mx, 0, . . . , 0)

=⇒ d
(

Jg, Jh
)

< kL.

(2.13)

From this it is easy to see that d(Jg, Jk) ≤ Ld(g, h) for all g, h ∈ Ω, that is, J is a self-function
of Ω with the Lipschitz constant L.

Putting μ = 1, x = x1 and x2 = x3 = · · · = xm = 0 in (2.2), we have

∥
∥f(mx) −mf(x)∥∥B ≤ φ(x, 0, . . . , 0) (2.14)

for all x ∈ A. Then
∥
∥
∥
∥
f(x) − 1

m
f(mx)

∥
∥
∥
∥
B
≤ 1

|m|φ(x, 0, . . . , 0) (2.15)

for all x ∈ A, that is, d(Jf, f) ≤ 1/|m| < ∞. Now, from the fixed point alternative, it follows
that there exists a fixed pointH of J in Ω such that

H(x) = lim
n→∞

1
|m|n f(m

nx) (2.16)

for all x ∈ A since limn→∞d(Jnf,H) = 0.
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On the other hand, it follows from (2.2), (2.9), and (2.16) that

∥
∥DμH(x1, . . . , xm)

∥
∥
B = lim

n→∞

∥
∥
∥
∥

1
mn

Df(mnx1, . . . , m
nxm)

∥
∥
∥
∥
B

≤ lim
n→∞

1
|m|n φ(m

nx1, . . . , m
nxm) = 0.

(2.17)

By a similar method to the above, we get μH(mx) = H(mμx) for all μ ∈ T
1 and x ∈ A.

Thus one can show that the mappingH : A → B is C-linear.
It follows from (2.3), (2.10) and (2.16) that

∥
∥H
(

xy
) −H(x)H

(

y
)∥
∥
B = lim

n→∞
1

|m|2n
∥
∥
∥f
(

m2nxy
)

− f(mnx)f
(

mny
)
∥
∥
∥
B

≤ lim
n→∞

1

|m|2n
ψ
(

mnx,mny
)

= 0

(2.18)

for all x, y ∈ A. So H(xy) = H(x)H(y) for all x, y ∈ A. Thus H : A → B is a
homomorphism, satisfying (2.8), as desired.

Also, by (2.4), (2.11), (2.16) and by a similar method, we haveH(x∗) = H(x)∗.

Corollary 2.2. Let r > 1 and θ be nonnegative real numbers, and let f : A → B be a mapping such
that

∥
∥Dμf(x1, . . . , xm)

∥
∥
B ≤ θ · (‖x1‖rA + ‖x2‖rA + · · · + ‖xm‖rA

)

,

∥
∥f
(

xy
) − f(x)f(y)∥∥B ≤ θ ·

(

‖x‖rA · ∥∥y∥∥rA
)

,

∥
∥f(x∗) − f(x)∗∥∥B ≤ θ · ‖x‖rA,

(2.19)

for all μ ∈ T
1 and x1, . . . , xm,x, y ∈ A. Then there exists a unique homomorphism H : A → B

such that

∥
∥f(x) −H(x)

∥
∥
B ≤ θ

|m| − |m|r ‖x‖
r
A (2.20)

for all x ∈ A.

Proof. The proof follows from Theorem 2.1 by taking

ϕ(x1, . . . , xm) = θ · (‖x1‖rA + ‖x2‖rA + · · · + ‖xm‖rA
)

,

ψ
(

x, y
)

:= θ · (‖x‖rA · ∥∥y∥∥rA
)

,

η(x) = θ · ‖x‖rA

(2.21)

for all x1, . . . , xm, x, y ∈ A, L = |m|r−1 and so we get the desired result.
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Note that a C-linear mapping δ : A → A is called a derivation on A if δ satisfies
δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A.

We prove the generalized Hyers-Ulam stability of derivations on non-Archimedean
C∗-algebras for the functional equation Dμf(x1, . . . , xm) = 0.

Theorem 2.3. Let f : A → A be a mapping for which there are functions ϕ : Am → [0,∞),
ψ : A2 → [0,∞) and η : A → [0,∞) such that |m| < 1 is far from zero and

∥
∥Dμf(x1, . . . , xm)

∥
∥
A ≤ ϕ(x1, . . . , xm),

∥
∥f
(

xy
) − f(x)y − xf(y)∥∥A ≤ ψ(x, y),∥∥f(x∗) − f(x)∗∥∥A ≤ η(x)

(2.22)

for all μ ∈ T
1 and x1, . . . , xm, x, y ∈ A. If there exists an L < 1 such that (2.5), (2.6) and (2.7) hold,

then there exists a unique derivation δ : A → A such that

‖f(x) − δ(x)‖A ≤ 1
(|m| − |m|L)ϕ(x, 0, . . . , 0) (2.23)

for all x ∈ A.

3. Stability of Homomorphisms and Derivations in
Non-Archimedean Lie C∗-Algebras

A non-Archimedean C∗-algebra C, endowed with the Lie product

[

x, y
]

:=
xy − yx

2
(3.1)

on C, is called a Lie non-Archimedean C∗-algebra.

Definition 3.1. Let A and B be Lie C∗-algebras. A C-linear mapping H : A → B is called a
non-Archimedean Lie C∗-algebra homomorphism ifH([x, y]) = [H(x),H(y)] for all x, y ∈ A.

Throughout this section, assume that A is a non-Archimedean Lie C∗-algebra with
norm ‖ · ‖A and B is a non-Archimedean Lie C∗-algebra with norm ‖ · ‖B.

We prove the generalized Hyers-Ulam stability of homomorphisms in non-
Archimedean Lie C∗-algebras for the functional equation Dμf(x1, . . . , xm) = 0.

Theorem 3.2. Let f : A → B be a mapping for which there are functions ϕ : Am → [0,∞) and
ψ : A2 → [0,∞) such that (2.2) and (2.4) hold and

∥
∥f
([

x, y
]) − [f(x), f(y)]∥∥B ≤ ψ(x, y) (3.2)

for all μ ∈ T
1 and x, y ∈ A. If there exists an L < 1 and (2.5), (2.6), and (2.7) hold, then there exists

a unique homomorphismH : A → B such that (2.8) holds.
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Proof. By the same reasoning as in the proof of Theorem 2.1, we can find the mapping H :
A → B given by

H(x) = lim
n→∞

f(mnx)
|m|n (3.3)

for all x ∈ A. It follows from (2.6) and (3.3) that

∥
∥H
([

x, y
]) − [H(x),H

(

y
)]∥
∥
B = lim

n→∞
1

|m|2n
∥
∥
∥f
(

m2n[x, y
]) − [f(mnx), f

(

mny
)
∥
∥
∥
B

≤ lim
n→∞

1

|m|2n
ψ
(

mnx,mny
)

= 0

(3.4)

for all x, y ∈ A and so

H
([

x, y
])

=
[

H(x),H
(

y
)]

, (3.5)

for all x, y ∈ A. Thus H : A → B is a Lie C∗-algebra homomorphism satisfying (2.8), as
desired.

Corollary 3.3. Let r > 1 and θ be nonnegative real numbers, and let f : A → B be a mapping such
that

∥
∥Dμf(x1, . . . , xm)

∥
∥
B ≤ θ(‖x1‖rA + ‖x2‖rA + · · · + ‖xm‖rA

)

,

∥
∥f
([

x, y
]) − [f(x), f(y)]∥∥B ≤ θ · ‖x‖rA · ∥∥y∥∥rA,
∥
∥f(x∗) − f(x)∗∥∥B ≤ θ · ‖x‖rA

(3.6)

all μ ∈ T
1 and x1, . . . , xm, x, y ∈ A. Then there exists a unique homomorphism H : A → B such

that

∥
∥f(x) −H(x)

∥
∥
B ≤ θ

|m| − |m|r ‖x‖
r
A (3.7)

for all x ∈ A.

Proof. The proof follows from Theorem 3.2 and a method similar to Corollary 3.3.

Definition 3.4. Let A be a non-Archimedean Lie C∗-algebra. A C-linear mapping δ : A → A
is called a Lie derivation if δ([x, y]) = [δ(x), y] + [x, δ(y)] for all x, y ∈ A.

We prove the generalized Hyers-Ulam stability of derivations on non-Archimedean
Lie C∗-algebras for the functional equation Dμf(x1, . . . , xm) = 0.
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Theorem 3.5. Let f : A → A be a mapping for which there are functions ϕ : Am → [0,∞) and
ψ : A2 → [0,∞) such that (2.2) and (2.4) hold and

∥
∥f
([

x, y
]) − [f(x), y] − [x, f(y)]∥∥A ≤ ψ(x, y) (3.8)

for all x, y ∈ A. If there exists an L < 1 and (2.5), (2.6) and (2.7) hold, then there exists a unique Lie
derivation δ : A → A such that such that (2.8) holds.

Proof. By the same reasoning as the proof of Theorem 2.3, there exists a unique C-linear
mapping δ : A → A satisfying (2.8) and the mapping δ : A → A is given by

δ(x) = lim
n→∞

f(mnx)
|m|n (3.9)

for all x ∈ A.
It follows from (2.6) and (3.9) that

∥
∥δ
([

x, y
]) − [δ(x), y] − [x, δ(y)]∥∥A

= lim
n→∞

1

|m|2n
∥
∥
∥f
(

m2n[x, y
]) − [f(mnx), mny

] − [mnx, f
(

mny
)]
∥
∥
∥
A

≤ lim
n→∞

1

|m|2n
ψ
(

mnx,mny
)

= 0,

(3.10)

for all x, y ∈ A and so

δ
([

x, y
])

=
[

δ(x), y
]

+
[

x, δ
(

y
)]

(3.11)

for all x, y ∈ A. Thus δ : A → A is a Lie derivation satisfying (2.8).
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