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By using continuation theorem of coincidence degree theory, sufficient conditions of the existence
of positive periodic solutions are obtained for a generalized predator-prey system with diffusion
and delays. In this paper, we construct a V-function to make the prior estimation for periodic
solutions, which makes the discussion more concise. Moreover, to compute the mapping’s
topological degree, a polynomial function matrix is constructed straightforwardly as a homotopic
mapping for the generalized one, which improves the methods of computation on topological
degree for a generalized mapping.

1. Introduction

In the study of dynamic population models, which are represented by differential equations,
to elaborate the realistic factors into models, sometimes one needs to consider the effects
caused by various of factors such as delays, diffusion, and others. The global characteristics
(including persistent, stable or attractive, oscillatory, and chaotic behavior) of such
differential system have been an intensive subject in biomathematics (see e.g., [1–6]). One
important aspect is the existence of positive periodic solutions ([7–17]), which imply the
system is periodic.

In the literature available, the methods of studying the existence of periodic solutions
of a periodic system often fall into one of the following three categories: (1) combining the
results of persistence of system with Horn fixed point theorem (usually for a system with
delay) or Brower fixed point theorem (usually for a system without delay), the existence
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results of periodic solutions are obtained ([7, 8]); (2) employing other kinds of fixed point
theorems (usually for one dimension system), the differential model is investigated by
transforming it into equivalent integral one ([9–11]); (3) by virtue of the theory of topological
degree, especially by using Mawhin’s Continuation theorem of coincidence degree (usually
for high dimension system), much significant work has been done ([12–17]). However, for
a generalized high-dimension system, no matter by fixed point theorems or by Mawhin’s
continuation theorem of coincidence degree, it is very difficult to accomplish the work. The
relevant literature is seldom to find. Zhang considered a generalized prey-predator system
with delay ([16]), where the generalized mapping’s degree is computed step by step and a
new technique of computation on topological degree is presented.

It is well known that the key and the difficult points are the prior estimation for
solutions, and the topological degree’s computation of generalized mapping as Mawhin’s
continuation theorem is applied. In this paper, we investigate a generalized model of one
predator competing for two preys, which takes the nonautonomous form:

ẋ1(t) = x1(t)f1(t, x1(t), x3(t)) +D1(t)(x2(t) − x1(t)),
ẋ2(t) = x2(t)f2(t, x2(t), x3(t)) +D2(t)(x1(t) − x2(t)),
ẋ3(t) = x3(t)

[−g(t, x3(t)) + c1(t)p1(x1(t − τ1)) + c2(t)p2(x2(t − τ2))
]
,

(1.1)

where xi denotes the density of the prey in the ith patch; x3 represents the total predator
population for both patches; τi > 0 is a constant and Di(t) is a positive continuous
function and denotes the dispersal rate; pi is the functional response of the predator
population on the prey in the ith patch, and ci is the conversion ratio of prey into predator;
Di(t), ci(t), fi(t, xi, x3) and g(t, x3) are continuous functions in t ∈ [0,+∞) with a common
period ω > 0; fi(t, xi, x3) and g(t, x3) are differentiable with the other variables; i = 1, 2. The
model is transformed from an autonomous one (see [6]). In [6], sufficient conditions for the
permanence and the existence of positive attractive equilibrium are derived.

Our purpose is to obtain sufficient conditions for the existence of positive periodic
solutions associated with system (1.1) and to consider whether delays and diffusion have
effect on the results. What is more important is to present some new techniques in prior
estimation of solutions and computation on topological degree. In this paper, we construct a
V-function to make the prior estimation, which makes the proof more concise. Furthermore,
we select a polynomial function matrix as a homotopic mapping to the generalized one,
which plays a key role in the computation of topological degree.

In a biological sense, we take the initial conditions:

xi(s) = ϕi(s), s ∈ [−τ, 0], ϕi(0) > 0, i = 1, 2, 3, (1.2)

where τ = max{τ1, τ2}.
In system (1.1), we assume that

(H1) for t ≥ 0, ∂fi(t, xi, x3)/∂xi < 0, ∂fi(t, xi, x3)/∂x3 < 0, i = 1, 2, and (∂g(t, x3))/∂x3 >
0;

(H2) pi(x) is continuous and pi(0) = 0, p′i(x) > 0, i = 1, 2.
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For a positive continuous ω-periodic function f(t), we define

fu = max
t∈[0,ω]

f(t), f l = min
t∈[0,ω]

f(t), f =
1
ω

∫ω

0
f(t)dt. (1.3)

In the following sections, we derived the sufficient conditions for the existence of
positive periodic solutions and show that the delays and diffusion have no effect on the result.

2. Main Result and Proof

We first introduce some notion of the continuation theorem of coincidence degree theory and
the lemma formulated in [18].

Let X, Z be Banach spaces, let L : DomL ⊂ X → Z be a linear mapping, and let
N : X → Z be a continuous mapping. The mapping L will be called a Fredholm mapping
of index zero if dimkerL = codimimL < +∞ and ImL is closed in Z. Let P : X → X and
Q : Z → Z be two projectors such that ImP = KerL and ImL = KerQ = Im(I −Q). It follows
that L/(DomL ∩ KerP) : (I − P)X → ImL is invertible. We denote the inverse of that map
by KP . For an open bounded subset Ω of X, the mappingN will be called L-compact on Ω if
QN(Ω) is bounded andKP (I − P)N : Ω → X is compact. Since ImQ is isomorphic to KerL,
there exists an isomorphism J : ImQ → KerL.

Lemma 2.1. Let L be a Fredholm mapping of index zero andN be L-compact on Ω. Suppose

(a) for each λ ∈ (0, 1) and x ∈ ∂Ω, Lx /=λNx;

(b) for each x ∈ KerL
⋂
∂Ω, QNx/= 0;

(c) Brower degree degB(JQN,Ω ∩ KerL, 0)/= 0.

Then Lx =Nx has at least one solution in DomL ∩Ω.

Theorem 2.2. Assume that there exist four positive constantsM,N,m, n such that

(1) for t ∈ R, fi(t,M, 0) ≤ 0 and −g(t,N) + c1(t)p1(M) + c2(t)p2(M) < 0, i = 1, 2;

(2) for t ∈ R, fi(t,m,N) ≥ 0 and −g(t, n) + c1(t)p1(m) + c2(t)p2(m) > 0, i = 1, 2.

Then system (1.1) has at least one positive ω-periodic solution.

Proof. Denote xi(t) = exp[ui(t)] (i = 1, 2, 3); then system (1.1) can be rewritten as

u̇1(t) = f1
(
t, eu1(t), eu3(t)

)
+D1(t)

(
eu2(t)−u1(t) − 1

)
,

u̇2(t) = f2
(
t, eu2(t), eu3(t)

)
+D2(t)

(
eu1(t)−u2(t) − 1

)
,

u̇3(t) = −g
(
t, eu3(t)

)
+ c1(t)p1

(
eu1(t−τ1)

)
+ c2(t)p2

(
eu2(t−τ2)

)
.

(2.1)
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Clearly, if system (2.1) has an ω-periodic solution (u∗1(t), u
∗
2(t), u

∗
3(t))

T , then system (1.1) has
a positive ω-periodic solution (exp[u∗1(t)], exp[u

∗
2(t)], exp[u

∗
3(t)])

T . We define

X = Z =
{
u(t) = (u1(t), u2(t), u3(t))T ∈ C(R,R3), u(t +ω) = u(t)

}
,

‖u‖ =
∥∥∥(u1(t), u2(t), u3(t))T

∥∥∥ =
3∑

i=1
max
t∈[0,ω]

|ui(t)|, u ∈ X(orZ).
(2.2)

Then X and Z are Banach spaces with the norm ‖ · ‖.
Let

N(u, λ) =

⎡

⎢⎢
⎣

f1
(
t, eu1(t), eu3(t)

)
+ λD1(t)

(
eu2(t)−u1(t) − 1

)

f2
(
t, eu2(t), eu3(t)

)
+ λD2(t)

(
eu1(t)−u2(t) − 1

)

−g(t, eu3(t)) + c1(t)p1
(
eu1(t−τ1)

)
+ c2(t)p2

(
eu2(t−τ2)

)

⎤

⎥⎥
⎦, u ∈ X, λ ∈ (0, 1),

Lu = u′ =
du(t)
dt

,

Pu =
1
ω

∫ω

0
u(t)dt, u ∈ X, Qz =

1
ω

∫ω

0
z(t)dt, z ∈ Z.

(2.3)

Then, L is a Fredholmmapping of index zero and the generalized inverse of L isKP : ImL →
KerP ∩DomL, which is given by

Kp(z) =
∫ t

0
z(s)ds − 1

ω

∫ω

0

∫ t

0
z(s)dsdt. (2.4)

Hence

QN(u, λ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
ω

∫ω

0
F1(s)ds

1
ω

∫ω

0
F2(s)ds

1
ω

∫ω

0
F3(s)ds

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.5)

where

F1(s) = f1
(
s, eu1(s), eu3(s)

)
+ λD1(s)

(
eu2(s)−u1(s) − 1

)
,

F2(s) = f2
(
s, eu2(s), eu3(s)

)
+ λD2(s)

(
eu1(s)−u2(s) − 1

)
,

F3(s) = −g(s, eu3(s)) + c1(s)p1
(
eu1(s−τ1)

)
+ c2(s)p2

(
eu2(s−τ2)

)
.

(2.6)
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Consequently,

Kp(I −Q)N(u, λ) =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

∫ t

0
F1(s)ds− 1

ω

∫ω

0

∫ t

0
F1(s)dsdt+

(
1
2
− t

ω

)∫ω

0
F1(s)ds

∫ t

0
F2(s)ds− 1

ω

∫ω

0

∫ t

0
F2(s)dsdt+

(
1
2
− t

ω

)∫ω

0
F2(s)ds

∫ t

0
F3(s)ds− 1

ω

∫ω

0

∫ t

0
F3(s)dsdt+

(
1
2
− t

ω

)∫ω

0
F3(s)ds

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (2.7)

By Arzela-Ascoli theorem, we can verify that the map KP (I − Q)N(Ω) is compact. Thus, N
is L− compact on Ω for any open bounded Ω ⊂ X. Since ImQ = KerL, the isomorphism J is
the identical mapping.Corresponding to the operator equation Lx = λN(x, λ), λ ∈ (0, 1), we
have

u̇1(t) = λ
[
f1
(
t, eu1(t), eu3(t)

)
+ λD1(t)

(
eu2(t)−u1(t) − 1

)]
,

u̇2(t) = λ
[
f2
(
t, eu2(t), eu3(t)

)
+ λD2(t)

(
eu1(t)−u2(t) − 1

)]
,

u̇3(t) = λ
[−g(t, eu3(t)) + c1(t)p1

(
eu1(t−τ1)

)
+ c2(t)p2

(
eu2(t−τ2)

)]
.

(2.8)

Assume that u = u(t) ∈ X is a solution of (2.8) for a certain λ ∈ (0, 1). Then there exist
ξi, ηi ∈ [0, ω] (i = 1, 2, 3) such that

ui(ξi) = max
t∈[0,ω]

ui(t), ui
(
ηi
)
= min

t∈[0,ω]
ui(t),

u′i (ξi) = 0, u′i
(
ηi
)
= 0.

(2.9)

Therefore, we obtain the equations

f1
(
ξ1, e

u1(ξ1), eu3(ξ1)
)
+ λD1(ξ1)

(
eu2(ξ1)−u1(ξ1) − 1

)
= 0,

f2
(
ξ2, e

u2(ξ2), eu3(ξ2)
)
+ λD2(ξ2)

(
eu1(ξ2)−u2(ξ2) − 1

)
= 0,

−g
(
ξ3, e

u3(ξ3)
)
+ c1(ξ3)p1

(
eu1(ξ3−τ1)

)
+ c2(ξ3)p2

(
eu2(ξ3−τ2)

)
= 0

(2.10)

and equations

f1
(
η1, e

u1(η1), eu3(η1)
)
+ λD1

(
η1
)(
eu2(η1)−u1(η1) − 1

)
= 0,

f2
(
η2, e

u2(η2), eu3(η2)
)
+ λD2

(
η2
)(
eu1(η2)−u2(η2) − 1

)
= 0,

−g
(
η3, e

u3(η3)
)
+ c1

(
η3
)
p1
(
eu1(η3−τ1)

)
+ c2

(
η3
)
p2
(
eu2(η3−τ2)

)
= 0.

(2.11)
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To make estimation of ui(ξi) (i = 1, 2, 3), we define a V-function as V (t) = max{u1(t), u2(t)}.
Obviously, V (ξi) = ui(ξi) and V̇ (ξi) = 0, i = 1, 2. According to the hypothesis and equations
(2.10), we have

fi
(
ξi, e

V (ξi), 0
)
> fi

(
ξi, e

V (ξi), eu3(ξi)
)

= fi
(
ξi, e

ui(ξi), eu3(ξi)
)

≥ 0

≥ fi(ξi,M, 0), i = 1, 2,

(2.12)

which implies that eV (ξi) < M, that is,

ui(ξi) < ln M, i = 1, 2. (2.13)

The third equation of (2.10) gives

g
(
ξ3, e

u3(ξ3)
)
= c1(ξ3)p1

(
eu1(ξ3−τ1)

)
+ c2(ξ3)p2

(
eu2(ξ3−τ2)

)

≤ c1(ξ3)p1
(
eu1(ξ1)

)
+ c2(ξ3)p2

(
eu2(ξ2)

)

< c1(ξ3)p1(M) + c2(ξ3)p2(M)

< g(ξ3,N).

(2.14)

Thus

eu3(ξ3) < N, (2.15)

or

u3(ξ3) < ln N. (2.16)

Similarly, we define V (t) = min{u1(t), u2(t)}. Then V (ηi) = ui(ηi), and V̇ (ηi) = 0, i = 1, 2.
From (2.11), we have

fi
(
ηi, e

V (ηi),N
)
= fi

(
ηi, e

ui(ηi),N
)

< fi
(
ηi, e

ui(ηi), eu3(ηi)
)

≤ 0

< fi
(
ηi,m,N

)
,

(2.17)
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which implies that

eui(ηi) > m, (2.18)

that is,

ui
(
ηi
)
> ln m. (2.19)

From (2.19), it follows that

g
(
η3, e

u3(η3)
)
= c1

(
η3
)
p1
(
eu1(η3−τ1)

)
+ c2

(
η3
)
p2
(
eu2(η3−τ2)

)

≥ c1
(
η3
)
p1
(
eu1(η1)

)
+ c2

(
η3
)
p2
(
eu2(η2)

)

≥ c1
(
η3
)
p1(m) + c2(ξ3)p2(m)

> g
(
η3, n

)
.

(2.20)

Hence

eu3(η3) > n, (2.21)

that is,

u3
(
η3
)
> ln n. (2.22)

Denote

R1 = max{|ln m|, |ln M|}, R2 = max{|ln n|, |ln N|}. (2.23)

In view of (2.13)–(2.22), we have

|u1(t)| < R1, |u2(t)| < R1, |u3(t)| < R2, ∀t ∈ R. (2.24)

Clearly, Ri (i = 1, 2) are independent of λ. Denote M̃ = 2R1 + R2 + R0, where R0 is taken
sufficiently large such that the solution (α∗, β∗, γ∗)T of the following system:

1
ω

∫ω

0
f1(s, eα, eγ)ds = 0,

1
ω

∫ω

0
f2
(
s, eβ, eγ

)
ds = 0,

1
ω

∫ω

0

[
−g(s, eγ) + c1(s)p1(eα) + c2(s)p2

(
eβ
)]
ds = 0

(2.25)
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satisfies ‖(α∗, β∗, γ∗)T‖ < M̃, provided that system (2.25) has one or a number of solutions.
Let Ω = {u = (u1(x), u2(x), u3(x))

T ∈ X; ‖u‖ < M̃}. It is easy to see that the condition (a) of
Lemma 2.1 is satisfied.

When u ∈ ∂Ω ∩ KerL = ∂Ω ∩ R3, u is a constant vector in R3 with
∑3

i=1 |ui| = M̃. If
system (2.25) has one or a number of solutions, then

QN(u, 0) =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

1
ω

∫ω

0
f1(s, eu1 , eu3)ds

1
ω

∫ω

0
f2(s, eu2 , eu3)dse

1
ω

∫ω

0

[−g(s, eu3) + c1(s)p1(eu1) + c2(s)p2(eu2)
]
ds

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

/= (0, 0, 0)T . (2.26)

If system (2.25) has no solution, then naturally QN(u, 0)/= (0, 0, 0)T . Hence, the condition (b)
of Lemma 2.1 is satisfied.

Finally, we will prove that condition (c) of Lemma 2.1 is satisfied. To this end, we
define a mapping ψ : DomL × [0, 1] → X by

ψ(u, ν) = ν

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
ω

∫ω

0
f1(s, eu1 , eu3)ds

1
ω

∫ω

0
f2(s, eu2 , eu3)ds

1
ω

∫ω

0

[−g(s, eu3) + c1(s)p1(eu1) + c2(s)p2(eu2)
]
ds

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+ (1 − ν)

⎡

⎢⎢
⎣

a − eu1
a − eu2
b − eu3

⎤

⎥⎥
⎦,

(2.27)

where ν ∈ [0, 1] is a parameter and a, b are two chosen numbers as follows:

m < a < M, n < b < N. (2.28)

In the following, we will show that when u ∈ ∂Ω ∩ KerL, ψ(u, ν)/= (0, 0, 0)T .
We consider three possible cases: (1) either of eui satisfies eui ≥ M (i = 1, 2), (2) either

of eui satisfies eui ≤ m (i = 1, 2), and (3) both of eui satisfym < eui < M (i = 1, 2).

Case 1. Either of eui (i = 1, 2) satisfies eui ≥M : since there exists a constant t1 such that

1
ω

∫ω

0
fi(s, eui , eu3)ds = fi(t1, eui , eu3), (2.29)
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then

νfi(t1, eui , eu3) + (1 − ν)(a − eui − beu3) < νfi(t1, eui , 0) + (1 − ν)(a − eui)
≤ νfi(t1,M, 0) + (1 − ν)(a −M) < 0.

(2.30)

Case 2. Either of eui (i = 1, 2) satisfies eui ≤ m : we consider two subcases as follows.

Subcase 1. eu3 < N. There exists a constant t2 and ui (i = 1 or 2) such that

1
ω

∫ω

0
fi(s, eui , eu3)ds = fi(t2, eui , eu3) , (2.31)

then

νfi(t2, eui , eu3) + (1 − ν)(a − eui) > νfi(t2, m,N)

+ (1 − ν)(a −m) ≥ νfi(t2, m,N) + (1 − ν)(a −m) > 0
(2.32)

Subcase 2. eu3 ≥ N. Because the other uj (j = 2 or 1) must satisfy either euj ≤ M or euj ≥ M.
The later one is discussed in Case 1. Then we only consider the subcase when eui ≤ m (i =
1 or 2) and euj ≤M (j = 2or1). Under these conditions, there exists a constant t3 such that

ν
[−g(t3, eu3) + c1(t5)p1(eu1) + c2(t5)p2(eu2)

]
+ (1 − ν)(b − eu3)

<
[−g(t3,N) + c1(t5)p1(M) + c2(t5)p2(M)

]
+ (1 − ν)(b −N) < 0.

(2.33)

Case 3. Both of eui (i = 1, 2) satisfym < eui < M: we also consider the following two subcases.

Subcase 3. eu3 ≥N. There exists a constant t4 such that

1
ω

∫ω

0

[
−g(s, eu3) + c1(s)p1

(
eu1(s)

)
+ c2(s)p2

(
eu2(s)

)]
ds

= −g(t4, eu3) + c1(t4)p1(eu1) + c2(t4)p2(eu2).
(2.34)

Hence

ν
[−g(t4, eu3) + c1(t4)p1(eu1) + c2(t4)p2(eu2)

]
+ (1 − ν)(b − eu3)

< ν
[−g(t4,N) + c1(t4)p1(M) + c2(t4)p2(M)

]
+ (1 − ν)(b −N)

< 0.

(2.35)
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Subcase 4. eu3 < N. If n < eu3 < N, then
∑3

i=1 |ui| < M̃, which is a contradiction to
∑3

i=1 |ui| =
M̃. Hence, eu3 ≤ n. Whenm < eui < M and eu3 ≤ n, there exists a t5 such that

ν
[−g(t5, eu3) + c1(t3)p1(eu1) + c2(t5)p2(eu2)

]
+ (1 − ν)(b − eu3)

> ν
[−g(t5, n) + c1(t5)p1(m) + c2(t5)p2(m)

]
+ (1 − ν)(b − n)

> 0.

(2.36)

To sum up, ψ(u, ν)/= (0, 0, 0)T when u ∈ ∂Ω ∩ KerL.

Since the algebraic equations

a − x = 0,

a − y = 0,

b − z = 0

(2.37)

have a unique solution (x∗, y∗, z∗) such that

x∗ = y∗ = a > 0, z∗ = b > 0, (2.38)

then

deg
(
JQN(u, 0),Ω ∩ KerL, (0, 0, 0)T

)

= sign

∣∣∣∣∣∣∣∣

−x∗ 0 0

0 −y∗ 0

0 0 −z∗

∣∣∣∣∣∣∣∣

= sign
[−x∗y∗z∗

]
= −1/= 0.

(2.39)

This completes the proof of Theorem 2.2.

Remark 2.3. Theorem 2.2 implies that the delays and the diffusion have no effect on the result
provided (H1)-(H2) holds.

3. Application

Example 3.1. Consider the system:

ẋ1(t) = x1(t)[r1(t) − a1(t)x1(t) − b1(t)x3(t)] +D1(t)(x2(t) − x1(t)),
ẋ2(t) = x2(t)[r2(t) − a2(t)x2(t) − b2(t)x3(t)] +D2(t)(x1(t) − x2(t)),
ẋ3(t) = x3(t)[−r3(t) − a3(t)x3 + c1(t)x1(t − τ1) + c2(t)x2(t − τ2)],

(3.1)
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where τi (i = 1, 2) are positive constants and all the coefficients are positive continuous
functions with period ω.

It is easy to see that

fi(t, xi, x3) = ri(t) − ai(t)xi − bi(t)x3, i = 1, 2; g(t, x3) = r3(t) + a3(t)x3; pi(x) = x.
(3.2)

Obviously, the assumptions (H1)-(H2) are satisfied. Let

M = max

{
ru1

al1
,
ru2

al2

}

. (3.3)

Then

fi(t,M, 0) ≤ 0. (3.4)

Let

N =

(
cu1 + c

u
2

)
M − rl3

al3
; (3.5)

then −g(t,N) + c1(t)M + c2(t)M < 0. While

m = min

{
rl1 − bu1N

au1
,
rl2 − bu2N

au2

}

. (3.6)

fi(t,m,N) ≥ 0. Let

n =

(
cl1 + c

l
2

)
m − ru3

au3
; (3.7)

then −g(t, n) + c1(t)m + c2(t)m > 0. Therefore, the conditions of Theorem 2.2 are satisfied. We
can draw the conclusion that system (3.1) has at least one positive periodic solution.
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