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A class of Beddington-DeAngelis functional response predator-prey model is considered. The con-
ditions for the local stability and the existence of Hopf bifurcation at the positive equilibrium of the
system are derived. Some explicit formulae for determining the stability and the direction of the
Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the
normal form theory and center manifold theory. Some numerical simulations for justifying the
theoretical analysis are also provided. Finally, main conclusions are given.

1. Introduction

In recent years, population dynamics (including stable, unstable, persistent, and oscillatory
behavior) has become very popular since Vito Volterra and James Lotka proposed the semi-
nal models of predator-prey models in the mid-1920s. Great attention has been paid to the dy-
namics properties of the predator-prey models which have significant biological background.
Many excellent and interesting results have been obtained [1–21]. In 2009, Gakkhar et al. [4]
investigated the local stability and Hopf bifurcation of the autonomous delayed predator-
prey system with Beddington-DeAngelis functional response:

u̇1(t) = u1(t)[1 − u1(t − τ1)] − a1u1(t)u2(t)
a + u1(t) + bu2(t)

,

u̇2(t) = d1u2(t)
[
−d +

a1u1(t − τ2)
a + u1(t − τ2) + bu2(t − τ2)

]
,

(1.1)
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where u1(t), u2(t) represent the prey density and the predator density, respectively. The delay
terms occur in growth as well as interaction terms. For this, it means that the prey takes time
τ1 to convert the food into its growth [11], whereas the predator takes time τ2 for the same
[22]. All the parameters in the model take positive values, that is, a1 > 0, d > 0, d1 > 0, a > 0,
b > 0. The more detail biological meaning of the coefficients of system (1.1), one can see [11]
or [22].

We would like to point out that Gakkhar et al. [4] studied the local stability and Hopf
bifurcation of system (1.1) under the assumption: τ1 = τ2 = τ and obtained some excellent
results. While in most cases, τ1 /= τ2. Considering the factor, we further investigate the model
(1.1) with τ1 /= τ2 as a complementarity.

In this paper, we go on to study the stability, the local Hopf bifurcation for system (1.1).
To the best of our knowledge, it is the first time to deal with the research of Hopf bifurcation
for model (1.1) under the assumption τ1 /= τ2.

The remainder of the paper is organized as follows. In Section 2, we investigate the sta-
bility of the positive equilibrium and the occurrence of local Hopf bifurcations. In Section 3,
the direction and stability of the local Hopf bifurcation are established. In Section 4, numeri-
cal simulations are carried out to illustrate the validity of the main results. Somemain conclu-
sions are drawn in Section 5.

2. Stability of the Positive Equilibrium and Local Hopf Bifurcations

In this section, we shall study the stability of the positive equilibrium and the existence of
local Hopf bifurcations.

Since time delay does not change the equilibrium of system and according to [4], we
know that the delayed prey predator model (1.1) has three equilibrium points: two boundary
equilibrium E1(0, 0) and E2(1, 0), and a nontrivial equilibrium point E0(u∗1, u

∗
2), where u∗1, u

∗
2

are the positive solutions of the following quadratic equations:

u21 + α1u1 + β1 = 0,

u22 + α2u2 + β2 = 0,
(2.1)

where

α1 =
a1 − da1 − b

b
, β1 = −ada1

d
,

α2 =
a1(d − 1)2 + b(2ad + d − 1)

b2d
, β2 = −a(ad + d − 1)

b2d
.

(2.2)

Since β1 < 0, (2.1) in u1 admits a unique positive solution. If one of the following conditions:

(a) α2 > 0, β2 < 0, (b) α2 < 0, β2 =
α22
4
, (c) α2 < 0, 0 < β2 <

α22
4
, (2.3)

holds, then system (2.1) has at least one positive equilibrium point E0(u∗1, u
∗
2).
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Let u1(t) = u1(t)−u∗1, u2(t) = u2(t)−u∗2 and still denote ui(t) (i = 1, 2) by ui(t) (i = 1, 2),
respectively, then (1.1) becomes

u̇1(t) = m1u1(t) +m2u2(t) +m3u1(t − τ1) + F1,

u̇2(t) = n1u2(t) + n2u1(t − τ2) + n3u2(t − τ2) + F2,
(2.4)

wheremi, ni (i = 1, 2, 3) and Fj (j = 1, 2) are defined by Appendix A.
The linearization of (2.4) at (0, 0) is

u̇1(t) = m1u1(t) +m2u2(t) +m3u1(t − τ1),
u̇2(t) = n1u2(t) + n2u1(t − τ2) + n3u2(t − τ2),

(2.5)

whose characteristic equation is

λ2 − (m1 + n1)λ +m1n1 − (n3λ −m1n3 +m2n2)e−λτ2

− (m3λ +m3n1)e−λτ1 +m3n3e
−λ(τ1+τ2) = 0.

(2.6)

In order to investigate the distribution of roots of the transcendental equation (2.6), the fol-
lowing Lemma is useful.

Lemma 2.1 (see [23]). For the transcendental equation

P
(
λ, e−λτ1 , . . . , e−λτm

)
= λn + p(0)1 λn−1 + · · · + p(0)n−1λ + p(0)n

+
[
p
(1)
1 λn−1 + · · · + p(1)n−1λ + p(1)n

]
e−λτ1 + · · ·

+
[
p
(m)
1 λn−1 + · · · + p(m)

n−1λ + p(m)
n

]
e−λτm = 0,

(2.7)

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of P(λ, e−λτ1 , . . . , e−λτm) in the open right
half plane can change, and only a zero appears on or crosses the imaginary axis.

In the sequel, we consider three cases.

Case a. τ1 = τ2 = 0, (2.6) becomes

λ2 − (m1 +m3 + n1 + n3)λ +m1n1 +m1n3 +m3n3 −m2n2 −m3n1 = 0. (2.8)

A set of necessary and sufficient conditions for all roots of (2.8) to have a negative real part are
given in the following form:

(H1) (m1 +m3 + n1 + n3) < 0, m1n1 +m1n3 +m3n3 −m2n2 −m3n1 > 0. (2.9)

Then, the equilibrium point E0(u∗1, u
∗
2) is locally asymptotically stable when the condition

(H1) holds.
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Case b. τ1 = 0, τ2 > 0, (2.6) becomes

λ2 + pλ + r +
(
sλ + q

)
e−λτ2 = 0, (2.10)

where

p = −(m1 +m3 + n1), r = m1n1 −m3n1, s = −n3, q = m1n3 +m3n3 −m2n2. (2.11)

For ω > 0, iω be a root of (2.10), then it follows that

q cosωτ2 + sω sinωτ2 = ω2 − r,
sω cosωτ2 − q sinωτ2 = −pω,

(2.12)

which leads to

ω4 +
(
p2 − s2 − 2r

)
ω2 + r2 − q2 = 0. (2.13)

It is easy to see that if the condition

(H2) p2 − s2 − 2r > 0, r2 − q2 > 0 (2.14)

holds, then (2.13) has no positive roots. Hence, all roots of (2.10) have negative real parts
when τ2 ∈ [0,+∞) under the conditions (H1) and (H2).

If (H1) and

(H3) r2 − q2 < 0 (2.15)

hold, then (2.13) has a unique positive root ω2
0. Substituting ω

2
0 into (2.12), we obtain

τ2n =
1
ω0

{
arccos

q
(
ω2

0 − r
) − psω2

0

s2ω2
0 + q

2
+ 2nπ

}
, n = 0, 1, 2, . . . . (2.16)

If (H1) and

(H4) p2 − s2 − 2r < 0, r2 − q2 > 0,
(
p2 − s2 − 2r

)2
> 4
(
r2 − q2

)
(2.17)

hold, then (2.10) has two positive roots ω2
+ and ω2

−. Substituting ω
2
± into (2.12), we obtain

τ±2k =
1
ω±

{
arccos

q
(
ω2

± − r
) − psω2

±
s2ω2

± + q2
+ 2kπ

}
, k = 0, 1, 2, . . . . (2.18)

Let λ(τ2) = α(τ2) + iω(τ2) be a root of (2.10) near τ2 = τ2n and α(τ2n) = 0, ω(τ2n) = ω0. Due to
functional differential equation theory, for every τ2n , n = 0, 1, 2, . . ., there exists ε > 0 such that
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λ(τ2) is continuously differentiable in τ2 for |τ2 − τ2n | < ε. Substituting λ(τ2) into the left-hand
side of (2.10) and taking derivative with respect to τ2, we have

[
dλ

dτ2

]−1
=

(
2λ + p

)
eλτ2

λ
(
sλ + q

) +
s

λ
(
sλ + q

) − τ2
λ
, (2.19)

which leads to

[
d(Reλ(τ))

dτ2

]−1
τ2=τ2n

= Re

{(
2λ + p

)
eλτ2

λ
(
sλ + q

)
}∣∣∣∣∣

τ2=τ2n

+ Re

{
s

λ
(
sλ + q

)
}∣∣∣∣∣

τ2=τ2n

= Re

{
p cosω0τ2n − 2ω0 sinω0τ2n + i

(
2ω0 cosω0τ2n + p sinω0τ2n

)
−sω2

0 + iqω0

}

+ Re

{
s

−sω2
0 + iqω0

}

=
1
Λ

{
−sω2

0
(
p cosω0τ2n − 2ω0 sinω0τ2n

)

+qω0
(
2ω0 cosω0τ2n + p sinω0τ2n

) − s2ω2
0

}

=
1
Λ

{
pω0
(
q sinω0τ2n − sω0 cosω0τ2n

)

+2ω2
0
(
q cosω0τ2n + sω0 sinω0τ2n

) − s2ω2
0

}

=
1
Λ

{
p2ω2

0 + 2ω4
0 − 2rω2

0 − s2ω2
0

}

=
ω2

0

Λ

{
2ω2

0 + p
2 − s2 − 2r

}

=
1
Λ

{
−p2 + s2 + 2r +

√
Δ∗ + p2 − s2 − 2r

}
=
ω2

0

Λ

√
Δ∗ > 0,

(2.20)

where

Λ = s2ω4
0 + q

2ω2
0 > 0,

√
Δ∗ =

(
s2 − p2 + 2r

)2 − 4
(
r2 − q2

)
. (2.21)

Noting that

sign
{
d(Reλ)
dτ2

}∣∣∣∣
τ2=τ2n

= sign
{
Re
[
dλ

dτ2

]}∣∣∣∣
τ2=τ2n

= 1, (2.22)
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we have

d(Reλ)
dτ2

∣∣∣∣
τ2=τ2n

> 0. (2.23)

Similarly, we can obtain

d(Reλ)
dτ2

∣∣∣∣
τ2=τ+2k

> 0,
d(Reλ)
dτ2

∣∣∣∣
τ2=τ−2k

< 0. (2.24)

According to above analysis the Corollary 2.4 in Ruan and Wei [23], we have the following
results.

Lemma 2.2. For τ1 = 0, assume that one of the conditions (a), (b), (c), and (d) holds and (H1) is satis-
fied. Then, the following conclusions hold.

(i) If (H2) holds, then the positive equilibrium E0(u∗1, u
∗
2) of system (1.1) is asymptotically

stable for all τ2 ≥ 0.

(ii) If (H3) holds, then the positive equilibrium E0(u∗1, u
∗
2) of system (1.1) is asymptotically

stable for τ2 < τ20 , and unstable for τ2 < τ20 . Furthermore, system (1.1) undergoes a Hopf
bifurcation at the positive equilibrium E0(u∗1, u

∗
2) when τ2 = τ20 .

(iii) If (H4) holds, then there is a positive integerm such that the positive equilibrium E0(u∗1, u
∗
2)

is stable when τ2 ∈ [0, τ+20) ∪ (τ−20 , τ
+
21
) ∪ · · · ∪ (τ−2m−1

, τ+2m), and unstable when τ2 ∈
[τ+20 , τ

−
20
) ∪ (τ+21 , τ

−
21
) ∪ · · · ∪ (τ+2m, τ

−
2m
) ∪ (τ+2m,∞). Furthermore, system (1.1) undergoes

a Hopf bifurcation at the positive equilibrium E0(u∗1, u
∗
2) when τ2 = τ

±
2k
, k = 0, 1, 2, . . ..

Case c (τ1 > 0, τ2 > 0)

We consider (2.6) with τ2 in its stable interval. Regarding τ1 as a parameter, without loss of
generality, we consider system (1.1) under the assumptions (H1) and (H3). Let iω(ω > 0) be
a root of (2.6), then we can obtain

ω4 + k1ω3 + k2ω2 + k3ω + k4 = 0, (2.25)

where

k1 = 2n3 sinωτ2,

k2 = 2[(m2n2 −m1n3) cosωτ2 −m1n1] + (m1 + n1 + n3 cosωτ2)2 −m2
3,

k3 = 2[(m2n2 −m1n3) cosωτ2]n3 sinωτ2 − 2m2
3n3 sinωτ2

+ 2(m1 + n1 + n3 cosωτ2)(m2n2 −m1n3) sinωτ2,

k4 = [(m2n2 −m1n3) cosωτ2 −m1n1]2 + [(m2n2 −m1n3) sinωτ2]2

− (m3n1 −m3n3 cosωτ2)2 − (m3n3 sinωτ2)2.

(2.26)
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Denote

H(ω) = ω4 + k1ω3 + k2ω2 + k3ω + k4. (2.27)

Assume that

(H5) (m2n2 −m1n3 −m1n1)2 < (m3n1 −m3n3)2. (2.28)

It is easy to check that H(0) < 0 if (H5) holds and limω→+∞H(ω) = +∞. We can obtain that
(2.25) has finite positive roots ω1, ω2, . . . , ωn. For every fixed ωi, i = 1, 2, 3, . . . , k, there exists
a sequence {τj1i | j = 1, 2, 3, . . .}, such that (2.25) holds. Let

τ10 = min
{
τ
j

1i
| i = 1, 2, . . . , k; j = 1, 2, . . .

}
. (2.29)

When τ1 = τ10 , (2.6) has a pair of purely imaginary roots ±iω∗ for τ2 ∈ [0, τ20).
In the following, we assume that

(H6)
[
d(Reλ)
dτ1

]
λ=iω∗

/= 0. (2.30)

Thus, by the general Hopf bifurcation theorem for FDEs in Hale [24], we have the following
result on the stability and Hopf bifurcation in system (1.1).

Theorem 2.3. For system (1.1), assume that one of the conditions (a), (b), (c), and (d) holds and sup-
pose (H1), (H3), and (H5) are satisfied, and τ2 ∈ [0, τ20), then the positive equilibrium E0(u∗1, u

∗
2) is

asymptotically stable when τ1 ∈ (0, τ10), and system (1.1) undergoes a Hopf bifurcation at the positive
equilibrium E0(u∗1, u

∗
2) when τ1 = τ10 .

3. Direction and Stability of the Hopf Bifurcation

In the previous section, we obtained conditions for Hopf bifurcation to occur when τ1 = τ10 . In
this section, we shall derive the explicit formulae determining the direction, stability, and per-
iod of these periodic solutions bifurcating from the positive equilibrium E0(u∗1, u

∗
2) at this cri-

tical value of τ1, by using techniques from normal form and center manifold theory [7].
Throughout this section, we always assume that system (1.1) undergoes Hopf bifurcation at
the positive equilibrium E0(u∗1, u

∗
2) for τ1 = τ10 , and then ±iω∗ is corresponding purely imagin-

ary roots of the characteristic equation at the positive equilibrium E0(u∗1, u
∗
2).

Without loss of generality, we assume that τ∗2 < τ10 , where τ∗2 ∈ (0, τ20). For conven-
ience, let ui(t) = ui(τt) (i = 1, 2) and τ1 = τ10 + μ, where τ10 is defined by (2.28) and μ ∈ R,
drop the bar for the simplification of notations, then system (1.1) can be written as an FDE in
C = C([−1, 0], R2) as

u̇(t) = Lμ(ut) + F
(
μ, ut
)
, (3.1)
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where u(t) = (u1(t), u2(t))
T ∈ C and ut(θ) = u(t + θ) = (u1(t + θ), u2(t + θ))

T ∈ C, and Lμ :
C → R, F : R × C → R are given by

Lμφ =
(
τ10 + μ

)
B

(
φ1(0)

φ2(0)

)
+
(
τ10 + μ

)
C

⎛
⎜⎜⎝
φ1

(
− τ

∗
2

τ10

)

φ1

(
− τ

∗
2

τ10

)
⎞
⎟⎟⎠

+
(
τ10 + μ

)
D

(
φ1(−1)
φ2(−1)

)
,

(3.2)

F
(
μ, φ
)
=
(
τ10 + μ

)(
f1, f2

)T
, (3.3)

respectively, where φ(θ) = (φ1(θ), φ2(θ))
T ∈ C,

B =

(
m1 m2

0 n1

)
, C =

(
0 0

n2 n3

)
, D =

(
m3 0

0 0

)
,

f1 = −φ1(0)φ1(−1) + l1φ2
1(0) + l2φ

2
2(0) + l3φ1(0)φ2(0) + l4φ3

1(0)

+ l5φ3
2(0) + l6φ

2
1(0)φ2(0) + l7φ1(0)φ2

2(0) + h.o.t.,

f2 = k1φ1

(
− τ

∗
2

τ10

)
φ2(0) + k2φ2(0)φ2

(
− τ

∗
2

τ10

)
+ k3φ2

1

(
− τ

∗
2

τ10

)

+ k4φ1

(
− τ

∗
2

τ10

)
φ2

(
− τ

∗
2

τ10

)
+ e1φ2

1

(
− τ

∗
2

τ10

)
φ2(0) + e2φ1

(
− τ

∗
2

τ10

)
ϕ2

(
− τ

∗
2

τ10

)
φ2(0)

+ e3φ3
1

(
− τ

∗
2

τ10

)
+ e4φ1

(
− τ

∗
2

τ10

)
φ2
2

(
− τ

∗
2

τ10

)
+ e5φ3

2

(
− τ

∗
2

τ10

)
+ h.o.t.

(3.4)

From the discussion in Section 2, we know that, if μ = 0, then system (3.1) undergoes a Hopf
bifurcation at the positive equilibrium E0(u∗1, u

∗
2) and the associated characteristic equation of

system (3.1) has a pair of simple imaginary roots ±ω∗τ10 .
By the representation theorem, there is a matrix function with bounded variation

components η(θ, μ), θ ∈ [−1, 0] such that

Lμφ =
∫0

−1
dη
(
θ, μ
)
φ(θ), for φ ∈ C. (3.5)
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In fact, we can choose

η
(
θ, μ
)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
τ10 + μ

)
(B + C +D), θ = 0,

(
τ10 + μ

)
(C +D), θ ∈

[
− τ

∗
2

τ10
, 0
)
,

(
τ10 + μ

)
D, θ ∈

(
−1,− τ

∗
2

τ10

)
,

0, θ = −1.

(3.6)

For φ ∈ C([−1, 0], R2), define

A
(
μ
)
φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dφ(θ)
dθ

, −1 ≤ θ < 0,

∫0

−1
dη
(
s, μ
)
φ(s), θ = 0,

Rφ =

⎧⎨
⎩
0, −1 ≤ θ < 0,

F
(
μ, φ
)
, θ = 0.

(3.7)

Then, (3.1) is equivalent to the abstract differential equation

u̇t = A
(
μ
)
ut + R

(
μ
)
ut, (3.8)

where ut(θ) = u(t + θ), θ ∈ [−1, 0].
For ψ ∈ C([0, 1], (R2)∗), define

A∗ψ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−dψ(s)

ds
, s ∈ (0, 1],

∫0

−1
dηT (t, 0)ψ(−t), s = 0.

(3.9)

For φ ∈ C([−1, 0], R2) and ψ ∈ C([0, 1], (R2)∗), define the bilinear form

〈
ψ, φ
〉
= ψ(0)φ(0) −

∫0

−1

∫θ
ξ=0

ψT (ξ − θ)dη(θ)φ(ξ)dξ, (3.10)

where η(θ) = η(θ, 0), the A = A(0) and A∗ are adjoint operators. By the discussions in
Section 2, we know that ±iω∗τ10 are eigenvalues of A(0), and they are also eigenvalues of A∗

corresponding to iω∗τ10 and −iω∗τ10 , respectively. By direct computation, we can obtain

q(θ) = (1, α)Teiω
∗τ10θ, q∗(s) =M(1, α∗)eiω

∗τ10s, M =
1
K
, (3.11)
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where

α =
iω∗ −m1 −m3e

−iω∗τ10

m2
,

α∗ = − iω
∗ +m1 +m3e

−iω∗τ10

n2e
−iω∗τ∗2/τ10

,

K = 1 + αα∗ + τ10

[
m3e

iω∗τ10 +
τ∗2
τ10

n2αe
iω∗(τ∗2/τ10 ) + αα∗n3

τ∗2
τ10

eiω
∗(τ∗2/τ10 )

]
.

(3.12)

Furthermore, 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q(θ)〉 = 0.
Next, we use the same notations as those in Hassard [7] and we first compute the coor-

dinates to describe the center manifold C0 at μ = 0. Let ut be the solution of (3.1)when μ = 0.
Define

z(t) =
〈
q∗, ut

〉
, W(t, θ) = ut(θ) − 2Re

{
z(t)q(θ)

}
, (3.13)

on the center manifold C0, and we have

W(t, θ) =W(z(t), z(t), θ), (3.14)

where

W(z(t), z(t), θ) =W(z, z) =W20
z2

2
+W11zz +W02

z2

2
+ · · · , (3.15)

and z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗. Noting
thatW is also real if ut is real, we consider only real solutions. For solutions ut ∈ C0 of (3.1),

ż(t) = iω∗τ10z + q
∗(θ)F(0,W(z, z, θ)) + 2Re

{
zq(θ)

} def= iω∗τ10z + q
∗(0)F0. (3.16)

That is

ż(t) = iω∗τ10z + g(z, z), (3.17)

where

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ · · · . (3.18)

Hence, we have to obtain the expression of g(z, z) (see Appendix B). Then, it is easy to obtain
the expression of g20, g11, g02, g21 (see Appendix B).
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For unknownW (i)
20 (θ),W

(i)
11 (θ), (i = 1, 2) in g21, we still need to compute them.

From (3.8), (3.13), we have

W ′ =

⎧⎨
⎩
AW − 2Re

{
q∗(0)fq(θ)

}
, −1 ≤ θ < 0,

AW − 2Re
{
q∗(0)fq(θ)

}
+ F, θ = 0,

def= AW +H(z, z, θ),

(3.19)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (3.20)

Comparing the coefficients, we obtain

(A − 2iτ10ω
∗)W20 = −H20(θ), (3.21)

AW11(θ) = −H11(θ), (3.22)

and we know that, for θ ∈ [−1, 0),

H(z, z, θ) = −q∗(0)f0q(θ) − q∗(0)f0q(θ) = −g(z, z)q(θ) − g(z, z)q(θ). (3.23)

Comparing the coefficients of (3.23) with (3.20) gives that

H20(θ) = −g20q(θ) − g02q(θ), (3.24)

H11(θ) = −g11q(θ) − g11q(θ). (3.25)

From (3.21), (3.24), and the definition of A, we get

Ẇ20(θ) = 2iω∗τ10W20(θ) + g20q(θ) + g02q(θ). (3.26)

Noting that q(θ) = q(0)eiω
∗τ10θ, we have

W20(θ) =
ig20
ω∗τ10

q(0)eiω
∗τ10θ +

ig02

3ω∗τ10
q(0)e−iω

∗τ10θ + E1e
2iω∗τ10θ, (3.27)

where E1 = (E(1)
1 , E

(2)
1 )T ∈ R2 is a constant vector.

Similarly, from (3.22), (3.25), and the definition of A, we have

Ẇ11(θ) = g11q(θ) + g11q(θ), (3.28)

W11(θ) = − ig11
ω∗τ10

q(0)eiω
∗τ10θ +

ig11

ω∗τ10
q(0)e−iω

∗τ10θ + E2, (3.29)

where E2 = (E(1)
2 , E

(2)
2 )T ∈ R2 is a constant vector
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In what follows, we shall seek appropriate E1, E2 in (3.27), (3.29), respectively. It fol-
lows from the definition of A and (3.24), (3.25) that∫0

−1
dη(θ)W20(θ) = 2iω∗τ10W20(0) −H20(0), (3.30)

∫0

−1
dη(θ)W11(θ) = −H11(0), (3.31)

where η(θ) = η(0, θ).
From (3.21), we have

H20(0) = −g20q(0) − g02q(0) + 2τ10(H1,H2)T , (3.32)

H11(0) = −g11q(0) − g11(0)q(0) + 2τ10(P1, P2)
T , (3.33)

where

H1 = −e−iω∗τ10 + l1 + l2α2 + l3α,

H2 =
(
k1α + k2α2

)
e−iω

∗τ∗2 + (k3 + k4α)e−2iω
∗τ∗2 ,

P1 = −1
2

(
e−iω

∗τ10 + eiω
∗τ10
)
+ l1 + l2|α|2 + 2Re{α},

P2 = k1 Re
{
αeiω

∗τ∗2
}
+ k2|α|2

(
e−iω

∗τ∗2 + eiω
∗τ∗2
)
+ k3 + k4 Re{α}.

(3.34)

Noting that (
iω∗τ10I −

∫0

−1
eiω

∗τ10θdη(θ)

)
q(0) = 0,

(
−iω∗τ10I −

∫0

−1
e−iω

∗τ10θdη(θ)

)
q(0) = 0,

(3.35)

and substituting (3.27) and (3.32) into (3.30), we have(
2iω∗τ10I −

∫0

−1
e2iω

∗τ10θdη(θ)

)
E1 = 2τ10(H1,H2)T . (3.36)

That is (
2iω∗ −m3e

−2iω∗τ10 −m2

−n2e−2iω∗τ∗2 2iω∗ − n1e−2iω∗τ10 − n3e−2iω∗τ∗2

)
E1 = 2(H1,H2)T . (3.37)

It follows that

E
(1)
1 =

Δ11

Δ1
, E

(2)
1 =

Δ12

Δ1
, (3.38)
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where

Δ1 =
(
2iω∗ −m3e

−2iω∗τ10
)(

2iω∗ − n1e−2iω∗τ10 − n3e−2iω∗τ∗2
)
−m2n2e

−2iω∗τ∗2 ,

Δ11 = 2H1

(
2iω∗ − n1e−2iω∗τ10 − n3e−2iω∗τ∗2

)
+ 2H2m2,

Δ12 = 2H2

(
2iω∗ −m3e

−2iω∗τ10
)
+ 2H1n2e

−2iω∗τ∗2 .

(3.39)

Similarly, substituting (3.28) and (3.33) into (3.31), we have

(∫0

−1
dη(θ)

)
E2 = 2τ10(P1, P2)

T . (3.40)

That is

(
m1 +m3 m2

n2 n1 + n3

)
E2 = 2(−P1,−P2)T . (3.41)

It follows that

E
(1)
2 =

Δ21

Δ2
, E

(2)
2 =

Δ22

Δ2
, (3.42)

where

Δ2 = (m1 +m3)(n1 + n3) −m2n2,

Δ21 = 2m2P2 − 2P1(n1 + n3),

Δ22 = 2n2P1 − 2P2(m1 +m3).

(3.43)

From (3.27), (3.29), (3.38), (3.42), we can calculate g21 and derive the following values:

c1(0) =
i

2ω∗τ10

(
g20g11 − 2

∣∣g11∣∣2 −
∣∣g02∣∣2
3

)
+
g21
2
,

μ2 = − Re{c1(0)}
Re{λ′(τ10)}

,

β2 = 2Re(c1(0)),

T2 = − Im{c1(0)} + μ2 Im{λ′(τ10)}
ω∗τ10

.

(3.44)

These formulas give a description of the Hopf bifurcation periodic solutions of (3.1) at τ = τ10
on the center manifold. From the discussion above, we have the following result.
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Figure 1: Trajectory portrait and phase portrait of system (4.1) with τ1 = 0, τ2 = 1.5 < τ20 ≈ 1.52. The
positive equilibrium E0(0.3038, 0.4230) is asymptotically stable. The initial value is (0.2,0.2).

Theorem 3.1. The periodic solution is forward (backward) if μ2 > 0(μ2 < 0); the bifurcating periodic
solutions are orbitally asymptotically stable with asymptotical phase (unstable) if β2 < 0(β2 > 0); the
periods of the bifurcating periodic solutions increase (decrease) if T2 > 0(T2 < 0).

4. Numerical Examples

In this section, we present some numerical results of system (1.1) to verify the analytical pre-
dictions obtained in the previous section. From Section 3, we may determine the direction of
a Hopf bifurcation and the stability of the bifurcation periodic solutions. Let us consider the
following system:

u̇1(t) = u1(t)[1 − u1(t − τ1)] − u1(t)u2(t)
0.05 + u1(t) + 0.6u2(t)

,

u̇2(t) = u2(t)
[
−0.5 + u1(t − τ2)

0.05 + u1(t − τ2) + 0.6u2(t − τ2)
]
,

(4.1)
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Figure 2: Trajectory portrait and phase portrait of system (4.1) with τ1 = 0, τ2 = 1.6 > τ20 ≈ 1.52. Hopf
bifurcation occurs from the positive equilibrium E0(0.3038, 0.4230). The initial value is (0.2,0.2).

which has a positive equilibrium E0(u∗1, u
∗
2) ≈ (0.3038, 0.4230). When τ1 = 0, thenwe can easily

obtain that (H1) and (H3) are satisfied. Take n = 0, for example, by some computation by
means of Matlab 7.0, we get ω0 ≈ 0.1342, τ20 ≈ 1.52. From Lemma 2.2, we know that the trans-
versal condition is satisfied. Thus, the positive equilibrium E0 ≈ (0.3038, 0.4230) is asympto-
tically stable for τ2 < τ20 ≈ 1.52 and unstable for τ2 > τ20 ≈ 1.52 which is shown in Figure 1.
When τ2 = τ20 ≈ 1.52, (4.1) undergoes a Hopf bifurcation at the positive equilibrium E0 ≈
(0.3038, 0.4230), that is, a small amplitude periodic solution occurs around E0 ≈ (0.3038,
0.4230) when τ1 = 0 and τ2 is close to τ20 = 1.52 which is shown in Figure 2.

Let τ2 = 1.5 ∈ (0, 1.52) and choose τ1 as a parameter. We have τ10 ≈ 1.2930. Then, the
positive equilibrium is asymptotically when τ1 ∈ [0, τ10). The Hopf bifurcation value of (4.1)
is τ10 ≈ 1.2930. By the algorithm derived in Section 3, we can obtain

λ′(τ10) ≈ 0.5018 − 7.2021i, c1(0) ≈ −2.0231 − 3.3225i,

μ2 ≈ 0.2646, β2 ≈ −4.2342, T2 ≈ 8.3701.
(4.2)

Furthermore, it follows that μ2 > 0 and β2 < 0. Thus, the positive equilibrium E0 ≈ (0.3038,
0.4230) is stable when τ1 < τ10 as is illustrated by the computer simulations (see Figure 3).
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Figure 3: Trajectory portrait and phase portrait of system (4.1) with τ2 = 0.5, τ1 = 1.2 < τ10 ≈ 1.2930. The
positive equilibrium E0(0.3038, 0.4230) is asymptotically stable. The initial value is (0.2,0.2).

When τ1 passes through the critical value τ10 , the positive equilibrium E0 ≈ (0.3038, 0.4230)
loses its stability and a Hopf bifurcation occurs, that is, a family of periodic solutions bifurca-
tions from the positive equilibrium E0 ≈ (0.3038, 0.4230). Since μ2 > 0 and β2 < 0, the dir-
ection of the Hopf bifurcation is τ1 > τ10 , and these bifurcating periodic solutions from E0 ≈
(0.3038, 0.4230) at τ10 are stable, which are depicted in Figure 4.

5. Conclusions

In this paper, we have investigated local stability of the positive equilibrium E0(u∗1, u
∗
2) and

local Hopf bifurcation of a Beddington-DeAngelis functional response predator-prey model
with two delays. We have showed that, if one of the conditions (a), (b), (c), and (d) holds and
(H1), (H3), and (H5) are satisfied, and τ2 ∈ [0, τ20), then the positive equilibrium E0(u∗1, u

∗
2)

is asymptotically stable when τ1 ∈ (0, τ10), as the delay τ1 increases, the positive equilibrium
E0(u∗1, u

∗
2) loses its stability and a sequence of Hopf bifurcations occur at the positive equi-

librium E0(u∗1, u
∗
2), that is, a family of periodic orbits bifurcates from the the positive equi-

librium E0(u∗1, u
∗
2). At last, the direction of Hopf bifurcation and the stability of the bifurcating

periodic orbits are discussed by applying the normal form theory and the center manifold
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Figure 4: Trajectory portrait and phase portrait of system (4.1) with τ2 = 0.5, τ1 = 1.35 > τ10 ≈ 1.2930. Hopf
bifurcation occurs from the positive equilibrium E∗ = (0.32, 0.96). The initial value is (0.2,0.2).

theorem. A numerical example verifying our theoretical results is carried out. In addition, we
must point out that, although Gakkhar et al. [4] have also investigated the existence of Hopf
bifurcation for system (1.1)with respect to positive equilibrium E0(u∗1, u

∗
2), it is assumed that

τ1 = τ2. For τ1 /= τ2, only numerical simulations are carried out to discuss the existence of Hopf
bifurcation. In this paper, under the case τ1 /= τ2, we investigate the existence of Hopf bifur-
cation quantitatively. Our work generalizes the known results of Sunita Gakkhar et al. [4].
Similarly, we can investigate the Hopf bifurcation of system (1.2) by choosing the delay τ2 as
bifurcation parameter. We will further investigate the topic elsewhere in the near future.

Appendices

A.
The expressions ofmi, ni (i = 1, 2, 3), and Fi (i = 1, 2) are as follows:

m1 = 1 − u∗1 −
a1

a + u∗1 + bu
∗
2

(
u∗2 −

u∗1u
∗
2

a + u∗1 + bu
∗
2

)
,

m2 = − a1
a + u∗1 + bu

∗
2

(
u∗1 −

u∗1u
∗
2

a + u∗1 + bu
∗
2

)
, m3 = −u∗1,
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n1 = −dd1 +
d1u

∗
1

a + u∗1 + bu
∗
2
, n2 =

d1u
∗
1u

∗
2

a + u∗1 + bu
∗
2
, n3 = − d1bu

∗
1u

∗
2(

a + u∗1 + bu
∗
2

)2 ,

F1 = −u1(t)u1(t − τ1) + l1u21(t) + l2u22(t) + l3u1(t)u2(t) + l4u31(t)

+ l5u32(t) + l6u
2
1(t)u2(t) + l7u1(t)u

2
2(t) + h.o.t.,

F2 = k1u1(t − τ2)u2(t) + k2u2(t)u2(t − τ2) + k3u21(t − τ2)

+ k4u1(t − τ2)u2(t − τ2) + e1u21(t − τ2)u2(t) + e2u1(t − τ2)u2(t − τ2)u2(t)

+ e3u31(t − τ2) + e4u1(t − τ2)u22(t − τ2) + e5u32(t − τ2) + h.o.t.,

(A.1)

where

l1 = − a1
a + u∗1 + bu

∗
2

[
−u∗2

a + u∗1 + bu
∗
2
+

u∗1u
∗
2(

a + u∗1 + bu
∗
2

)2
]
,

l2 = − a1
a + u∗1 + bu

∗
2

[ −bu∗1
a + u∗1 + bu

∗
2
+

b2u∗1u
∗
2(

a + u∗1 + bu
∗
2

)2
]
,

l3 = − a1
a + u∗1 + bu

∗
2

[
1 − u∗1 + bu

∗
2

a + u∗1 + bu
∗
2
+

2bu∗1u
∗
2(

a + u∗1 + bu
∗
2

)2
]
,

l4 = − a1
a + u∗1 + bu

∗
2

[
u∗2(

a + u∗1 + bu
∗
2

)2 − u∗1u
∗
2(

a + u∗1 + bu
∗
2

)3
]
,

l5 = − a1
a + u∗1 + bu

∗
2

[
b2u∗1(

a + u∗1 + bu
∗
2

)2 − b3(
a + u∗1 + bu

∗
2

)3
]
,

l6 = − a1
a + u∗1 + bu

∗
2

[
−1

a + u∗1 + bu
∗
2
+

u∗1 + 2bu∗2(
a + u∗1 + bu

∗
2

)2 − 3bu∗1u
∗
2(

a + u∗1 + bu
∗
2

)3
]
,

l7 = − a1
a + u∗1 + bu

∗
2

[
−b

a + u∗1 + bu
∗
2
+

b2u∗2 + 2bu∗
1(

a + u∗1 + bu
∗
2

)2 − 3b2u∗1u
∗
2(

a + u∗1 + bu
∗
2

)3
]
,

k1 = d1

[
1

a + u∗1 + bu
∗
2
− u∗1(

a + u∗1 + bu
∗
2

)2
]
, k2 = − d1b(

a + u∗1 + bu
∗
2

)2 ,

k3 = d1u∗2

[
− 1(
a + u∗1 + bu

∗
2

)2 +
u∗1(

a + u∗1 + bu
∗
2

)3
]
,

k4 = d1u∗2

[
− b(
a + u∗1 + bu

∗
2

)2 +
2bu∗1(

a + u∗1 + bu
∗
2

)3
]
,

e1 = d1u∗2

[
1(

a + u∗1 + bu
∗
2

)3 − u∗1(
a + u∗1 + bu

∗
2

)4
]
,
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e2 = d1

[
− b(
a + u∗1 + bu

∗
2

)2 +
2bu∗1(

a + u∗1 + bu
∗
2

)3
]
,

e3 = d1u∗2

[
1(

a + u∗1 + bu
∗
2

)3 − u∗1(
a + u∗1 + bu

∗
2

)4
]
,

e4 =
d1u

∗
2b

2

(
a + u∗1 + bu

∗
2

)3 , e5 = − d1u
∗
1u

∗
2b

3

(
a + u∗1 + bu

∗
2

)4 .
(A.2)

B.

The expressions of g(z, z), g20, g11, g02, and g21 are as follows:

g(z, z) = q∗(0)F0(z, z) = F(0, ut)

=Mτ10

[
−e−iω∗τ10 + l1 + l2α2 + l3α + α∗

×
(
k1αe

−iω∗τ∗2 + k2α2e−iω
∗τ∗2 + k3e−2iω

∗τ∗2 + k4αe−2iω
∗τ∗2
)]
z2

+Mτ10

{
−eiω∗τ10 − e−iω∗τ10 + 2l1 + 2l2|α|2 + 2l3 Re{α} + α∗

×
[
2k1 Re

{
αeiω

∗τ∗2
}
+ k2|α|2

(
eiω

∗τ∗2 + e−iω
∗τ∗2
)
+ 2k3 + 2k4 Re{α}

]}
zz

+Mτ10

{
−eiω∗τ10 + l1 + l2α

2 + l3α + α∗

×
[
k1αe

iω∗τ∗2 + k2|α|2eiω∗τ∗2 + k3e2iω
∗τ∗2 + k4αeiω

∗τ∗2
]}
z
2

+Mτ10

{
−
(
1
2
W

(1)
20 (0)e

iω∗τ10 +
1
2
W

(1)
20 (0) +W

(1)
11 (0)e

−iω∗τ10 +W (1)
11 (0)

)

+ l1
(
W

(1)
20 (0) + 2W (1)

11 (0)
)
+ l2
(
αW

(2)
20 (0) + 2αW (2)

11 (0)
)

+ l3
(
W

(2)
11 (0) +

1
2
W

(2)
20 (0) +

1
2
αW

(1)
20 (0) + αW

(1)
11 (0)

)

+ 3l4 + 3l5α2α + l6(2α + α) + l7
(
2|α|2 + α2

)
+ α∗

×
[
k1

(
W

(2)
11 (0)e

−iω∗τ∗2 +
1
2
αW

(1)
20

(
− τ

∗
2

τ10

)
+
1
2
W

(2)
20 (0)e

iω∗τ∗2 +W (2)
11 (0)e

−iω∗τ∗2

)

+ k2
(
αW

(2)
11

(
− τ

∗
2

τ10

)
+
1
2
αW

(2)
20

(
− τ

∗
2

τ10

)
+
1
2
αW

(2)
20 (0)e

iω∗τ∗2 +αW (2)
11 (0)e

−iω∗τ∗2

)

+ k3
(
2W (1)

11

(
− τ

∗
2

τ10

)
e−iω

∗τ∗2 +W (1)
20

(
− τ

∗
2

τ10

)
eiω

∗τ∗2

)
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+ k4
(
W

(2)
11

(
− τ

∗
2

τ10

)
e−iω

∗τ∗2 +
1
2
W

(2)
20

(
− τ

∗
2

τ10

)
eiω

∗τ∗2

+
1
2
αW

(1)
20

(
− τ

∗
2

τ10

)
eiω

∗τ∗2 + αW (1)
11

(
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