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We give an explicit formula for the number of chains of subgroups in the lattice of subgroups of
the dicyclic group By, of order 4n by finding its generating function of multivariables.

1. Introduction

Throughout this paper, all groups are assumed to be finite. The lattice of subgroups of a given
group G is the lattice (L(G), <) where L(G) is the set of all subgroups of G and the partial
order < is the set inclusion. In this lattice (L(G), <), a chain of subgroups of G is a subset of L(G)
linearly ordered by set inclusion. A chain of subgroups of G is called G-rooted (or rooted) if it
contains G. Otherwise, it is called unrooted.

The problem of counting chains of subgroups of a given group G has received attention
by researchers with related to classifying fuzzy subgroups of G under a certain type of
equivalence relation. Some works have been done on the particular families of finite abelian
groups (e.g., see [1-4]). As a step of this problem toward non-abelian groups, the first author
[5] has found an explicit formula for the number of chains of subgroups in the lattice of
subgroups of the dihedral group D,, of order 2n where # is an arbitrary positive integer. As a
continuation of this work, we give an explicit formula for the number of chains of subgroups
in the lattice of subgroups of the dicyclic group By, of order 4n by finding its generating
function of multivariables where 7 is an arbitrary integer.
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2. Preliminaries

Given a group G, let C(G), #(G), and R(G) be the collection of chains of subgroups of G, of
unrooted chains of subgroups of G, and of G-rooted chains of subgroups of G, respectively.
Let C(G) := |C(G)|, U(G) := [U(G)|, and R(G) := [R(G)|.

The following simple observation is useful for enumerating chains of subgroups of a
given group.

Proposition 2.1. Let G be a finite group. Then R(G) = U(G) + 1 and C(G) = R(G) + U(G) =
2R(G) - 1.

For a fixed positive integer k, we define a function \ as follows:

.)L(xk) =1- 2xk,

(2.1)
M(xi, Xpea1, -2, X)) = M(Xa, Xpeet, -2, Xja1) — (1 + A( Xk, Xkt -2, Xja1) ) Xj
foranyj=k-1,k-2,...,1
Proposition 2.2 (see [5]). Let Z, be the cyclic group of order
n= pflpgz . -pllzk, (2.2)

where p,...,px are distinct prime numbers and P, ..., Py are positive integers. Then the number
R(Zy,) of rooted chains of subgroups in the lattice of subgroups of Zy is the coefficient of x{" xgz e xik

of

1

g, (X, - X1) = )L(.X'k,—

— (2.3)

Let Z be the set of all integer numbers. Given distinct positive integers iy, ..., i;, we
define a function

Ty 2 TR — TF, (x1, .., x) — (Y1, Yk), (2.4)
where

if 0#i;Vj=1,...,t
ye: {xf/ 1 361] ] 7 7t (25)

x¢—1, €=i; for some j such that 1 <j <t

Most of our notations are standard and for undefined group theoretical terminologies
we refer the reader to [6, 7]. For a general theory of solving a recurrence relation using a
generating function, we refer the reader to [8, 9].
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3. The Number of Chains of Subgroups of the Dicyclic Group B,,

Throughout the section, we assume that
no= pflpgz .. 'Pik/ (3.1)

is a positive integer, where p, ..., px are distinct prime numbers and f, ..., fx are nonnega-
tive integers and the dicyclic group B, of order 4n is defined by the following presentation:

By, = <a,b | a"=e, b®>=a", bab' =a’! >, (3.2)

where e is the identity element.
By the elementary group theory, the following is wellknown.

Lemma 3.1. The dicyclic group By, has an index 2 subgroup (a), which is isomorphic to Z,, and
has p; index p; subgroups

(a’”i,b),(a’”i,ab>,...,<a’7i,a’7"‘1b>, (3.3)
which are isomorphic to the dicyclic group By, of order 4n/p; wherei=1,2,...,k.
Lemma 3.2. (1) Foranyi=1,2,...,k,

(a",a’b) n(a",a’b) = (a") = Zousp, (3.4)

where0 <r <s<pi—1.
(2) For any distinct prime factors pi,, pi,, - - -, Pi, Of 1,

(aPi,a"b) N (aP2,abyN---N (aPt,a"b) = B4n/pi1"'Pit’ (3.5)

where 1y, ..., 1y are nonnegative integers.

Proof. (1) To the contrary suppose that

(aPi,a’b) N (aP',a’b) # (a?"). (3.6)

Then a?**"b = aP®**b for some integers u and v. This implies p; | s—7.Since 0 <r <s <p; -1,
we have s = r, a contradiction.

(2) We only give its proof when t = 2. The general case can be proved by the inductive
process. Let

K := (aP1,a""b) N (aP2,a"b). (3.7)
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Clearly, a¥1?2 € K. Since ged(pi,, pi,) = 1, there exist integers u and v such that p; u +p;,v = 1.
Note that gPa C#n-r))+np = gpi (-uln-r)) gnp ¢ (aP,a"b). On the other hand,

gPi Cu(n-r))+ny, — g-pyu(n-n)+ny,
= PP~y gince piu+p,o =1 (3.8)

= gPav(n-n) +np o (aP2,a™b).

Considering the order of K, one can see that K = (aPiPi, gPi (“4n-2))4np) Since

(apilpfz )471/Pi1pi2 =e, (apil (—u(ri-rp))+r b>2 —p2=g"= (aPilpiz)n/PﬁPiz,
(3.9)
<api1 (~u(r-r2))+n b) (aPiP2) <aPi1 (~u(r-r2))+n b) - = (aPiPi )—1,
we have K = Buu/p, p, - O
By Lemma 3.1, we have

k pi—1 )

U(Bu) = C((a) = Zoy)|JJC (@, alb) = Buuyp,)- (3.10)
i=0 j=0

Using the inclusion-exclusion principle and Lemma 3.2, one can see that the number U (By,)
has the following form:

U(B4n) = C(ZZn) + Z Zi,..., 1}C<ZZ-n/p,»1 '“PQ)
1<iy <<y <k,
1<t<k

(3.11)
n Z bil,.__,itC<B4n/pi1"'Pit>

1<iy<-<ii<k,
1<t<k

,,,,,,,,,,

,,,,,

Lemma 3.3. (1) bj ;,. . i = (—1)t+1pilpi2 P
(2) zijy,.i = (—1)tPi1Piz © P

Proof. (1) Clearly b;, = (-1)"*'p;, = pi, for any i1 = 1,..., k. For any integer ¢ > 2, one can see
by Lemma 3.2 that among intersections of the subgroups of the right-hand side of (3.10), the
group isomorphic to Byy/p, p,,-p, Only appears in t-intersection of the subgroups

<api1, ahb>, <ar’iz,aizb>, L <am,aﬁb>, (3.12)
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where 0 < j, < p;, —1and 1 < r < t. Since there are (") ("2) -+ (") = pipi, -+ pi, such
choices, we have by, ;, i = (=1)"'pipi, - pi.-

(2) By Lemma 3.2, one can see that among intersections of the subgroups of the right-
hand side of (3.10), the group isomorphic to Zau/p, p,,-p, Only appears one of the following
two forms:

(a) N <aPi1,ajlb> N <apf2,af2b> NN <apif,ajfb>,
(3.13)
<api1,aj1b> N <api2,a72b> AN <aPitlajtb>/

least once, and it can appear more than once, while each subgroup type in the second form
must appear at least once, and one of the subgroup types must appear more than once. Let
y be the number of the groups isomorphic to Zy/p, p,,--p, obtained from the first form, and
let 6 be the number of the groups isomorphic to Zon/p, p,,-p, Obtained from the second form.
Then clearly z;j, 4,... i, = y + 6. Note that

where 0 < j, < p;, —1and 1 < r < t, and each subgroup type in the first form must appear at

oot .

SRS I ()

k=0 jitetji=trk, r=1 Jr
1<), <pi, 1<r<k

Z Z t+kH (Pu)

k>0 j1+-»-+jt:t+k
1<jr <pi, A<r<t (3.14)

2 (—1)f1+"'+ff§<”f'>

1<j,<pi, A<rst Jr

1T S o () = e

r=1 1<jr<pi,

On the other hand,
Piy e +pi—t=1 . ¢ p
t+2+ i,
5= > o3 TI(%)
k=0 Jitetje=t+lk, =1 Jr
1<), <pi, 1<r<t
Pig Py ==l 24k pi 1 t Pi
2+, i, e i
= 3 1 3 H( >+(1) 3 H< )
k=0 Jietji=t+ 14k, r=1 jieetji=t, =1
1<j,<pi, A<r<t 1<j,<py, 1<r<t

—(-1H! Z H(Pzr)

Jreeji=t
1<), <pi,, 1<r<t
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i P,-1+ipirt(_1)t+1+k 3 H(Pl,) I H<p1,>

k=0 jite+ji=t+k, r=1 Jitetji=t,
1<]r<p]r 1<r<t 1<]r<P1 1<r<t

= (D' - (-D""ps - pi.-

(3.15)
Therefore, we have z;,;, ; = (=1)'pi, -+ pi,. O
By Proposition 2.1 and Lemma 3.3, (3.11) becomes
R(Bi) = 2R(Zon) +2 S (-1)'py, -+ pitR<Zzn /,,,.1...,,“)
1<iy<-<iy<k,
1st<k (3.16)
+2 Z (_1)t+1pi1 " 'PitR<B4n/pi1 "‘Pit>’
1<iy<-<is<k,
1st<k
Let ag,,. g, := R(Bsy) and let by, .. 5, := R(Z2y). Then (3.16) becomes
g = 206,542 D (1) pi b (o)
1<iy <<y <k,
1<t<k (3.17)
+2 0 ()i Pl (-
1<iy<<is<k,

1<t<k

Throughout the remaining part of the section, we solve the recurrence relation of
(3.17) by using generating function technique. From now on, we allow each f; to be zero
for computational convenience.

Let

>
i
o
=
;S
L
i
o
=
ta
i
o

(3.18)

wherej =k k-1,...,1.
For a fixed integer 1 = p”'p?* - - - p* such that 1, ..., Pk are distinct prime numbers and
8 P1 P2 Pk p p p
P, ..., Px are non-negative integers, we define a function y as follows.

p(xi) == 1= 2prxy,
(3.19)

p(x, .o, xi) = p(xp, ., xj01) = (L + p(Xk, -, Xj11) ) PiX;

foranyj=k-1, k-2,...,1.
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Lemma 3.4. Let k be a positive integer. If k = 1, then

p(x)gp, (x1) = (1 + pu(x1)) dp, (x1)- (3.20)

Ifk > 2, then

= (1+p(xk,-..,xj))

< N\ bpoope X))+ D D' Pi e Pi Py prrp) (Kr -, X) 301
1<iy <<y <j-1, ( )

1<t<j-1

t+1
+ Z D7 i i, (B o) (X, -, x5)
1<iy <y <j-1,
1st<j-1

foranyj=kk-1,...,2

Proof. Assume first that k = 1. Then (3.17) with k = 1 gives us that
ag, = 2bp, +2p1ap, 1 — 2p1bg, 1. (3.22)
Taking Zz‘jzl to both sides of (3.22), we have
(1= 2p1x1) gp, (x1) = (2 = 2p1x1) g, (1) (3.23)

because ay = R(B4p?) = R(Zy) = 2% and by = R(Zzp?) = R(Z,) = 2 by a direct computation.
From now on, we assume that k > 2. We prove (3.21) by double induction on k and j.
Equation (3.17) with k = 2 gives us that

ag,p, = 2bp, p, — 2p1bp,-1,5, — 2pabp, p,-1 + 2p1P2bp, 1,1 (3.24)
+2p1ap,-1p, + 2p2ap, p,-1 — 2p1p2ap,-1,p,-1-

Taking 375 xgz of both sides of (3.24), we have
(1=2p2x2) g, p, (X2) = (2= 2P222) [P18p,-1,5, (%2) + P, o (X2) — P1Ppy-1,, (2)] (3.25)
because ag, o = ag, and by, o = by, by the definition, and

ag, 0 — 2bg, 0 — 2p1ag, o + 2p1bp,_10 = 0 (3.26)
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by (3.17) with k = 1. That is,

w(x2) g, (22) = (1 + p(x2)) [Ppy g, (x2) = P11, (X2) + P19 1,5, (X2)]- (3.27)

Thus (3.21) holds for k = 2.

Assume now that (3.21) holds from 2 to k — 1 and consider the case for k. Note that the
last two terms of the right-hand side of (3.17) can be divided into three terms, respectively, as
follows:

2 Z (_1)tpi1 toe pitbml.»-it (B1,-Px)

1<iy <<iy<k,

1<t<k
t
= _zpkbﬁl,---,ﬁkq,ﬁk—l - 2pi Z (-1) pi, - 'Pi:bm]-~~i, (Br s Pr-1,Pr=1)
1<iy<-<i<k-1,
1<t<k-1
t
+2 Z (_1) Pi - Pi/bﬂ'il---it (B1s-Pr) 7
1<iy<-<i<k-1,
1<t<k-1

N (3.28)
2> (D"pi Pt po

1<iy <<y <k,
1<t<k

t+1
=2pkap, ppr =20k D, (CDTpiPim (o i peD)
1<iy<<iy<k-1,
1<t<k-1

1
+2 Z (_1)t+ Piy =+ Pis Qi iy (Breen i) -

1<iy<<iy<k-1,
1<t<k-1

Taking Z;::l xik of both sides of (3.17) and using (3.28), one can see that

= (2 - 2pxx)

x (i)ﬂlr-u,ﬂk (xk) + Z (_1)tPi1 o Pi ¢Jr,-1...it (B1,-rPrc-1,Pr) (xk)
1<i<<i<k-1,
1<t<k-1

1
+ > D Pt e po (XK)
1<i<<i;<k-1,
1<t<k-1
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+ag,. pa0— Zbﬂl/m/ﬂk—llo -2 Z (_1)tpi1 c P byr,-l.,.i, (B1,rPr-1,0)
1<i<<i<k-1,
1<t<k-1

-2 Z (_1)H1Pi1 © Piy Ay (B P 0) -

1<i<--<iy<k-1,
1<t<k-1

(3.29)
Further since

ag,,...px-1,0 — Zbﬁlr--vﬂk—l 0

-2 Z (—1)tPi1 © e Pi bﬂ'il---it (B1,--Pr-1,0)
1<i<<ip<k-1,

1<t<k—1 (3.30)

-2 Z (_1)t+1pi1 © Pic Aoy (B i 0) = 0

1<i<<i<k-1,
1<t<k-1

by (3.17), we have

(1 =2prxi) gp,,.pi (Xk)

= (2 2pixy)
t
X 4)[51 ..... Bre (xk) + Z (_1) pPi, - 'pifd)ﬂ'il---it (ﬂl,--~,ﬁk-1,ﬁk)(xk) (3 31)
1<i<-<i;<k-1, .
1<t<k-1

t+1
+ > D i i B (56 |-
1<i<<i;<k-1,
1<t<k-1

Thus (3.21) holds for j = k. Assume that (3.21) holds from k to j and consider the case for
j — 1. Note that the last two terms of the right-hand side of (3.21) can be divided into three
terms, respectively, as follows:

> D' Py G Xk %)

1<ip<-<iy<j-1,
1<t<j-1

= —Pj AP, fia fia L CTRIVED

i D, GNPy P a1y Xk X) (3.32)
1<ip<<ip<j-2,
1<t<j-2
+ Z (_1)tpi1 © o Pi ¢~7fi1---it (Br--,Pr) (xk' T xf)’

1<ip<-<ip<j-2,
1<t<j-2
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> D o P o (Ko Xj)

1<iy<<iy<j-1,
1<t<j-1
= Pi1¥pi,Bi2Bia=1Pj P CTIVED
—Pj-1 Z (—1)t+1Pi1 * PisWai iy (BroBiaBia=1Bj o Br) (xk/ s xj) (3.33)

1<iy <<y <j-2,
1<1<j-2

+ Z (—1)t+1Pi1 © Pi ¢71'i1~-i, (B1,-Pr) (xkf SRR xj)'

1<ip<<iy<j-2,
1<t<j-2

Taking 3.7 xffll of both sides of (3.21), we have

y(xk, e ,x]',x]‘_l)(pﬂl,m,pk (x]~_1, e ,xk)

= (1 +//£(Xk,. ..,x]-,xj_l))

x ()bﬂln--,ﬂk (xl.*l’ cecy xk) + Z (_1)tpi1 e pi,(ﬁml...it (ﬂl:---:ﬁk) (xk/ ey xj/ x]',l)

1<ip<-<ip<j-2,

1<t<j2
t+1
+ D DM P o) (X X, Xj11)
1<y <<ir<j-2,
1<t<j-2

WK X)Wy 20 i (X, X)
- (1 + #(xk’ Tty x])) Z (_1)tpi1 e Pizd)ﬂ'il---z} (B1s-Bj-2/0,Bj -,Pk) (xk/ ceey xj)

1<) <<ir<j-2,
1<t<j-2

~(Mrp(xex)) D D P P By 0 i) (K- X ).
1<iy <<y <j-2,
1<t<j-2

(3.34)

Note that

(ks s X7) WP a0y (Xkr - )
(U p(xe0x)) D D P Pl o a0 ) (K- )

1<iy <<y <j-2,
1<t<j-2

~ (U p(xex)) D D pi ity B a0 ) (K-, %) =0
1<ir<<ir<j-2,
1<t<j2

(3.35)
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by induction hypothesis. Thus
p (i, ey X, Xj21) @y, e (X1, -, X

= (1 +y(xk,. ..,X]',x]'_l))

x| pp (X1, )+ D D P P o) (K X, XG1)

1<iy <<y <j-2,

1<t<j-2
+ Z (_1)t+1pi1 O Pi W, (B ﬂk)(xk""/xf’xf‘l) :
1<y <<y <=2,
1<t<j-2
(3.36)
Therefore, (3.21) holds for j — 1. O
Equation (3.21) with j = 2 gives us that
‘u(xk,...,xz)(‘pﬂ1 ,,,,, pk(xk,...,xz)
=1+ p(xk,...,x2)) (3.37)
X [Ppr,pe Xks -+ X2) = PLPpr-1, o (Xks -+ X2) + P11 o, pc (Xks - -, X2)]
Taking 354 xf of both sides of (3.37), we get that
U(xk, - X0)@py,pi (Xks - - - X2, X1)
= (1+.u(xk/”-/x1))¢,51 ..... ﬂk(xk/--‘rx2/x1) (338)
+ /’l(xkl ceey x2)(l"0,ﬂ2,...,ﬂk (xk/ ceey x2) - (1 + ,u(xk/ ey xZ))d)O,ﬂz,...,ﬂk (xk/ ceey x2)'
Lemma 3.5. If k > 2, then
KXk, -, X)W, Xk, X2) = (14 p(ks -, %2)) B0 o, i (X -+ X2)- (3.39)
Proof. If k = 2, then since ¢ g, (x2) = @p, (x2) and o g, (x2) = P, (x2), the equation
p(x2)gop, (x2) = (1 + p(x2)) o, (22) (3.40)

holds by (3.20). Assume now that (3.39) holds for k. Then by (3.38) we get that

(X, Xx0)@p, g (X, X2, x1) = (T 4+ p(Xie, .o, X1)) gy, pe (Xies - -, X2, X1), (3.41)
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which implies that

H( X1, - X2)P0 oo (Kks1, -+, X2) = (L p(Xks, - -2, X2)) P oo o (Xkas - - -, X2).

Thus (3.39) holds for k + 1.

By Lemmas 3.4 and 3.5 and (3.38), we have

.....

2
A(x)’ ifk=1,
A(x1) if
TNCTE N 1 1
t , ifk>2.
)l(xk,...,JCz)]/\(xk,...,xl) f

Ifpi#2fori=1,2,...,k, then

1 1

1+ .
Axk, ..o, x1) | AMxk, -0, x1)

¢ﬁ1,--~,ﬁk (xk/ ceey xl) =

Proof. We first assume that p; = 2. Then by Proposition 2.2,
bt = R Zypoggis. )

. . 1
is the coefficient of xl1+ xgzxg3 o xik of

1
Mxk, ..., x1)’

which implies that bg, 4, .4, is the coefficient of x7" xgz x§3 o -xﬁ" of

2

if k=1,
A(x1)

1 1
1+ 1fk>2,
Axk, oo x0) | AMxk, - ., x1) -

(3.42)

O

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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and hence by the definition of ¢ we get that

2 .
m, ifk=1,
Ppr,.. e (Xie, -, X1) = (3.49)

1 1
1+ , ifk>2.
Mk, ..o, x2) | M, - .., x1)

,,,,,

Assume now that p;#2 for i = 1,2,...,k. Since bg, . p = R(Zzpplpﬂzmp/}k), by
1 2 k

Proposition 2.2 by, . g, is the coefficient of x%xgl xgz e xi'jrl of
1
_ . 3.50
)‘(xk+1/-”rx1) ( )
Since
1 B 1
AMxkst, oo x1) A(Xks1, 000, x2) = (L4 MXps1, .-, X2)) X1
(3.51)
) 1 1
J\(Xk+1,. .. /xz) 1 - [1 + (1/./\(Xk+1,. . '/xz))]xl
by the definition, b, .. g, is the coefficient of lexgz . xﬁil of
1 1

1+ . 3.52
)L(xk+1/~-,x2) [ /\(xk+1/-«-/x2)] ( )

By changing the variables x;, x3, ..., Xxs1 by X1, x2, ..., Xk, respectively, we get that by, g, is

the coefficient of xllxg2 R xik of

1 1
1+ . 3.53
')L(xkr-”rxl) [ )‘(xk/“-/xl):l ( )
By the definition of ¢g,, . g, (xx, ..., x1), we have
(x x1) = ! [1 + ! ] (3.54)
P (X 41) = Mk, ..., x1) AMxg,..,x1) ]| '
O

By Proposition 2.1, (3.43), and Lemma 3.6, we have the following theorem.

Theorem 3.7. Let

n=plplt ol (3.55)
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be a positive integer such that py, ..., px are distinct prime numbers and p, . .., P are positive inte-
gers. Let

By, = <a,b | a* =e,b*=a",bab”! = a‘1> (3.56)

be the dicyclic group of order 4n. Let R(Bay) be the number of rooted chains of subgroups in the lattice
of subgroups of By,.

(1) If p1 = 2, then R(Buay,) is the coefficient ofxllxg2 fee xik of

1 2 |
[1+ p(xr) | Axr)’ ifk=1,
qf[ﬁ,...,ﬁk (xk/ ey xl) =

1 1 1
14+ ———| 1+ , ifk>2.
| u(xk,...,an e ] Bemme O
(3.57)
(2) Ifpi#2fori=1,2,...,k, then R(Bay,) is the coefficient ofxllxg2 . xik of
1 1 1
L ey = |1+ 1+ . 3.58
Ll e ] brcrome] L Terommey) M

Furthermore, the number C(Bay,) of chains of subgroups in the lattice of subgroups of B, is
the coefficient of xllxg2 e xik of

1

: 3.59
T x (3.59)

k
2055, (5t x) - [ |
i=1

We now want to find the coefficient of xllxgz . --xik of gp,...p (X, ..., x1) explicitly.
Since
1 B 1 1 (3.60)
P, x) Pk, x2) 1= [1+ (1 plxk, ..., x2)) [ prxa” '
by the definition, the coefficient of xfl of 1/u(xk,...,x1)is
b
- [1 T ] P
U(Xk, ..., X2) U(Xk, ..., X2)
ﬁ] i1+1
A2 i
P ,-12_0<i1 U(Xk, ..., x2) (3.61)

B i+l ip+1
_ax (P 1 1
-h ilzzo<i1>[ﬂ(xk,..-,X3)] [1—[1+(1/y(xk,...,x3))]p2x2] '
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Thus the coefficient of xl]xg2 of 1/u(xk, ..., x1) is

SO sl bl

= Pflpgznz_;) %( ) ( ) <i1 ;2ﬁ2> [m] itz

Continuing this process, one can see that the coefficient of x}" x ﬂ :

2 Pr1 k-1 L
oot § 55 HE) (P B

i1=0 =0 i}1=0 r= Brs1

Similarly one can see that the coefficient of x1 52 xik of 1/Mxxk, ..., x1) s

the coefficient of x;" x: ﬂz . xzk of [T+ (1/Mxk,...,x2))](1/M(xk,...,x1)) s

E8E BOCOHO(E)

11 =0 12 =0 l3 =0 lk 1—0 ﬂrJrl

and the coefficient of x7’ xgz . xik of 1/A(xk, ..., x1)% is

p P Pr1 k-1 -
(23 3 3 TI(0) (P

i1=0 i,=0 ik-1=0 r=1 ﬂr+1

Therefore, one can have the following.

xik of 1/p(xk, ..

15

(3.62)

.,Xx1) is

(3.63)

(3.64)

(3.65)

(3.66)

Corollary 3.8. Let n and By, be the positive integer and the dicyclic group, respectively, defined in
Theorem 3.7. Let R(Byy,) be the number of rooted chains of subgroups in the lattice of subgroups of

Biyn.



16 Discrete Dynamics in Nature and Society

1) If p1 = 2, then

w558 50O )

i1=0 ip=0 i3=0  if_1= r= ﬁr+1

+2ﬁk2 % = Ol[Pﬁ’f le ﬁ: jii ﬁ(w) <]r+1 ’ Zlm)]

1=0 ]2_ i1=0 i,=0 i-1=0 r=1 ]r+1
Pi—p+1Po—fo Ba—j3  Pr1—jk . L.
-n+1 ﬂz —2tnh
DI i [
[ 120 =0 i3=0 ia=0 1 P2—j2

k-1 . . L
r — Jr T — Jr + Im
g I<ﬁ i ]><ﬁ+l . >”
r=2 ! ﬂr+1 - jr+l
where if k = 1, then R(By,p ) = 222 and if k = 2, then

pr+1 ;
— b Pre1\(P2+in
R<B4~2P‘1p§2> =2 12:0 < i > < p2

- 2!’22 Z I:[Z]lphl o<11> <f2]f; il)] (3.68)

71=0 j,=0
« |:ﬂ1§+1<ﬁ1 _i]: + 1> <ﬁ2ﬂ_2]_2;; i1)] ] .

(3.67)

2) Ifpi#2fori=1,2,...,k, then

pr P Pr-1 k-1 im
R(Bu) =23, 30 3 H(ﬁ’) (ﬁm “E >

11 =0 12 =0 ik—l 0 r= ﬁr+1

+ (1 + 1)2ﬂkz Z ﬁﬁ ﬁ([j:) <ﬁr+1 +1+ Zlm>

11—0 12—0 l'k,1 =0 r= ﬂr+l

B P Br R k1 k=1 - g+ s »
2hSTS Z”sz . "Z‘)Z_O HC)(] 1 mzzll >]

j1=0 =0 jk=0 ix1=0 7=

PijrB=j2 Pr1-jk k-1 . . U
r—Jr ﬂr+ —Jrei+ Dim
X[ZZZ H(ﬂi1>< 1mhat % >”
i1=0 i,=0 =0 r=1 r Brs1

tk-1 — Jr1
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pr P B ioh e k=1 . . L
2SS S e S S <f> rat 2

120 j,=0  jk=0 =0 =0 ix1=0 r=1 Jr+1

Bi—j1 Po—j2  Pr1—jk-1 k-1 ﬁr_jr
ol LR DYDY ( i, )

i1=0 i=0 ir1=0 r=1

r
ﬂr+1 _jr+1 +1+ Zlm ]
m=1 7

,Br+1 - jr+1
(3.69)
where if k =1, then
()= + Gy 2 Sl o2 St o
j1=0 j1=0

o1 B (3.70)

" (B +2)pr+ P+ 1

= 2h ﬁ1+2+p1 +P1 (P )P; P
pi-l (pr1-1)
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