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In order to solve the complicated multimodal problems, this paper presents a variant of particle
swarm optimizer (PSO) based on the simulation of the human social communication behavior
(HSCPSO). In HSCPSO, each particle initially joins a default number of social circles (SC) that
consist of some particles, and its learning exemplars include three parts, namely, its own best
experience, the experience of the best performing particle in all SCs, and the experiences of the
particles of all SCs it is a member of. The learning strategy takes full advantage of the excellent
information of each particle to improve the diversity of the swarm to discourage premature
convergence. To weight the effects of the particles on the SCs, the worst performing particles
will join more SCs to learn from other particles and the best performing particles will leave SCs
to reduce their strong influence on other members. Additionally, to insure the effectiveness of
solving multimodal problems, the novel parallel hybrid mutation is proposed to improve the
particle’s ability to escape from the local optima. Experiments were conducted on a set of classical
benchmark functions, and the results demonstrate the good performance of HSCPSO in escaping
from the local optima and solving the complex multimodal problems compared with the other
PSO variants.

1. Introduction

Particle swarm optimization (PSO), originally introduced by Kennedy and Eberhart [1],
has proven to be a powerful competitor to other evolutionary algorithms (e.g., genetic
algorithms) [2]. In PSO, these individuals, instead of being manipulated by the evolution
operator such as crossover and mutation, are “evolved” by the cooperation and competition
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Figure 1: (a) Global neighborhood; (b) local neighborhood; (c) the proposed algorithm neighborhood.

among the individuals through generations. Each individual in the swarm is called a particle
(a point) with a velocity that is dynamically adjusted in the search process according to its
own flying experience and the best experience of the swarm.

When solving the unconstraint optimization problem, PSO has empirically turned out
to performwell onmany optimization problems. However, when it comes to solving complex
multimodal problems, PSO may easily get trapped in a local optimum. In order to overcome
this defect and improve PSO performance, some researchers proposed several methods [3–
20]. In this paper, we present an improved PSO based on human social communication. This
strategy ensures the swarm’s diversity against the premature convergence, especially when
solving the complex multimodal problems.

This paper is organized as follows. Section 2 presents an overview of the original PSO,
as well as a discussion of the previous attempts to improve the PSO performance. Section 3
proposed an improved PSO based on simulation of human communication. Section 4 gives
the test functions, the experimental setting, and results. Finally, some conclusions and the
future works are discussed in Section 5.

2. Particle Swarm Optimization

2.1. The Original PSO (OPSO)

The original PSO algorithm (OPSO) was inspired by the search behavior of the biological
organisms, where each particle moves through the search space by a combination of the best
position found so far by itself and its neighbors. In the PSO domain, generally there are two
main neighborhood topologies, namely, the global and the local neighborhood that are shown
in Figures 1(a) and 1(b), respectively.

The two neighborhood topologies derive two classical PSO variants, namely, the global
PSO (GPSO) and the local PSO (LPSO) in which the behaviors of the particles are described
by (2.1) and (2.2), respectively. In HSCPSO, the neighborhood topology is somewhat similar
to four clusters [4], but not the same as one, as can be seen in Figure 1(c). Here, the black
dots represent the particles in each social circle (SC), the circles represent the social circle,
and the arrows represent the relationship between SCs. Note that in HSCPSO each particle’s
neighborhood is the set of the particles of all SCs that it is a member of (see Section 3.1).
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Consider the following:

��vi�t� � w �
��vi�t � 1�� ϕ1 � r1���pi ���xi�t � 1�� � ϕ2 � r2���pg ���xi�t � 1��,

��xi�t� ���xi�t � 1����vi�t�, (2.1)

��vi�t� � w �
��vi�t � 1� � ϕ1 � r1���pi ���xi�t � 1�� � ϕ2 � r2�������pneighbori �

��xi�t � 1��,
��xi�t� � ��xi�t � 1� ���vi�t�, (2.2)

where i � 1, . . . , ps, ps is the population size; t is the iteration counter; n is the dimension of
the search space; ϕ1 and ϕ2 denote the acceleration coefficients; r1 and r2 are random vectors
with the components uniformly distributed in the range of �0,1�; ��xi�t� � �vi

1, vi
2, . . . , vi

n�
represents the position of the ith particle at iteration t; ��vi �t� � �vi

1, vi
2, . . . , vi

n� represents
the velocity of the ith particle; ��pi is the best position yielding the best fitness value for
the ith particle; ��pg is the best position discovered by the whole population; ������pneighbori is the
best position achieved within the neighborhood of current particle i. Note, in this paper the
original PSO represent two PSOs, one is PSO with inertia weight and ring topology, and the
other is PSO with inertia weight and global topology.

2.2. Related Works

Since the introduction of PSO, PSO has attracted a great deal of attention. Many researchers
have worked on improving its performance in various ways and derived many interesting
variants. In [3], Clerc and Kennedy indicated that a constriction factor χ may help to the
convergence of PSO. The velocity and position of the ith particle are updated as follows:

��vi�t� � χ � ���vi�t � 1� � ϕ1 � r1���pi ���xi�t � 1�� � ϕ2 � r2���pg ���xi�t � 1���,
��xi�t� � ��xi�t � 1� ���vi�t�, (2.3)

where χ � 2	
2 � φ �

�
φ2

� 4φ
 and φ � φ1 � φ2, φ � 4.
Kennedy and Mendes [4] claimed that PSO with a small neighborhood might

perform better on the complex problems, while the one with a large neighborhood would
perform better on the simple problems. In [5], the author proposed a quantum-behaved
particle swarm optimization (QPSO) to improve PSO performance. Some researchers
[6–9] also combined some techniques to improve PSO performance (e.g., evolutionary
operators). However, these improvements are based on a static neighborhood network,
which greatly decreases the swarm diversity due to that the particle only learns from the
fixed neighborhood. Hence, Suganthan [10] and Hu and Eberhart [11] proposed a dynamic
neighborhood topology which transforms gradually from acting like the local neighborhood
in the early stage of the search to behavingmore like the global neighborhood in the late stage
of the search. Liang et al. [12] proposed an improved PSO called CLPSO, which used a novel
learning strategy where all particles’ historical best information is used to update a particle’s
velocity. In [13], the author proposed the fitness-distance-ratio-based PSO (FDR-PSO) where
FDR-PSO selects another particle ��pi which is supposed to be a higher fitness value and the
nearest to the particle being updated. Mohais et al. [14] proposed a randomly generated
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directed graph to define neighborhood which is generated by using two methods, namely,
the random edge migration method and the neighborhood restructuring method. Janson and
Middendorf [15] arranged the particles in a hierarchy structure, where the best performing
particles ascend the tree to influence more particles, replacing relatively worse performing
particles which descend the tree. In [16], clubs-based particle swarm optimization (C-PSO)
algorithm was proposed, whose membership is dynamically changed to avoid premature
convergence and improve performance. In [17], Mendes and Kennedy introduced a fully
informed PSO where instead of using the pbest (pbest (personal best): personal best position
of a given particle, so far) and gbest (gbest (global best): position of the best particle of the
entire swarm) positions in the standard algorithm, all the neighbors of the particle are used
to update the velocity. The influence of each particle on its neighbors is weighted based on its
fitness value and the neighborhood size. In [18], the authors proposed a cooperative particle
swarm optimizer (CPSO-H). Although CPSO-H uses one-dimensional (1D) swarms to search
each dimension separately, the results of these searches are integrated by a global swarm
to significantly improve the performance of the original PSO on multimodal problems. In
recent works [19, 20], the authors proposed the dynamic neighborhood topology where the
whole population is divided into a number of sub-swarms. These subswarms are regrouped
frequently by using various regrouping schedules and information exchange among all
particles in the whole swarm.

The main differences of our approach with respect to the other proposals existing in
the above literatures are as follows.

(i) In HSCPSO, we create the social circle (SC) for the particles analogous to our
communities where people can communicate and study to widen the knowledge
to each other.

(ii) The learning exemplars of each particle include three parts, namely, its own best
experience, the experience of the best performing particle in all SCs, and the
experiences of the particles of all SCs it is a member of. This strategy greatly ensures
the swarm diversity against the premature convergence.

(iii) The parallel hybrid mutation is used to improve the particle’s ability to escape from
the local optima.

3. PSO Based on Simulation of Human Communication Behavior
in the Society

3.1. Updating Strategy of Particle Velocity

Based on the simulation of the human social communication behavior, each particle can join
more than one SC, and each SC can accommodate any number of particles. Vacant SCs also
are allowed. Firstly, each particle randomly joins a predefined number of SCs, which is called
the default social circle level (DSC). At each run, the worst performing particles are more
socialized through joining more SCs to improve their knowledge, while the best performing
particles are less socialized through leaving an SC to reduce their strong influences on other
members, which leads to the fact that DSC is dynamically adjusted in terms of the particle’s
performance. During this cycle of leaving and joining SCs, the particles that no longer show
the extreme performance in its neighborhood will gradually return to DSC. The speed of
regaining DSC will decide the algorithm performance, so the check is made every n iteration
(here, n is called the gap iteration for adjusting DSC) to find the particles that have SC level
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Figure 2: The snapshot of the SCs at iteration t.

above or below DSC, and then take them back to DSC if they do not show the extreme
performance. Thus, the gap iteration for adjusting DSC needs a suitable value to ensure the
performance efficiency of HSCPSO.

In order to control when a particle joins or leaves an SC, we designed a mechanism to
control the process. If a particle continues to show the worst performance compared with the
particles in the SCs that it is a member of, then it will join more SCs one after the other until
the number of SCs reaches the maximum of allowed SC number defined by the user, while
the one that continues to show the superior performance in the SCs that it is a member of
will leave SCs one after another until the number of SC reaches the minimum of allowed SC
number. The methods to determine DSC, the gap iteration for adjusting DSC, the maximum
of allowed SC number, and the minimum of allowed SC number will be discussed in the
following.

Figure 2(a) shows a snapshot of the SCs during an execution of HSCPSO at iteration
t. In this example, the swarm consists of 7 particles, and there are 6 SCs available for them to
join. The minimum of allowed SC number, DSC, and maximum of allowed SC number are
2, 3 and 5, respectively. Particle 1 will leave social circle 1 (SC1), SC3, or SC6 because it is the
best performing particle in its neighborhood. Particle 3 will join SC2 or SC4, because it is the
worst performing particle in its neighborhood. Particle 4 will leave SC2, SC3, SC4, or SC5 to
go back to DSC, while Particle 2 will join SC1, SC3, SC4 or SC6 to return to DSC. Figure 2(b)
gives the pseudocode of SCs during an execution of HSCPSO, where neighbori is the set of
the neighbors of particle i (note that in HSCPSO each particle’s neighborhood is the set of the
particles of all SCs that it is a member of), and 
membershipi
 is the set of the SCs that particle
i is a member of.

The thought of HSCPSO is somewhat similar to C-PSO [16], but not the same as one.
In our algorithm, when updating the particle’s velocity, a particle does not learn from all
dimensions of the best performing particle in its neighbors, but learns from the corresponding
dimension of the best performing particles of the SCs that it is a member of. In order
to compare with the difference of the two strategies, the experiment was conducted as
follows: HSCPSO and C-PSO are run 20 times on Sphere, Rosenbrock, Ackley, Griewanks,
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Figure 3: Comparison of the different learning strategies.

and Rastrigin functions, respectively; the iteration of each run is set as 1000. The mean values
of the results are plotted in Figure 3(a).

As all test functions are the minimization problems, the smaller the mean value is, the
better the performance works. From Figure 3, we can observe that the learning strategy of C-
PSO suffers the premature convergence, while the strategy of HSCPSO not only ensures the
diversity of the swarm, but also improves the swarm ability to escape from the local optima.

In the real world, everyone has the ability to make himself be one member in any SC
to widen the visual field. In a similar way, we hypothesize that each particle in the swarm
has the same ability as human in the society. Based on our previous work [20], the following
updating equation of the velocity and position is employed in HSCPSO:

��vi�t� � w �
��vi�t � 1� � ϕ1 � r1���pi ���xi�t � 1�� � ϕ2 � r2�����pbin�i� �

��xi�t � 1��
� ϕ3 � r3���pg ���xi�t � 1��,

��xi�t� � ��xi�t � 1� ���vi�t�,
(3.1)

where ��pi � �pi1, pi2, . . . , pin� is the best position for the ith particle; ��pg denotes the experience
of the best performing particle in all SCs; ����pbin�i� is called the comprehensive strategy in
which the particles’ historical best information of the SCs that particle i is a member of
is used to update a particle’s velocity. Here, ϕ1=0.972, ϕ2=0.972, ϕ2=0.972, and w � 0.729.
In the comprehensive strategy, the pseudocode of the learning exemplar choice is shownin
Algorithm 1.

3.2. Parallel Hybrid Mutation

In [4], the author has concluded that PSO converges rapidly in the first search process and
then gradually slows down or stagnates. The phenomenon is caused by the loss of diversity in
the swarm. In order to conquer the default, some researchers [7–9] applied the evolutionary
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%SCi denotes the set of the particles of all SCs that particle i is a member of
%fit�p� represents the corresponding fitness value of an array p
(1) Function comprehensive learning ()
(2) For each particle �i � 1 � ps�
(3) For each dimension �k � 1 � n�%n � particle dimension
(4) flag�i, k� � 0
(5) For each particle �j � 1 � ps� %ps-swarm size
(6) If (j is the member in SCi)&&��fit�pi� � fit�pj��/�pik � xik� � flag�i, k��
(7) p�i, k� � �fit�pi� � fit�pj����pik � xik� %pi denotes

any particle’s pbest
(8) xindex � j% the particle ID
(9) EndIf
(10) Next j
(11) pbin�i, k� � xindex% the k dimension exemplar of the particle i
(12) Next k
(13) Output
(14) Next i
(15) Endfunction

Algorithm 1

(1) For i � 1 � ps
(2) If ceil(mci + rand � 1)==1
(3) If rand� pu
(4) pos�i, d� � �1 � rand� � pos�i, d�
(5) Else
(6) pos�i, d� � Gaussian�σ� � pos�i, d�
(7) EndIf
(8) EndIf
(9) End

Algorithm 2

operator to improve the diversity of the swarm. In this paper, we proposed a parallel hybrid
mutation which combines the uniform distribution mutation and the gaussian distribution
mutation. The former prompts a global search in a large range, while the latter searches in a
small range with the high precision. The process of mutation is given as follows.

(i) Give the following expression to set the mutation capability (mci) value for each
particle,

mci � 0.05� 0.45
�exp�5�i � 1�	ps � 1� � 1�

exp�5� � 1
. (3.2)

Figure 4(b) shows an the example of mc assigned for 40 particles. Each particle has
a mutation ability ranging from 0.05 to 0.5.

(ii) Choose the mode of the mutation, as follows in Algorithm 2.
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Figure 4: Mutation capability (Mc) and mutation factors.

Here, pu is called the mutation factor that denotes the ratio of the uniform distribution
mutation and correspondingly, 1 � pu is the ratio of the gaussian distribution mutation. The
Gaussian(σ) returns a random number drawn from a Gaussian distribution with a standard
deviation σ. ceil(p) rounds the elements of p to the nearest integers greater than or equal
to p. Here, three main mutation factors (Linear, Exponential, and Sigmoid defined in (3.3),
(3.4) and (3.5)) are adopted, and their shapes with maximum generation 2000 are shown in
Figure 4(a):

pu�t� � 1 �
t

gen
, (3.3)

pu�t� � 1 � �exp� t log 2
gen

 � 1, (3.4)

f�r, t� � 1
1 � exp��rt� , (3.5)

pu�t� � 1 � f�t � gen
2

, r�, (3.6)

where t denotes the current generation; gen is the maximum generation.
In order to test which mutation factor is appropriate to our algorithm, the following

experiment is conducted. On Sphere, Rosenbrock, Griewanks, Ackley, Rastrigin noncont, and
Rastrigin, HSCPSO with the different mutation factor is run 30 times on each function, and
the iteration is set as 2000. The experimental results are standardized to the same scale with
(3.7). The results are presented in Table 1, where pu represents the type of mutation factor;
Xend is the standardized value after 2000 iterations; Linear represents the linear mutation
factor; Exponent denotes the exponential mutation factor; Sigm is Sigmoid mutation factor;
No denotes no mutation factor. We can observe that HSCPSO with linear mutation factor
achieves the best result, thus the linear mutation factor is adopted in HSCPSO.
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Table 1: Standardized value of different mutation factors.

pu Xend pu Xend pu Xend

Linear 6.7e � 06 Sigm0.1 3.8e � 05 Sigm0.001 5.9e � 04
Exponent 8.9e � 04 Sigm0.01 7.2e � 04 No 6.8e � 03
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Figure 5: Effect of the default social circles on the algorithm.

3.3. HSCPSO’s Parameter Settings and Analysis of the Swarm’s Diversity

In this section, we will discuss four parameters, namely, default social circle level (DSC), the
gap iteration (n) for adjusting DSC, and minimum and maximum of allowed SC number.

3.3.1. Default Social Circle Level (DSC)

In order to explore the different DSC effects on HSCPSO, five ten-dimensional test functions
are used (Sphere, Rosenbrock, Ackley, Griewanks, and Rastrigin functions). When dealing
with experimental data, it is impossible to combine the raw results from the PSOs with
the different DSC for the different functions, as they are scaled differently. Thus, Mendes’s
method [17] is used to deal with the raw results which are standardized to the same scale as
follows:

X �
xij � μij

σij
, (3.7)

where xij , μij , and σij denote the trial results, mean, and standard deviation of the ith test
function in the jth algorithm, respectively. Note that the parameter j represents the algorithms
with the different DSC.

By trial and error, we found that the different DSC yielded the different results as
can be seen in Figure 5(a). As all test functions are the minimization problems, the smaller
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Table 2: Result of t-tests for the paired comparison of the default social circles.

α � 0.05 DSC-15
DSC-2

DSC-15
DSC-4

DSC-15
DSC-6

DSC-15
DSC-10

DSC-15
DSC-20

DSC-15
DSC-50

DSC-15
DSC-70

DSC-15
DSC-90

P -value 0.00314 0.00012 0.00143 0.05912 0.00149 0.00235 0.00438 0.00135
Result 1 1 1 0 1 1 1 1

the standardizing value is, the better the performance works (i.e., the larger the DSC is, the
better the performance goes). However, given a second thought, we found the phenomenon
is not logical because in the real-life people have no enough energy to take part in all
social activities. Therefore, another experiment (the experiment setting and the method of
the data processing are the same as one in Figure 5(a)) is conducted to test the impact of
DSC. Figure 5(b) gives the simulation results, and we found that the smaller the DSC is,
the slower the convergence speed is, and vice versa. The slower convergence rate, rather
than the faster convergence speed, is obviously beneficial to the ability to escape from a local
optimum [4]. Based on the above analysis, the parameter DSC is set as 15 in our algorithm.
Furthermore, in order to ensure the effectiveness of the DSC choice statistically, we adopted
the nonparametric Wilcoxon rank sum tests to determine whether the difference is significant
or not. The criterion is the following:

result �
�������
1 if p � α,

0 if p � α.
(3.8)

If p is less than a, two group numbers are statistically different. If p is equal or greater
than a, it means that two group numbers are not statistically different. From Table 2, we can
observe that the performance of DSC-15 is statistically different from that of the other DSC
values except for DSC-10.

3.3.2. The Gap Iteration (n) for Adjusting DSC

This section mainly discusses the effect of the gap iteration (n) for adjusting DSC on the
algorithm. Six different thirty-dimensional test functions (Sphere, Rosenbrock, Griewanks,
Ackley, Rastrigin noncont, and Rastrigin) are used to investigate the impact of this parameter.
HSCPSO is run 20 times on each function (the iteration of each run is 1000), and the results
are also standardized to the same scale using (3.7). The mean values of the results are plotted
in Figure 6(a). It clearly indicates that the gap iteration n can influence the results. When n is
25, that is about 1/40 of the total iteration, a faster convergence speed and a better result are
obtained on all test functions. Furthermore, the standardizing diversity in Figure 6(b) also
supports the conclusion.

3.3.3. Minimum and Maximum of Allowed SC Number

At each run, the number of the SCs that a particle is a member of is dynamically
changed according to its own performance, which will influence the HSCPSO performance.
Additionally, in PSO, as the first search process for the global best position requires the
exploration of the possible solutions, the LPSO algorithm is chosen in this stage. While the
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Figure 6: Standardizing mean values and diversity with different gap iterations (n).

later search process requires the exploitation of the best found possible solutions by the early
search process, the GPSO algorithm is chosen to meet this requirement. Thus, given the
above characteristics, in our algorithm, we made the minimum and maximum of allowed
SC number dynamically change with the iteration elapsed and empirically proposed (3.9) to
set them, respectively:

fmin � 4 � floor� t

100
� t � 
Maxgen
,

fmax � 30 � floor� t

100
� t � 
Maxgen
,

(3.9)

where the floor operation is round towards minus infinity; t is the iteration counter; 
Maxgen

is the total number of the iteration. Figure 7(a) represents the minimum and maximum of
allowed SC number with the iteration elapsed, respectively, and we can observe that the
dynamic minimum and maximum of allowed SC number (dynamic max-min) improves the
swarm diversity compared with the fixed max-min. Note that the measure method of the
diversity is presented in [20].

3.3.4. Search Bounds Limitation

There are the bounds on the variables’ ranges in many practical problems, and all test
functions used in this paper have the bounds. Thus, in order to make the particles fly within
the search range, some researchers use the equation xi�t� �min�xmax,max�xmin, xi�� to restrict
a particle on the border. Here, a different method, but similar to the above-mentioned one,
is presented; that is, only when a particle is within the search range, we calculate its fitness
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Figure 7: The allowed SC number and the effect on the swarm diversity.

value and update its ����pbin�i� ,
��pg , and

��pi . As all learning exemplars are within the search range,
a particle will eventually return to the search range.

3.3.5. Analysis of Swarm’s Diversity

In order to compare the particle diversity of OPSO with that of HSCPSO, we omit the
previous velocity w �

��vi�t � 1� and make ϕ1 and ϕ2 equal to one. Thus, the following velocity
updating equation is employed in the experiment:

��vi�t��� r1���pi ���xi�t � 1�� � r2���pg ���xi�t � 1��,
��vi�t��� r1���pi ���xi�t � 1�� � r2�����pbin�i� �

��xi�t � 1��. (3.10)

In terms of (3.10), we run HSCPSO and OPSO on Rosenbrock and Rastrigin functions
to analyze the number of the best particle (NBP) at each iteration. Figure 8 gives the
scatter plot about the index of the best performing particles associated with the numbers
of the iteration. For example, a dot (20, 4000) represents that the index 20’s particle has
the best global fitness in the iteration number 4000. The velocity updating strategy of
HSCPSO has more NBP than OPSO, which shows that the strategy of HSCPSO increases
the swarm’s diversity compared with OPSO [16]. The pseudocode of the HSCPSO is shown
in Algorithm 3.

4. Experiment Settings and Results

4.1. Test Functions and Parameter Settings of PSO Variants

To compare with the performance of all algorithms, Sphere, Rosenbrock, Acley, Griewanks,
Rastrigin, and Rastrigin noncont functions are selected to test the convergence characteristics,
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(1) Begin
(2) Initialize particles’ position, velocity, pbesti, gbest and the related parameters
(3) Initialize default social circle of which the particle i is a member
(4) Vmax � 0.25 �Xmax �Xmin�
(5) Initialize pu
(6) while (fitcount �Max FES) && (k � iteration)
(7) For each particle
(8) Locate the best particle position of the SCs that particle i is a member of
(9) Computer pbin�i� in terms of (3.1).
(10) For each dimension
(11) Updating the particles’ velocity and position in terms of (3.1)
(12) If fitness (xi) � fitness (pbesti)
(13) pbesti = xi, pbestvali � fitness�xi�
(14) EndIf
(15) If ceil(mci+ rand � 1)==1
(16) If rand � pu
(17) x�i, d� � �1 � rand��pos�i, d� Else x�i, d� � Gaussian�σ� � pos�i, d�
(18) EndIf
(19) EndIf
(20) Next dimension
(21) Next particle
(22) Update the member of SC in terms of Figure 2(b)
(23) If (mod(k, n)) && (�SCi�� DSC)
(24) Update particle’s DSC level.
(25) EndIf
(26) Update each particle neighbor.
(27) Index = find (pbestvali)//find-a function which finds a particle’s position
(28) If fitness (gbest) �min(pbestvali)
(29) gbestval = pbestvali, gbest � xindex
(30) EndIf
(31) EndWhile
(32) End

Algorithm 3

and Ackley, Rastrigin, Rastrigin-noncont, and Rosenbrock functions are rotated with
Salomon’s algorithm [21] to increase the optimization difficulty and test the algorithm
robustness (here, the predefined threshold is 0.05, 50, 2, and 3 resp.). Table 3 represents the
properties of these functions. Note that in Table 3, the values listed in the search space column
are used to specify the range of the initial random particles’ position; the x� denotes the global
optimum, and the f�x�� is the corresponding fitness value.

In order to make these different algorithms comparable, the population size is set at
30 for all PSOs, and each test function is run 30 times. At each run, the maximum fitness
evaluation (FEs) is set at 3 � 104 for the unrotated test functions and 6 � 104 for the rotated.
The comparative algorithms and their parameters settings are listed as below.

(i) Local version PSO with constriction factor (CF-LPSO) [3],

(ii) Global version PSO with constriction factor (CF-GPSO) [3],

(iii) Fitness-distance-ratio-based PSO (FDR-PSO) [13],

(iv) Fully informed particle swarm optimization (FIPS) [17],
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Figure 8: The best particle in the swarm with iteration elapsed.

(v) Cooperative particle swarm optimization (CPSO-Hk) [18],

(vi) Comprehensive learning particle swarm optimizer (CLPSO) [12].

The fully informed PSO (FIPS) with a U-ring topology that achieved the highest
success rate was used. CPSO-Hk is a cooperative PSO model combined with the standard
PSO, in which k � 6 is used in this paper. ϕ1 = 1.492, ϕ2 = 1.492, and w � 0.729 are used in all
PSOs except HSCPSO.

4.2. Fixed Iteration Results and Analysis

Tables 4 and 5 present the means and 95% confidence interval after 3 � 104 and 6 � 104

function evaluations. The best results among seven PSO algorithms are presented in bold.
In addition, to determine whether the result obtained by HSCPSO is statistically different
from the results of the other six PSO variants, the Wilcoxon rank sum tests are conducted
between the HSCPSO result and the best result achieved by the other five PSO variants on
each test problem, and the test results are presented in the last row of Tables 4 and 5. Note that
an h value of one implies that the performance of the two algorithms is statistically different
with 95% certainty, whereas h value of zero indicates that the performance is not statistically
different. Figures 9 and 10 present the convergence characteristics in terms of the best fitness
value of the median run of each algorithm for each test function.
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Table 4:Means after 3 � 104 function evaluations for the unrotated test functions.

Algorithm f1 f2 f3 f4 f5 f6

CF-LPSO 4.1167e � 045 2.5761e � 001 3.5339e � 004 1.2321e � 002 4.2783e � 001 7.0021e � 000
� 2.340e � 045 � 3.1156e � 001 � 6.1254e � 004 � 6.2135e � 002 � 3.5631e � 001 � 1.2031e � 000

CF-GPSO 7.1619e � 072 2.2596e � 001 1.3404e � 000 7.7928e � 001 4.5768e � 001 5.0004e � 000
� 1.342e � 072 � 4.7652e � 001 � 7.8543e � 000 � 3.7452e � 001 � 6.3256e � 001 � 2.0128e � 000

FDR-PSO 4.2434e � 021 2.5387e � 001 3.6685e � 008 5.1549e � 002 4.7758e � 001 3.0011e � 000
� 1.096e � 021 � 2.0341e � 001 � 5.3412e � 008 � 7.1321e � 002 � 3.6134e � 001 � 3.2863e � 000

FIPS 2.6302e � 013 2.9948e � 001 1.8719e � 000 1.0885e � 000 1.4509e � 002 6.9801e � 000
� 2.431e � 013 � 2.0987e � 001 � 6.9432e � 000 � 4.8312e � 000 � 2.6753e � 002 � 2.1109e � 000

CPSO 3.6684e � 006 6.3901e � 000 3.6273e � 002 8.0047e � 002 3.3829e � 001 3.0242e � 000
� 3.1233e � 006 � 1.0245e � 000 � 2.8965e � 002 � 3.8901e � 002 � 2.7953e � 001 � 1.9023e � 000

CLPSO 8.2953e � 013 7.2600e � 001 1.5160e � 000 1.1316e � 002 1.2702e � 001 8.1642e � 003
� 2.6712e � 013 � 2.1456e � 001 � 1.1463e � 000 � 1.0932e � 002 � 1.6954e � 001 � 3.9206e � 003

HSCPSO 2.3335e � 012 2.4682e � 001 1.3323e � 014 7.3275e � 015 7.2479e � 003 1.3488e � 005
� 3.9123e � 012 � 1.6324e � 001 � 7.9854e � 014 � 3.0451e � 015 � 3.4521e � 003 � 1.0028e � 005

Result 0 1 1 1 1 1

Table 5:Means after 6 � 104 function evaluations for the rotated test functions.

Algorithm f 7 f 8 f 9 f 10

CF-LPSO 9.0528e � 000� 9.3130e � 001� 4.5769e � 001� 3.7000e � 001�
1.2314e � 000 2.1345e � 001 2.7804e � 001 2.1456e � 001

CF-GPSO 3.4452e � 000� 3.3445e � 000� 1.1243e � 002� 8.7012e � 001�
2.1423e � 000 6.4321e � 000 2.0041e � 002 2.0098e � 001

FDR-PSO 4.4461e � 000� 2.4083e � 000� 8.0591e � 001� 6.1231e � 001�
3.5623e � 000 3.7854e � 000 3.0971e � 001 3.0981e � 001

FIPS 1.1432e � 001� 2.2201e � 000� 1.2506e � 002� 1.3650e � 002�
4.6785e � 001 9.1232e � 000 6.3210e � 002 2.0981e � 002

CPSO 1.4112e � 001� 1.7780e � 000� 1.0149e � 002� 9.400e � 001�
3.5621e � 001 1.4563e � 000 2.0012e � 002 4.0561e � 001

CLPSO 5.2190e � 001� 4.6109e � 004� 4.9697e � 001� 5.4287e � 001�
3.4512e � 001 7.5431e � 004 5.7821e � 001 1.0975e � 001

HSCPSO 3.3121e � 000� 1.1219e � 003� 3.5824e � 001� 1.7903e � 001�
2.1457e � 000 3.8712e � 003 6.1023e � 001 1.3294e � 001

Result 0 0 1 1

From the above experimental results, we can observe that Sphere function is easily
optimized by CF-GPSO and CF-LPSO, while the other five algorithms show the slower
convergence speed. Rosenbrock function has a narrow valley from the perceived local
optima to the global optimum. In the unrotated case, HSCPSO may avoid the premature
convergence. Note that in the rotated case, there is little effect on all algorithms.

There aremany local minima positioned in a regular grid on the multimodal Ackley. In
the unrotated case, HSCPSO takes the lead, and the FDR-PSO performs better than the other
five PSO variants. In the rotated case, the FDR-PSO algorithm is trapped in local optima
early on, whereas CLPSO and HSCPSO belong to the performance leaders. As a result of the
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Figure 9: Convergence characteristics of the unrotated test functions. (a) Sphere; (b) Rosenbrock; (c)
Ackley; (d) Griekwanks; (e) Rastrigin; (f) Rastrigin-noncont.
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Table 6: Robustness analysis after 3 � 104 function evaluations for the unrotated test functions.

Algorithm
f 2 f 3 f 5 f 6

FES Success
rate (%) FES Success

rate (%) FES Success
rate (%) FES Success

rate (%)

CF-LPSO 4240 100 21081 100 13145 31 13982 42
CF-GPSO 2196 100 20080 70 5400 20 10273 41
FDR-PSO 3803 100 19761 100 13674 100 9023 69
FIPS 12398 100 19832 90 13654 94 8419 74
CPSO 4635 100 19325 100 919 100 24294 85
CLPSO 4240 100 19034 95 21603 100 25832 100
HSCPSO 299 100 1023 100 784 100 16397 100

Table 7: Robustness analysis after 6 � 104 function evaluations for the rotated test functions.

Algorithm
f 7 f 8 f 9 f 10

FES Success
rate (%) FES Success

rate (%) FES Success
rate (%) FES Success

rate (%)

CF-LPSO 4270 20 2670 26 12137 22 4325 100
CF-GPSO 3331 19 3200 20 6203 26 4200 100
FDR-PSO 15525 45 1980 90 23985 42 13709 100
FIPS 10642 90 3100 95 38124 45 14000 100
CPSO 2474 90 3560 75 24284 39 12800 100
CLPSO 16481 100 2578 100 32193 95 25682 100
HSCPSO 1631 100 1800 100 1328 100 10000 100

comprehensive learning strategy in CLPSO, it can discourage premature convergence. At the
same time, this learning strategy of HSCPSO can also ensure the diversity of the swarm to be
preserved to discourage the premature convergence.

Rastrigin function exhibits a pattern similar to that observed with Ackley function.
In the unrotated case, HSCPSO performs very well, but its performance rapidly deteriorates
when the search space is rotated. In the rotated case, CLPSO takes the lead. Note that CLPSO
is still able to improve the performance in the rotated case.

On the unrotated Rastrigin-noncont function, HSCPSO presents an excellent perfor-
mance compared with other algorithms, and after 2.6 � 104 function evaluation CLPSO has
the strongest ability to escape from local optima. In the unrotated case, all algorithms quickly
get trapped in a local minimum besides CLPSO and HSCPSO. These two algorithms can
avoid the premature convergence and escape from local minima.

Altogether, according to Wilcoxon rank sum tests, we can observe that the HSCPSO
algorithm can perform better than the other six algorithms on functions f2, f3, f4, f5, f6, f9,
and f10. Although HSCPSO has no best performance in f7 and f8, it shows almost the same
convergence character as one of CLPSO.

4.3. Robustness Analysis

Tables 6 and 7 show the results of the robustness analysis. Here, the “robustness” is used to
test the stability of the algorithm optimization ability in different conditions (the rotated and



Discrete Dynamics in Nature and Society 19

102

101

100

10−1

10−2

10−3

10−4

0 1 2 3 4 5 6
×104

M
ea

n 
fu

nc
ti

on
 v

al
ue

Fitness evaluation

(a)

103

102

101

0 1 2 3 4 5 6
×104

Fitness evaluation

M
ea

n 
fu

nc
ti

on
 v

al
ue

(b)

103

102

101

0 1 2 3 4 5 6
×104

Fitness evaluation

M
ea

n 
fu

nc
ti

on
 v

al
ue

FIPS

CPSO
CLPSO
HSCPSO

CF-LPSO
CF-GPSO
FDR-PSO

(c)

0 1 2 3 4 5 6
×104

Fitness evaluation

102

101

M
ea

n 
fu

nc
ti

on
 v

al
ue

100

10−1

FIPS

CPSO
CLPSO
HSCPSO

CF-LPSO
CF-GPSO
FDR-PSO

(d)

Figure 10: Convergence characteristics of the rotated test functions. (a) Ackley; (b) Rastrigin; (c)
Rastrigin noncont; (d) Rosenbrock.

unrotated test functions) by a certain criterion. In HSCPSO, the criterion is that the algorithm
succeeded in the ability of reaching a specified threshold. A robust algorithm is the one that
manages to reach the threshold consistently whether in the rotated or the unrotated. The
“Success rate” column lists the rate of algorithm reaching threshold in 60 times run. The
“FES” column means the number of the function evaluations when reaching the threshold,
and only the dates of the successful runs are used to compute “Success rate.”

As can be seen in Tables 6 and 7, none of all PSOs had any difficulty in reaching
the threshold on the Rosenbrock function during 30 runs in any case. CF-GPSO has some
difficulties in the unrotated and the rotated Ackley function, but CF-LPSO reaches the
threshold on the unrotated Ackley. FDR-PSO and CPSO failed on the rotated Ackley function,
but in the unrotated case, they consistently reached the threshold. The FIPS completely failed
in both the unrotated and the rotated cases. It is interesting to note that CLPSO reached the
threshold during all the runs on the rotated Ackley function. However, in the unrotated case,
it did not get a perfect success rate. Only HSCPSO consistently reached the threshold in both
the unrotated and rotated cases.
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The Rastrigin-noncont function is hard to be solved for the majority algorithms, as
can be seen in Tables 6 and 7. CLPSO and HSCPSO consistently reached the threshold in the
unrotated case, while in the rotated case, only HSCPSO could achieve a perfect success rate.

On Rastrigin function, HSCPSO and CLPSO consistently reached the threshold on
both the unrotated and the rotated cases. CPSO and FDR-PSO reached the threshold in the
unrotated case, but they failed in the rotated case. CF-LPSO, FIPS, and CF-GPSO algorithms
had some difficulties in both the unrotated and the rotated cases.

Altogether, on Rosenbrock, Ackley, Rastrigin, and Rastrigin-noncont functions,
HSCPSO shows the stability of the optimization ability in the different conditions. CLPSO,
FDR, CPSO, and FIPS consistently reached the threshold on most of test functions, and they
were slightly less robust. CF-LPSO and CF-GPSO seemed to be unreliable on the multimodal
benchmark functions.

5. Conclusions and Future Works

This paper proposed an improved PSO based on the simulation of the human social behavior
(HSCPSO for short)where each particle can adjust its learning strategy in terms of the current
condition self-adaptively. From the convergence character and the robustness analysis, we
can conclude that HSCPSO significantly improves the ability to solve the complicated
multimodal problems compared with the other PSO versions. In addition, from Wilcoxon
rank sum tests, these results achieved by HSCPSO are statistically different from the second
best result. Although the HSCPSO algorithm outperformed the other PSO variants on most
of the test functions evaluated in this paper, it can be regarded as an effective improvement
in the PSO domain.

In the future, we will focus on (i) constructing the model for solving the relevant
parameters of PSO, (ii) testing the proposed algorithm effectiveness with more multimodal
test problems and several composition functions that are more difficult to be optimized, (iii)
applying the proposed algorithm to some practices to verify its effectiveness, and (iv) in the
future this proposed algorithm will be tested on CEC 2005 problems.
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