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We investigate value distribution and uniqueness problems of meromorphic functions with
their q-shift. We obtain that if f is a transcendental meromorphic (or entire) function of zero
order, and Q(z) is a polynomial, then afn(qz) + f(z) − Q(z) has infinitely many zeros, where
q ∈ C \ {0}, a is nonzero constant, and n ≥ 5 (or n ≥ 3). We also obtain that zero-order
meromorphic function share is three distinct values IM with its q-difference polynomial P(f), and
if lim supr→∞(N(r, f)/T(r, f)) < 1, then f ≡ P(f).

1. Introduction and Main Results

A function f(z) is called meromorphic function if it is analytic in the complex plane
except at isolated poles. It is assumed that the reader is familiar with the standard symbols
and fundamental results of Nevanlinna theory such as the characteristic function T(r, f),
proximity function m(r, f), and the counting function N(r, f), see [1–3]. Let us recall the
definition of the order and the zeros exponent convergence of function f . The order of
meromorphic function f is said by

ρ
(
f
)
= lim sup

r→∞

log T
(
r, f

)

log r
. (1.1)
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The zeros of exponent convergence of meromorphic function f is said by

λ
(
f
)
= lim sup

r→∞

logN
(
r, f

)

log r
. (1.2)

In 1959, Hayman proved the following Theorems.

Theorem A (see [4], Theorem 8). Let f be a transcendental entire function, and let n ≥ 3 be an
integer and a be a nonzero constant. Then f ′(z) − af(z) assumes all finite values infinitely often.

Theorem B (see [4], Theorem 9). Let f be a transcendental meromorphic function, and let n ≥ 5 be
an integer and a be a nonzero constant. Then f ′(z) − af(z) assumes all finite values infinitely often.

Recently the difference variant of the Nevanlinna theory has been established
independently in [5, 6]. Using these theories, value distribution theory uniqueness theory
of difference polynomials of finite order transcendental meromorphic functions has been
studied as well. We recall the following result by Liu and Laine.

Theorem C (see [7], Theorem 1.1). Let f be a transcendental entire function of finite order not
of period c, where c is a nonzero constant, and let s(z) be a nonzero small function of f . Then the
difference polynomial fn(z) + f(z + c) − f(z) − s(z) has infinitely many zeros in the complex plane
provided that n ≥ 3.

In 2010, Chen considered the difference counterpart of Hayman’s theorem and porved
an almost direct difference analogue of Hayman’s theorem.

Theorem D (see [8], Theorem 1.1). Let f be a transcendental entire function of finite order not of
period c, and let a(/= 0), b, c(/= 0) be three complex numbers. ThenΨn(z) = f(z+ c)− f(z)−afn(z)
assumes all finite values infinitely often, provided that n ≥ 3 and for every b one has λ(Ψn(z) − b) =
ρ(f).

In this paper, we consider the value distribution of zero-order meromorphic functions
with their q-shirt and prove the following results.

Theorem 1.1. Let f be a transcendental meromorphic function of zero order, and let Q(z) be a
polynomial. If n is an integer and n ≥ 4, then afn(qz) + f(z) − Q(z) has infinitely many zeros,
where q ∈ C \ {0} and a is nonzero constant.

Theorem 1.2. Let f be a transcendental entire function of zero order, and letQ(z) be a polynomial. If
n is an integer and n ≥ 3, then afn(qz) + f(z) −Q(z) has infinitely many zeros, where q ∈ C \ {0},
and a is nonzero constant.

It is well known that two meromorphic functions must be equal, if they share
five distinct values. Recently, Heittokangas et al. research the uniqueness of meromorphic
functions with their shifts in [6]. They got that if f(z) and f(z+ c) share three distinct values,
where f(z) is finite order, then f(z) = f(z + c). In this paper, we want to get some results on
uniqueness of f(z) and f(qz), where f(z) is zero order and q ∈ C \ {0, 1}. Let us recall the
notation of q-difference which is written by ∇q = f(qz) − f(z).
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Theorem 1.3. Let f be a meromorphic function of zero order, let q ∈ C \ {0, 1}, and let a1, a2, a3 ∈ C

be three distinct values.

(a) If f(z) and f(qz) share a1, a2, a3 CM, then f(z) = f(qz) for all z ∈ C.

(b) If f(z) and f(qz) share a1, a2 CM, and if

Lim sup
r→∞

N
(
r, f

)

T
(
r, f

) < 1, (1.3)

then f(z) = f(qz) for all z ∈ C.

Corollary 1.4. Let f be an entire function of zero order, let q ∈ C \ {0, 1}, and let a1, a2 ∈ C be two
distinct values.

(a) If f(z) and f(qz) share a1, a2 CM, then f(z) = f(qz) for all z ∈ C.

(b) If f(z) and f(qz) share a1 CM, and if

lim sup
r→∞

N
(
r, f

)

T
(
r, f

) < 1, (1.4)

then f(z) = f(qz) for all z ∈ C.

Corollary 1.5. Let f be a meromorphic function of zero order, and let q ∈ C \ {0, 1}. If f(z) and
f(qz) share ∞ CM and a constant a ∈ C CM, and if there exists a constant b ∈ C \ {a} such that

lim sup
r→∞

N
(
r, 1/

(
f − b

))

T
(
r, f

) < 1, (1.5)

then f(z) = f(qz) for all z ∈ C.

Theorem 1.6. Let f be a meromorphic function of zero order, let q ∈ C \ {0, 1}, and let

P
(
f
)
= bk(z)f

(
qkz

)
+ · · · + b1(z)f

(
qz

)
+ b0(z)f(z), (1.6)

where bk, . . . , b0 are constants. Let n ∈ {1, . . . , k + 1} be the number of nonzero coefficients of the
q-difference polynomial P(f) − f . If f and P(f) share three distinct finite values a1, a2, a3 IM, and if

lim sup
r→∞

N
(
r, f

)

T
(
r, f

) < 1, (1.7)

then f ≡ P(f).
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Corollary 1.7. Let f be a meromorphic function of zero order, let q ∈ C\{0, 1}, and let a1, a2, a3 ∈ C

be three distinct finite values.

(a) If f(z) and f(qz) share a1, a2, a3 IM, and if

lim sup
r→∞

N
(
r, f

)

T
(
r, f

) <
1
2
, (1.8)

then f(z) = f(qz) for all z ∈ C.

(b) If f(z) and f(qz) share ∞ IM and two constants a1, a2 ∈ C IM, and if there exists a
constant b ∈ C \ {a1, a2} such that

lim sup
r→∞

N
(
r, 1/

(
f − b

))

T
(
r, f

) <
1
2
, (1.9)

then f(z) = f(qz) for all z ∈ C.

Corollary 1.8. Let f be an entire function of zero order, let q ∈ C \ {0, 1}, and let a1, a2, a3 ∈ C be
three distinct finite values.

(a) If f(z) and f(qz) share a1, a2, a3 IM, then f(z) = f(qz) for all z ∈ C.

(b) If f(z) and f(qz) share a1, a2 ∈ C IM, and if there exists a constant b ∈ C \ {a1, a2} such
that

lim sup
r→∞

N
(
r, 1/

(
f − b

))

T
(
r, f

) <
1
2
, (1.10)

then f(z) = f(qz) for all z ∈ C.

2. Auxiliary Results

The following auxiliary results will be instrumental in proving the theorems.

Lemma 2.1 (see [9], Theorem 1.2). Let f(z) be a nonconstant zero-order meromorphic function,
and q ∈ C \ {0}. Then

m

(

r,
f
(
qz

)

f(z)

)

= Sq

(
r, f

)
. (2.1)

Lemma 2.2 (see [9], Theorem 3.1). Let f be a non-constant meromorphic functions of zero order,
let q ∈ C \ {0, 1}, and let a1, . . . , ap ∈ C, where p ≥ 2, be distinct points. Then

m
(
r, f

)
+

p∑

k=1

m

(
r,

1
f − ak

)
≤ 2T

(
r, f

) −Npair
(
r, f

)
+ Sq

(
r, f

)
, (2.2)
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where

Npair
(
r, f

)
:= 2N

(
r, f

) −N
(
r,∇qf

)
+N

(

r,
1

∇qf

)

. (2.3)

Lemma 2.3 (see [10], Theorem 1.1). Let f(z) be a non-constant zero-order meromorphic function,
and q ∈ C \ {0}. Then

T
(
r, f

(
qz

))
= T

(
r, f

)
+ Sq

(
r, f

)
. (2.4)

Lemma 2.4 (see [10], Theorem 1.3). Let f(z) be a non-constant zero-order meromorphic function,
and q ∈ C \ {0}. Then

N
(
r, f

(
qz

))
= N

(
r, f

)
+ Sq

(
r, f

)
. (2.5)

Lemma 2.5 (see [11], Lemma4). If T : R
+ → R

+ is a piecewise continuous increasing function
such that

lim
r→∞

log T(r)
log r

= 0, (2.6)

then the set

E := {r : T(C1r) ≥ C2T(r)} (2.7)

has logarithmic density 0 for all C1 > 1 and C2 > 1.

3. Proof of Theorem 1.1

Let us put

Ψ(z) := afn(qz
)
+ f(z) −Q(z). (3.1)

Hence, Ψ(z) is not a constant identity. If not, let us suppose that Ψ(z) ≡ c, where c is a
constant, and then

afn(qz
) ≡ Q(z) + c − f(z), (3.2)

which give us

nT
(
r, f

(
qz

))
= T

(
r, f

)
+O

(
log r

)
. (3.3)
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By using Lemma 2.3, we have n ≤ 1, which contradicts the assumption n ≥ 5. Hence
Ψ(z)/≡ c. By taking logarithmic derivative on two sides of (3.1), we have

Ψ′(z)
Ψ(z)

=

(
afn(qz) + f(z) −Q(z)

)′

afn
(
qz

)
+ f(z) −Q(z)

. (3.4)

If

(
fn

(
qz

))′

fn
(
qz

) − Ψ′(z)
Ψ(z)

≡ 0, (3.5)

then by integrating two sides of which, we have Ψ(z) = bfn(qz), where b is a nonzero
constant, and hence

(b − a)fn(qz
)
= f(z) −Q(z). (3.6)

If b = a, then f(z) = Q(z), which is contradiction with f(z), is transcendental function. If
b /=a, then Lemma 2.3 implies that n = 1, which is impossible. Therefore, we can write (3.4)
as

afn(qz
)
=

(Ψ′(z)/Ψ(z))
(
f(z) −Q(z)

) − (
f(z) −Q(z)

)′
(
fn

(
qz

))′
/fn

(
qz

) −Ψ′(z)/Ψ(z)
. (3.7)

Let us put

Ψ1(z) :=
Ψ′(z)
Ψ(z)

(
f(z) −Q(z)

) − (
f(z) −Q(z)

)′
. (3.8)

Now we consider the poles of Ψ1(z). The poles of Ψ1(z) come from the zeros of Ψ(z)
and the poles of f(qz), f(z), and Q(z). If z0 is a zero of Ψ(z) or a pole of f(qz), but not a
pole of f(z), then z0 is a simple pole of Ψ(z). If z0 is a common pole of f(qz) and f(z) with
multiplicities of k and l, respectively, then z0 is a pole ofΨ1(z)with multiplicity no more than
l + 1. If z0 is a pole of f(z) but not a pole of f(qz), we obtain that z0 is at most a simple pole
of Ψ1(z) by using (3.7). Hence, Lemma 2.5 implies that

N(r,Ψ1) ≤ N

(
r,

1
Ψ

)
+N

(
r, f

(
qz

))
+N

(
r, f(z)

)
+O

(
log r

)

≤ N

(
r,

1
Ψ

)
+N

(
r, f

)
+N

(
r, f(z)

)
+ Sq

(
r, f

)
.

(3.9)

Let us put

Ψ2(z) :=

(
fn(qz)

)′

fn
(
qz

) − Ψ′(z)
Ψ(z)

. (3.10)
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Now, let us consider the pole of Ψ2(z). The poles of Ψ2(z) come from the poles of
f(qz) and f(z) and the zeros of f(qz) and Ψ(z). If z0 is a zero of Ψ(z), zero of f(qz), or pole
of f(z), then z0 is a simple pole of Ψ2(z). If z0 is a pole of f(qz) but not a pole of f(z), by
using Laurent series, we obtain that Ψ2(z) is analytic at z0. Therefore, we have

N(r,Ψ2) ≤ N

(
r,

1
Ψ

)
+N

(

r,
1

f
(
qz

)

)

+N
(
r, f(z)

)
+O

(
log r

)

≤ N

(
r,

1
Ψ

)
+N

(
r,

1
f(z)

)
+N

(
r, f(z)

)
+ Sq

(
r, f

)
,

(3.11)

according to Lemma 2.5. In the coming (3.7) and Lemma 2.1, it implies that

nT
(
r, f

)
= T

(
r, afn(qz

))
+ Sq

(
r, f

)
= T

(
r,
Ψ1

Ψ2

)
+ Sq

(
r, f

)

≤ m(r,Ψ1) +m(r,Ψ2) +N(r,Ψ1) +N(r,Ψ2) + Sq

(
r, f

)

≤ m
(
r, f

)
+m

(

r,
Ψ′

Ψ
−
(
f −Q

)′

f −Q

)

+m(r,Ψ2) +N(r,Ψ1)

+N(r,Ψ2) + Sq

(
r, f

)

≤ 2N
(
r,

1
Ψ

)
+N

(
r,

1
f

)
+N

(
r, f(z)

)
+ 2N

(
r, f

)

+m
(
r, f

)
+ Sq

(
r, f

)
.

(3.12)

Therefore, we have

(n − 3)T
(
r, f

) ≤ 2N
(
r,

1
Ψ

)
+ Sq

(
r, f

)
, (3.13)

which shows that afn(qz) + f(z) −Q(z) has infinite zeros by n ≥ 4.

4. Proof of Theorem 1.2

In the same manner as in the proof of Theorem 1.1, we have (3.1)–(3.7), noting that

Ψ1(z) :=
Ψ′(z)
Ψ(z)

(
f(z) −Q(z)

) − (
f(z) −Q(z)

)′
. (4.1)

Now consider the poles of Ψ1(z). The poles of Ψ1(z) come from the zeros of Ψ(z) and
the poles of Q(z). If z0 is a zero of Ψ(z), then z0 is a simple pole of Ψ(z). Hence, Lemma 2.4
implies that

N(r,Ψ1) ≤ N

(
r,

1
Ψ

)
+O

(
log r

) ≤ N

(
r,

1
Ψ

)
+ Sq

(
r, f

)
. (4.2)
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Let us put

Ψ2(z) :=

(
fn

(
qz

))′

fn
(
qz

) − Ψ′(z)
Ψ(z)

. (4.3)

Now, let us consider the pole ofΨ2(z). The poles ofΨ2(z) come from the poles ofQ(z)
and the zeros of f(qz) and Ψ(z). If z0 is a zero of Ψ(z), zero of f(qz), then z0 is a simple pole
of Ψ2(z). Therefore, we have

N(r,Ψ2) ≤ N

(
r,

1
Ψ

)
+N

(

r,
1

f
(
qz

)

)

+O
(
log r

)

≤ N

(
r,

1
Ψ

)
+N

(
r,

1
f(z)

)
+ Sq

(
r, f

)
,

(4.4)

according to Lemma 2.5. In the coming (3.7) and Lemma 2.1, it implies that

nT
(
r, f

)
= T

(
r, afn(qz

))
+ Sq

(
r, f

)
= T

(
r,
Ψ1

Ψ2

)
+ Sq

(
r, f

)

≤ m(r,Ψ1) +m(r,Ψ2) +N(r,Ψ1) +N(r,Ψ2) + Sq

(
r, f

)

≤ m
(
r, f

)
+m

(

r,
Ψ′

Ψ
−
(
f −Q

)′

f −Q

)

+m(r,Ψ2) +N(r,Ψ1)

+N(r,Ψ2) + Sq

(
r, f

)

≤ 2N
(
r,

1
Ψ

)
+N

(
r,

1
f

)
+m

(
r, f

)
+ Sq

(
r, f

)
.

(4.5)

Therefore, we have

(n − 2)T
(
r, f

) ≤ 2N
(
r,

1
Ψ

)
+ Sq

(
r, f

)
, (4.6)

which shows that afn(qz) + f(z) −Q(z) has infinite zeros by n ≥ 3.

5. Proof of Theorem 1.3

(a) Suppose first that a1, a2, a3 are three distinct values, and assume conversely to the
assertion that ∇q /≡ 0. Then Lemma 2.2 yields

3∑

k=1

m

(
r,

1
f − ak

)
≤ 2T

(
r, f

)
+N

(
r,∇qf

) − 2N
(
r, f

) −N

(

r,
1

∇qf

)

+ Sq

(
r, f

)
(5.1)
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and so

T
(
r, f

) ≤
3∑

k=1

N

(
r,

1
f − ak

)
+N

(
r, f

(
qz

)) −N
(
r, f

) −N

(

r,
1

∇qf

)

. (5.2)

Since f(z) and f(qz) share a1, a2, and a3 CM, it follows that

3∑

k=1

N

(
r,

1
f − ak

)
≤ N

(

r,
1

∇qf

)

(5.3)

In addition, since f is zero-order meromorphic function, from Lemma 2.4, Lemma 2.5
and equations (5.2) and (5.3), we have

T
(
r, f

)
= Sq

(
r, f

)
(5.4)

which is impossible. This contradiction is only avoided when ∇qf ≡ 0.
Suppose that a3 = ∞ while a1 and a2 are distinct finite values. Similarly as above,

f(z) = f(qz) can be obtained. Therefore, f(z) = f(qz) for all z ∈ C.
(b) Assume that ∇qf /≡ 0. Similarly as above, Lemma 2.2 yields

m
(
r, f

)
+

2∑

k=1

m

(
r,

1
f − ak

)
≤ 2T

(
r, f

)
+N

(
r,∇qf

)

− 2N
(
r, f

) −N

(

r,
1

∇qf

)

+ Sq

(
r, f

)
,

(5.5)

and therefore m(r, f) = Sq(r, f). This together with the condition results in a contradiction.
Hence ∇qf /≡ 0.

6. Proof of Theorem 1.6

Assume on the contrary to the assertion that f /≡P(f). In what follows, ε > 0 is small enough
and R > 0 is large enough. From the condition, we have

N
(
r, f

) ≤ 1 − 2ε
n

T
(
r, f

)
, r ≥ R, (6.1)
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and this together with Lemma 2.4 and Lemma 2.1 gives

N

(

r,
1

P
(
f
) − f

)

≤ T
(
r, P

(
f
) − f

)
+O(1)

≤ m
(
r, P

(
f
) − f

)
+N

(
r, P

(
f
) − f

)
+O(1)

= m

(

r, f

(
P
(
f
)

f
− 1

))

+ nN
(
r, f

)
+ Sq

(
r, f

)

≤ T
(
r, f

)
+ (n − 1)N

(
r, f

)
+ Sq

(
r, f

)
, r ≥ R.

(6.2)

Therefore, by the sharing assumption,

3∑

j=1

N

(

r,
1

f − aj

)

≤ N

(

r,
1

P
(
f
) − f

)

≤ T
(
r, f

)
+ (n − 1)N

(
r, f

)
+ Sq

(
r, f

)
, r ≥ R

(6.3)

from above, it follows that

(2 − ε)T
(
r, f

) ≤ N
(
r, f

)
+

3∑

j=1

N

(

r,
1

f − aj

)

≤ (2 − 2ε)T
(
r, f

)
+ Sq

(
r, f

)
,

(6.4)

which is impossible. This contradiction yields f ≡ P(f).
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