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We solve the bi-additive functional equation f(x + y, z −w) + f(x − y, z +w) = 2f(x, z) − 2f(y,w)
and prove that every biadditive Borel function is bilinear. And we investigate the stability of a
biadditive functional equation in Banach modules over a unital C�-algebra.

1. Introduction

In 1940, Ulam proposed the stability problem (see [1]).
Let G1 be a group, and let G2 be a metric group with the metric d(·, ·). Given ε >

0, does there exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality
d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1 then there is a homomorphism H : G1 → G2 with
d(h(x),H(x)) < ε for all x ∈ G1?

In 1941, this problem was solved by Hyers [2] in the case of Banach space. Thereafter,
many authors investigated solutions or stability of various functional equations (see [3–21]).

Let X and Y be real or complex vector spaces. In 1989, Aczél and Dhombres [22]
proved that a mapping g : X → Y satisfies the quadratic functional equation

g
(
x + y

)
+ g
(
x − y) = 2g(x) + 2g

(
y
)

(1.1)

if and only if there exists a symmetric bi-additive mapping S : X × X → Y such that g(x) =
S(x, x), where

S
(
x, y
)
:=

1
4
[
g
(
x + y

) − g(x − y)] (1.2)
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for all x, y ∈ X. For a mapping f : X ×X → Y , consider the bi-additive functional equation:

f
(
x + y, z −w) + f(x − y, z +w) = 2f(x, z) − 2f

(
y,w

)
. (1.3)

For a mapping g : X → Y satisfying (1.1), the Aczél’s bi-additive mapping S : X × X → Y
given by (1.2) is a solution of (1.3).

In this paper, we find out the general solution of the bi-additive functional equation
(1.3) and investigate the linearity of bi-additive Borel functions. And we investigate the
stability of (1.3) in Banach modules over a unital C�-algebra.

2. Solution of the bi-additive Functional Equation (1.3)

The general solution of the bi-additive functional equation (1.3) is as follows.

Theorem 2.1. A mapping f : X ×X → Y satisfies (1.3) if and only if the mapping f is bi-additive.

Proof. Assume that the mapping f satisfies (1.3). Letting x = y = z = w = 0 in (1.3), we gain
f(0, 0) = 0. Putting w = z in (1.3), we get

f
(
x + y, 0

)
+ f
(
x − y, 2z) = 2f(x, z) − 2f

(
y, z
)

(2.1)

for all x, y, z ∈ X. Setting y = x in (2.1), we have

f(x, 0) = −f(0, z) (2.2)

for all x, z ∈ X. Taking z = 0 (resp., x = 0) in the above equation, we obtain

f(x, 0) = 0
(
resp., f(0, z) = 0

)
(2.3)

for all x ∈ X (resp., for all z ∈ X). Letting x = w = 0 in (1.3) and using (2.3), we gain

f
(−y, z) = −f(y, z) (2.4)

for all y, z ∈ X. Putting y = 0 in (2.1) and using (2.3), we get

f(x, 2z) = 2f(x, z) (2.5)

for all x, z ∈ X. Replacing y by −y in (2.1) and using (2.3), (2.4), and (2.5) and the above
equation, we see that f(x + y, z) = f(x, z) + f(y, z) for all x, y, z ∈ X.

On the other hand, letting y = x in (1.3) and using (2.3), we gain

f(2x, z −w) = 2f(x, z) − 2f(x,w) (2.6)
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for all x, z,w ∈ X. Putting y = z = 0 in (1.3) and using (2.3), we get

f(x,−w) = −f(x,w) (2.7)

for all x,w ∈ X. Setting w = 0 in (2.6) and using (2.3), we have

f(2x, z) = 2f(x, z) (2.8)

for all x, z ∈ X. Replacing w by −w in (2.6) and using (2.7) and (2.8), we obtain that f(x, z +
w) = f(x, z) + f(x,w) for all x, z,w ∈ X.

The converse is trivial.

The bi-additive functional equation (1.3) is related to the quadratic functional equation
(1.1).

If f : X × X → Y is a mapping satisfying (1.3) and g : X → Y is the mapping given
by g(x) := f(x, x) for all x ∈ X, then one can easily obtain that g satisfies (1.1).

Let a ∈ R and g : X → Y be a mapping satisfying (1.1). If f : X × X → Y is the
mapping given by f(x, y) := (a/4)[g(x + y) − g(x − y)] for all x, y ∈ X, then one can easily
prove that f satisfies (1.3). Furthermore, g(x) = f(x, x) holds for all x ∈ X if a = 1.

The following is a result on bi-additive Borel functions.

Theorem 2.2. Let ψ : R×R → R be a bi-additive Borel function; then it is bilinear, that is, it satisfies
ψ(s, t) = stψ(1, 1) for all s, t ∈ R.

Proof. Since the function ψ is bi-additive, we gain

ψ
(
pu, qv

)
= pqψ(u, v) (2.9)

for all p, q ∈ Q and all u, v ∈ R. Letting p = v = 1 in equality (2.9), we get

ψ
(
u, q
)
= qψ(u, 1) (2.10)

for all q ∈ Q and all u ∈ R. Putting u = v = 1 in equality (2.9) again, we have

ψ
(
p, q
)
= pqψ(1, 1) (2.11)

for all p, q ∈ Q. Note that the function v → ψ(u, v) is measurable for each fixed u ∈ R (see [23,
Proposition 2.34]). Since the function v → ψ(u, v) is additive for each fixed u ∈ R, by [24], it
is continuous for each fixed u ∈ R. By the same reasoning, the function u → ψ(u, v) is also
continuous for each fixed v ∈ R. Let s, t ∈ R be fixed. Since ψ is measurable, by [25, Theorem
7.14.26], for everym ∈ N there is a closed set Fm ⊂ [s, s + 1] such that μ([s, s + 1] \ Fm) < 1/m
and ψ|Fm×R is continuous. Since μ(Fm) → 1, one can choose um ∈ Fm satisfying um → s.
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Take a sequence {qn} in Q converging to t. For each fixed m ∈ N, take a sequence {pn} in Q

converging to um. By equalities (2.10) and (2.11), we see that

ψ(um, t) = ψ
(
um, lim

n→∞
qn

)
= lim

n→∞
ψ
(
um, qn

)
= lim

n→∞
qnψ(um, 1) = tψ(um, 1)

= tψ
(

lim
n→∞

pn, 1
)

= t lim
n→∞

ψ
(
pn, 1

)
= t lim

n→∞
pnψ(1, 1) = tumψ(1, 1)

(2.12)

for allm ∈ N. Hence we obtain that

ψ(s, t) = ψ
(

lim
m→∞

um, t

)
= lim

m→∞
ψ(um, t) = lim

m→∞
tumψ(1, 1) = stψ(1, 1), (2.13)

as desired.

3. Stability of the bi-additive Functional Equation (1.3)

From now on, let X be a normed space, Y a complete normed space, and r /= 2 a nonnegative
real number. In this section, we investigate the stability of the bi-additive functional equation
(1.3).

Lemma 3.1. Let f : X ×X → Y be a mapping such that

∥∥f
(
x + y, z −w) + f(x − y, z +w) − 2f(x, z) + 2f

(
y,w

)∥∥

≤
{
4ε, (r = 0),
ε
(‖x‖r + ∥∥y∥∥r + ‖z‖r + ‖w‖r), (0 < r /= 2)

(3.1)

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping F : X×X → Y satisfying (1.3)
such that

∥∥f
(
x, y
) − F(x, y)∥∥ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2ε +
∥∥f(0, 0)

∥∥, (r = 0),

3ε
4 − 2r

(‖x‖r + ∥∥y∥∥r), (0 < r < 2),

3ε
2r − 4

(‖x‖r + ∥∥y∥∥r), (r > 2)

(3.2)

for all x, y ∈ X. The mapping F is given by

F
(
x, y
)
:=

⎧
⎪⎪⎨

⎪⎪⎩

lim
j→∞

1
4j
f
(
2jx, 2jy

)
, (0 ≤ r < 2),

lim
j→∞

4jf
(
x

2j
,
y

2j

)
, (r > 2)

(3.3)

for all x, y ∈ X.
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Proof. Consider the case r ∈ (0, 2). Letting y = x and w = −z in (3.1), we gain

∥
∥f(2x, 2z) + f(0, 0) − 2f(x, z) + 2f(x,−z)∥∥ ≤ 2ε

(‖x‖r + ‖z‖r) (3.4)

for all x, z ∈ X. Putting x = z = 0 in (3.4), we get f(0, 0) = 0. Putting x = z = 0 in (3.1), we get

∥
∥f
(
y,−w) + f(−y,w) + 2f

(
y,w

)∥∥ ≤ ε(∥∥y∥∥r + ‖w‖r) (3.5)

for all y,w ∈ X. Replacing y by x and w by z in the above inequality, we have

‖f(x,−z) + f(−x, z) + 2f(x, z)‖ ≤ ε(‖x‖r + ‖z‖r) (3.6)

for all x, z ∈ X. Setting y = −x and w = z in (3.1), we obtain

∥∥f(2x, 2z) − 2f(x, z) + 2f(−x, z)∥∥ ≤ 2ε
(‖x‖r + ‖z‖r) (3.7)

for all x, z ∈ X. By (3.4) and (3.6), we gain

∥∥f(2x, 2z) − 4f(x, z) + f(x,−z) − f(−x, z)∥∥ ≤ 3ε
(‖x‖r + ‖z‖r) (3.8)

for all x, z ∈ X. By (3.4) and (3.7), we get

∥∥f(x,−z) − f(−x, z)∥∥ ≤ 2ε
(‖x‖r + ‖z‖r) (3.9)

for all x, z ∈ X. By (3.4), (3.6), and (3.7), we have

∥∥f(2x, 2z) − 4f(x, z)
∥∥ ≤ 3ε

(‖x‖r + ‖z‖r) (3.10)

for all x, z ∈ X. Replacing x by 2jx and z by 2jz and dividing 4j+1, we obtain that

∥∥∥∥
1
4j
f
(
2jx, 2jz

)
− 1
4j+1

f
(
2j+1x, 2j+1z

)∥∥∥∥ ≤ 3ε · 2rj
4j+1

(‖x‖r + ‖z‖r) (3.11)

for all x, z ∈ X and all j = 0, 1, 2, . . .. For given integers l,m (0 ≤ l < m), we obtain that

∥∥∥∥
1
4l
f
(
2lx, 2lz

)
− 1
4m

f(2mx, 2mz)
∥∥∥∥ ≤

m−1∑

j=l

3ε · 2rj
4j+1

(‖x‖r + ‖z‖r) (3.12)
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for all x, z ∈ X. By (3.12), the sequence {(1/4j)f(2jx, 2jy)} is a Cauchy sequence for all x, y ∈
X. Since Y is complete, the sequence {(1/4j)f(2jx, 2jy)} converges for all x, y ∈ X. Define
F : X ×X → Y by F(x, y) := limj→∞(1/4j)f(2jx, 2jy) for all x, y ∈ X. By (3.1), we have

∥
∥
∥
∥
1
4j
f
(
2j
(
x + y

)
, 2j(z −w)

)
+

1
4j
f
(
2j
(
x − y), 2j(z +w)

)
− 2
4j
f
(
2jx, 2jz

)
+

2
4j
f
(
2jy, 2jw

)∥∥
∥
∥

≤ ε2
rj

4j
(‖x‖r + ∥∥y∥∥r + ‖z‖r + ‖w‖r)

(3.13)

for all x, y, z,w ∈ X and all j = 0, 1, 2, . . .. Letting j → ∞ in the above inequality, we see that
F satisfies (1.3). Setting l = 0 and taking m → ∞ in (3.12), one can obtain inequality (3.2). If
G : X ×X → Y is another mapping satisfying (1.3) and (3.2), by Theorem 2.1, we obtain that

∥∥F
(
x, y
) −G(x, y)∥∥ =

1
4n
∥∥F
(
2nx, 2ny

) −G(2nx, 2ny)∥∥

≤ 1
4n
∥∥F
(
2nx, 2ny

) − f(2nx, 2ny)∥∥ + 1
4n
∥∥f
(
2nx, 2ny

) −G(2nx, 2ny)∥∥

≤ 6ε · 2n(r−2)
4 − 2r

(‖x‖r + ∥∥y∥∥r) −→ 0 as n −→ ∞
(3.14)

for all x, y ∈ X. Hence the mapping F is the unique bi-additive mapping satisfying (1.3), as
desired.

The proof of the case r ∈ {0} ∪ (2,∞) is similar to that of the case r ∈ (0, 2).

From now on, let A be a unital C�-algebra with a norm | · |, and let AM and AN be left
Banach A-modules with norms || · || and ‖ · ‖, respectively. Put A1 := {a ∈ A | |a| = 1}.

A bi-additive mapping F : AM × AM → AN satisfying (1.3) is called A-quadratic if
F(ax, ay) = a2F(x, y) for all a ∈ A and all x, y ∈ AM.

Theorem 3.2. Let f : AM× AM → AN be a mapping such that

∥∥∥f
(
ax + ay, az − aw) + f(ax − ay, az + aw) − 2a2f(x, z) + 2a2f

(
y,w

)∥∥∥

≤
{
4ε, (r = 0),
ε
(‖x‖r + ‖y‖r + ‖z‖r + ‖w‖r), (0 < r /= 2)

(3.15)

for all a ∈ A1 and all x, y, z,w ∈ AM. If f(tx, ty) is continuous in t ∈ R for each fixed x, y ∈ AM,
then there exists a unique bi-additive A-quadratic mapping F : AM × AM → AN satisfying (1.3)
and inequality (3.2).

Proof. Consider the case r ∈ (0, 2). By Lemma 3.1, it follows from the inequality of the
statement for a = 1 that there exists a unique bi-additive mapping F : AM × AM → AN
satisfying (1.3) and inequality (3.2). Let x0, y0 ∈ AM be fixed. And let L : AN → R be any
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real continuous linear functional, that is, L is an arbitrary real functional element of the dual
space of AN restricted to the scalar field R. For n ∈ N, consider the functions ψn : R → R

defined by ψn(t) := (1/4n)L[f(2ntx0, 2nty0)] for all t ∈ R. By the assumption that f(tx, ty) is
continuous in t ∈ R for each fixed x, y ∈ AM, the function ψn is continuous for all n ∈ N. Note
that ψn(t) = (1/4n)L[f(2ntx0, 2nty0)] = L[(1/4n)f(2ntx0, 2nty0)] for all n ∈ N and all t ∈ R.
By the proof of Lemma 3.1, the sequence ψn(t) is a Cauchy sequence for all t ∈ R. Define a
function ψ : R → R by ψ(t) := limn→∞ψn(t) for all t ∈ R. Note that ψ(t) = L[F(tx0, ty0)] for
all t ∈ R. Since F is bi-additive, we get

ψ(s + t) + ψ(s − t) = L(F[(s + t)x0, (s + t)y0
])

+ L
(
F
[
(s − t)x0, (s − t)y0

])

= L
(
F
[
(s + t)x0, (s + t)y0

]
+ F
[
(s − t)x0, (s − t)y0

])

= L
[
F
(
sx0 + tx0, sy0 + ty0

)
+ F
(
sx0 − tx0, sy0 − ty0

)]

= L
[
2F
(
sx0, sy0

)
+ 2F

(
tx0, ty0

)]

= 2L
[
F
(
sx0, sy0

)]
+ 2L

[
F
(
tx0, ty0

)]
= 2ψ(s) + 2ψ(t)

(3.16)

for all s, t ∈ R. Since ψ is the pointwise limit of continuous functions, it is a Borel function.
Thus the function ψ as a measurable quadratic function is continuous (see [26]) so has the
form ψ(t) = t2ψ(1) for all t ∈ R. Hence we have

L
[
F
(
tx0, ty0

)]
= ψ(t) = t2ψ(1) = t2L

[
F
(
x0, y0

)]
= L
[
t2F
(
x0, y0

)]
(3.17)

for all t ∈ R. Since L is any continuous linear functional, the bi-additive mapping F : AM ×
AM → AN satisfies F(tx0, ty0) = t2F(x0, y0) for all t ∈ R. Therefore we obtain

F
(
tx, ty

)
= t2F

(
x, y
)

(3.18)

for all t ∈ R and all x, y ∈ AM. Let j be an arbitrary positive integer. Replacing x and z by 2jx
and 2jz, respectively, and letting y = w = 0 in inequality (3.15), we gain

∥∥∥f
(
2jax, 2jaz

)
− a2f

(
2jx, 2jz

)
+ a2f(0, 0)

∥∥∥ ≤ 2rj−1ε
(‖x‖r + ‖z‖r) (3.19)

for all a ∈ A1 and all x, z ∈ AM. Note that there is a constant K > 0 such that the condition

‖av‖ ≤ K|a|‖v‖ (3.20)

for each a ∈ A and each v ∈ AN (see [27, Definition 12]). For all a ∈ A1 and all x, y ∈ AM,
we get

1
4j

∥∥∥f
(
2jax, 2jay

)
− a2f

(
2jx, 2jy

)∥∥∥ ≤ 2(r−2)j−1ε
(‖x‖r + ‖z‖r) + K|a|2

4j
∥∥f(0, 0)

∥∥ −→ 0

(3.21)
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as j → ∞. Hence we have

F
(
ax, ay

)
= lim

j→∞
1
4j
f
(
2jax, 2jay

)
= a2 lim

j→∞
1
4j
f
(
2jx, 2jy

)
= a2F

(
x, y
)

(3.22)

for all a ∈ A1 and all x, y ∈ AM. Since F(ax, ay) = a2F(x, y) for each a ∈ A1, by (3.18), we
obtain

F
(
ax, ay

)
= F
(
|a| a|a|x, |a|

a

|a|y
)

= |a|2F
(
a

|a|x,
a

|a|y
)

= a2F
(
x, y
)

(3.23)

for all nonzero a ∈ A and all x, y ∈ AM. By (3.18), we get F(0x, 0y) = 02F(x, y) for all x, y ∈
AM. Therefore the bi-additive mapping F is the unique A-quadratic mapping satisfying the
inequality (3.2).

The proof of the case r ∈ {0} ∪ (2,∞) is similar to that of the case r ∈ (0, 2).

We obtain the Hyers-Ulam stability of (1.3) as a corollary of Theorem 3.2.

Corollary 3.3. Let E be a complex normed space and f : E × E → C a function such that

∥∥∥f
(
λx + λy, λz − λw) + f(λx − λy, λz + λw) − 2λ2f(x, z) + 2λ2f

(
y,w

)∥∥∥ ≤ ε (3.24)

for all λ ∈ T := {λ ∈ C : |λ| = 1} and all x, y, z,w ∈ E. If f(tx, ty) is continuous in t ∈ R for each
fixed x, y ∈ E, then there exists a unique bi-additive C-quadratic mapping F : E × E → C satisfying
(1.3) such that ‖f(x, y) − F(x, y)‖ ≤ ε/2 + ‖f(0, 0)‖ for all x, y ∈ E.

Put Ain := {a ∈ A | a is invertible inA}, Asa := {a ∈ A | a� = a}, A+ := {a ∈ Asa |
Sp(a) ⊂ [0,∞)}, and A+

1 := A1 ∩A+.
A unital C�-algebra A is said to have real rank 0 (see [28]) if the invertible self-adjoint

elements are dense in Asa.
For any element a ∈ A, a = a1 + ia2, where a1 := (a + a�)/2 and a2 := (a − a�)/2i are

self-adjoint elements, furthermore, a = a+1 −a−1 + ia+2 − ia−2 , where a+1 , a
−
1 , a

+
2 , and a

−
2 are positive

elements (see [27, Lemma 38.8]).

Theorem 3.4. Let A be of real rank 0, and let f : AM× AM → AN be a mapping such that

∥∥f
(
ax + ay, bz − bw) + f(ax − ay, bz + bw) − 2abf(x, z) + 2ab

(
y,w

)∥∥

≤
{
4ε, (r = 0),
ε
(‖x‖r + ∥∥y∥∥r + ‖z‖r + ‖w‖r), (0 < r /= 2)

(3.25)

for all a, b ∈ (A+
1 ∩ Ain) ∪ {i} and all x, y, z,w ∈ AM. For each fixed x, y ∈ AM, let the sequence

{(1/4j)f(2jax, 2jby)} converge uniformly onA1 ×A1. If f(ax, by) is continuous in (a, b) ∈ (A1 ∪
R)2 for each fixed x, y ∈ AM, then there exists a unique bi-additive A-quadratic mapping F : AM×
AM → AN satisfying (1.3) and inequality (3.2) such that F(ax, by) = abF(x, y) for all a, b ∈
A+

1 ∪ {i} and all x, y ∈ AM.
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Proof. Consider the case r ∈ (0, 2). By Lemma 3.1, there exists a unique bi-additive mapping
F : AM × AM → AN satisfying (1.3) and inequality (3.2) on AM × AM. Let x0, y0 ∈ AM
be fixed. And let L be an arbitrary real functional element of the dual space of AN restricted
to the scalar field R. For n ∈ N, consider the functions ψn : R × R → R defined by ψn(s, t) :=
(1/4n)L[f(2nsx0, 2nty0)] for all s, t ∈ R. By the assumption that f(ax, by) is continuous in
(a, b) ∈ (A1 ∪ R)2 for each fixed x, y ∈ AM, the function ψn is continuous for all n ∈ N.
Note that ψn(s, t) = (1/4n)L[f(2nsx0, 2nty0)] = L[(1/4n)f(2nsx0, 2nty0)] for all n ∈ N and all
s, t ∈ R. By the proof of Lemma 3.1, the sequence ψn(s, t) is a Cauchy sequence for all s, t ∈ R.
Define a function ψ : R × R → R by ψ(s, t) := limn→∞ψn(s, t) for all s, t ∈ R. Note that
ψ(s, t) = L[F(sx0, ty0)] for all s, t ∈ R. Since the mapping F is bi-additive, we have

ψ(s1 + s2, t1 − t2) + ψ(s1 − s2, t1 + t2)
= L
(
F
[
(s1 + s2)x0, (t1 − t2)y0

])
+ L
(
F
[
(s1 − s2)x0, (t1 + t2)y0

])

= L
(
F
[
(s1 + s2)x0, (t1 − t2)y0

]
+ F
[
(s1 − s2)x0, (t1 + t2)y0

])

= L
[
F
(
s1x0 + s2x0, t1y0 − t2y0

)
+ F
(
s1x0 − s2x0, t1y0 + t2y0

)]

= L
[
2F
(
s1x0, t1y0

) − 2F
(
s2x0, t2y0

)]
= 2L

[
F
(
s1x0, t1y0

)] − 2L
[
F
(
s2x0, t2y0

)]

= 2ψ(s1, t1) − 2ψ(s2, t2)

(3.26)

for all s1, s2, t1, t2 ∈ R. Since ψ is the pointwise limit of continuous functions, it is a Borel
function. By Theorem 2.2, we gain ψ(s, t) = stψ(1, 1) for all s, t ∈ R. Hence we get

L
[
F
(
sx0, ty0

)]
= ψ(s, t) = stψ(1, 1) = stL

[
F
(
x0, y0

)]
= L
[
stF
(
x0, y0

)]
(3.27)

for all s, t ∈ R. Since L is any continuous linear functional, the bi-additive mapping F : AM×
AM→AN satisfies F(sx0, ty0) = stF(x0, y0) for all s, t ∈ R. Therefore we obtain

F
(
sx, ty

)
= stF

(
x, y
)

(3.28)

for all s, t ∈ R and all x, y ∈ AM. Let j be an arbitrary positive integer. Replacing x and z by
2jx and 2jz, respectively, and letting y = w = 0 in inequality (3.25), we get

∥∥∥f
(
2jax, 2jbz

)
− abf

(
2jx, 2jz

)
+ abf(0, 0)

∥∥∥ ≤ 2rj−1ε
(‖x‖r + ‖z‖r) (3.29)

for all a, b ∈ (A+
1 ∩Ain) ∪ {i} and all x, z ∈ AM. By inequality (3.20) and the above inequality,

for all a, b ∈ (A+
1 ∩Ain) ∪ {i} and all x, z ∈ AM, we have

1
4j

∥∥∥f
(
2jax, 2jbz

)
− abf

(
2jx, 2jz

)∥∥∥

≤ 2(r−2)j−1ε
(‖x‖r + ‖z‖r) + K|a||b|

4j
∥∥f(0, 0)

∥∥ −→ 0 as j −→ ∞.

(3.30)
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Hence we obtain that

F
(
ax, by

)
= lim

j→∞
1
4j
f
(
2jax, 2jby

)
= ab lim

j→∞
1
4j
f
(
2jx, 2jy

)
= abF

(
x, y
)

(3.31)

for all a, b ∈ (A+
1 ∩ Ain) ∪ {i} and all x, y ∈ AM. Let c, d ∈ A+

1 \ Ain. Since Ain ∩ Asa is dense
in Asa, there exists two sequences {cj} and {dj} in Ain ∩ Asa such that cj → c and dj → d
as j → ∞. Put pj := (1/|cj |)cj and qj := (1/|dj |)dj for all j ∈ N. Then pj → c and qj → d as
j → ∞. Set aj :=

√
pj�pj and bj :=

√
qj�qj for all j ∈ N. Then aj → c and bj → d as j → ∞

and aj , bj ∈ A+
1 ∩Ain. Since {(1/4j)f(2jax, 2jby)} is uniformly converges on A1 ×A1 for each

x, y ∈ AM and f(ax, by) is continuous in a, b ∈ A1 for each x, y ∈ AM, we see that F(ax, by)
is also continuous in a, b ∈ A1 for each x, y ∈ AM. In fact, we gain

lim
(a,b)→ (c,d)

F
(
ax, by

)
= lim

(a,b)→ (c,d)
lim
j→∞

1
4j
f
(
2jax, 2jby

)

= lim
j→∞

lim
(a,b)→ (c,d)

1
4j
f
(
2jax, 2jby

)
= lim

j→∞
1
4j
f
(
2jcx, 2jdy

)
= F
(
cx, dy

)

(3.32)

for all x, y ∈ AM. Thus we get

lim
j→∞

F
(
ajx, bjy

)
= F
(
lim
j→∞

ajx, lim
j→∞

bjy

)
= F
(
cx, dy

)
(3.33)

for all x, y ∈ AM. By equality (3.31), we have

∥∥F
(
ajx, bjy

) − cdF(x, y)∥∥ =
∥∥ajbjF

(
x, y
) − cdF(x, y)∥∥

−→ ∥∥cdF(x, y) − cdF(x, y)∥∥ = 0
(3.34)

as j → ∞ for all x, y ∈ AM. By equality (3.33) and the above convergence, we see that

∥∥F
(
cx, dy

) − cdF(x, y)∥∥ ≤ ∥∥F(cx, dy) − F(ajx, bjy
)∥∥ +

∥∥F
(
ajx, bjy

) − cdF(x, y)∥∥ −→ 0
(3.35)

as j → ∞ for all x, y ∈ AM. By equality (3.31) and the above convergence, we obtain

F
(
ax, by

)
= abF

(
x, y
)

(3.36)
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for all a, b ∈ A+
1 ∪ {i} and all x, y ∈ AM. Since the mapping F is bi-additive, we see that

F
(
ax, ay

)
= F
(
a+1x − a−1x + ia+2x − ia−2x, a+1y − a−1y + ia+2y − ia−2y

)

= F
(
a+1x, a

+
1y
) − F(a+1x, a−1y

)
+ F
(
a+1x, ia

+
2y
) − F(a+1x, ia−2y

)

− F(a−1x, a+1y
)
+ F
(
a−1x, a

−
1y
) − F(a−1x, ia+2y

)
+ F
(
a−1x, ia

−
2y
)

+ F
(
ia+2x, a

+
1y
) − F(ia+2x, a−1y

)
+ F
(
ia+2x, ia

+
2y
) − F(ia+2x, ia−2y

)

− F(ia−2x, a+1y
)
+ F
(
ia−2x, a

−
1y
) − F(ia−2x, ia+2y

)
+ F
(
ia−2x, ia

−
2y
)

(3.37)

for all a ∈ A and all x, y ∈ AM. By (3.28) and equality (3.36), we have

F
(
px, qy

)
= F

(
∣∣p
∣∣ p∣∣p
∣∣x,
∣∣q
∣∣ q∣∣q
∣∣y

)

=
∣∣p
∣∣∣∣q
∣∣F

(
p
∣∣p
∣∣x,

q
∣∣q
∣∣y

)

= pqF
(
x, y
)

(3.38)

for all p, q ∈ {a+1 , a−1 , a+2 , a−2} and all x, y ∈A M. Note that a+1a
−
1 = a−1a

+
1 = a+2a

−
2 = a−2a

+
2 = 0.

Hence we obtain that

F
(
ax, ay

)
=
(
a+2
)2
F
(
x, y
)
+ ia+1a

+
2F
(
x, y
) − ia+1a−2F

(
x, y
)
+
(
a−1
)2
F
(
x, y
)

− ia−1a+2F
(
x, y
)
+ ia−1a

−
2F
(
x, y
)
+ ia+2a

+
1F
(
x, y
) − ia+2a−1F

(
x, y
)

− (a+2
)2
F
(
x, y
) − ia−2a+1F

(
x, y
)
+ ia−2a

−
1F
(
x, y
) − (a−2

)2
F
(
x, y
)

=
[(
a+1
)2 + ia+1a

+
2 − ia+1a−2 +

(
a−1
)2 − ia−1a+2 + ia−1a−2

+ ia+2a
+
1 − ia+2a−1 −

(
a+2
)2 − ia−2a+1 + ia−2a−1 −

(
a−2
)2]

F
(
x, y
)

=
(
a+1 − a−1 + ia+2 − ia−2

)2
F
(
x, y
)
= a2F

(
x, y
)

(3.39)

for all a ∈ A and all x, y ∈ AM.
The proof of the case r ∈ {0} ∪ (2,∞) is similar to that of the case r ∈ (0, 2).
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