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This paper is devoted to the existence of periodic solutions for a semi-ratio-dependent predator-
prey system with time delays on time scales. With the help of a continuation theorem based on
coincidence degree theory, we establish necessary and sufficient conditions for the existence of
periodic solutions. Our results show that for the most monotonic prey growth such as the logistic,
the Gilpin, and the Smith growth, and themost celebrated functional responses such as the Holling
type, the sigmoidal type, the Ivlev type, the Monod-Haldane type, and the Beddington-DeAngelis
type, the system always has at least one periodic solution. Some known results are shown to be
special cases of the present paper.

1. Introduction

In the past decades, many authors have investigated the existence of periodic solutions for
population models governed by the differential and difference equations [1–7]. In particular,
the existence of periodic solutions for semi-ratio-dependent predator-prey systems has been
studied extensively in the literature and seen great progress [8–16].

Recently, in order to unify differential and difference equations, people have done
a lot of research about dynamic equations on time scales. In fact, continuous and discrete
systems are very important in implementing and applications. But it is troublesome to
study the existence of periodic solutions for continuous and discrete systems, respectively.
Therefore, it is meaningful to study that on time scales which can unify the continuous and
discrete situations. For the theory of dynamic equations on time scales, we refer the reader to
[17, 18]. For the research on periodic solutions of dynamic equations on time scales describing
population dynamics, one may consult [19–26], and so forth.
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In this paper, we consider the following periodic semi-ratio-dependent predator-prey
system with time delays on a time scale T:

uΔ
1 (t) = g

(
t, eu1(t−τ1(t))

)
− h

(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t),

uΔ
2 (t) = c(t) − d(t)eu2(t)−u1(t−τ3(t)).

(1.1)

Here T is a periodic time scale which has the subspace topology inherited from the
standard topology on R. The symbol Δ stands for the delta derivative which gives the
ordinary derivative if T = R and the forward difference operator if T = Z.

In system (1.1), set x(t) = exp[u1(t)], y(t) = exp[u2(t)]. If T = R, then system
(1.1) reduces to the standard semi-ratio-dependent predator-prey system governed by the
ordinary differential equations:

x′(t) = x(t)g(t, x(t − τ1(t))) − h
(
t, x(t), y(t)

)
y(t − τ2(t)),

y′(t) = y(t)
[
c(t) − d(t)

y(t)
x(t − τ3(t))

]
,

(1.2)

where x(t) and y(t) stand for the population of the prey and the predator, respectively. The
function g(t, x) is the growth rate of the prey in the absence of the predator. The predator
consumes the prey according to the functional response h(t, x, y) and grows logistically with
growth rate c(t) and carrying capacity x(t)/d(t) proportional to the population size of the
prey. The function d(t) is a measure of the food quality that the prey provides for conversion
into the predator birth. If T = Z, then system (1.1) is reformulated as

x(k + 1) = x(k) exp
[
g(k, x(k − τ1(k))) − h

(
k, x(k), y(k)

)y(k − τ2(k))
x(k)

]
,

y(k + 1) = y(k) exp
[
c(k) − d(k)

y(k)
x(k − τ3(k))

]
,

(1.3)

which is the discrete time semi-ratio-dependent predator-prey system and is a discrete
analogue of (1.2).

We note that Ding and Jiang [8, 9], Ding et al. [10], Liu [11], Liu and Huang [12], and
Wang et al. [13] studied some special cases of system (1.2). Fan and Wang [14], Fazly and
Hesaaraki [15], and Liu [16] discussed some special cases of system (1.3). Bohner et al. [19],
Fazly and Hesaaraki [21], and Zhuang [26] investigated some special cases of system (1.1).
So far as we know, there is no published paper concerned system (1.1).

The main purpose of this paper is, by using the coincidence degree theory developed
by Gaines and Mawhin [27], to derive necessary and sufficient conditions for the existence
of periodic solutions of system (1.1). Furthermore, we will see that our result for the above
system can be easily extended to the one with distributed or state-dependent delays. Our
result generalizes some theorems in [8, 9, 11, 12, 15, 16, 21], improves and generalizes some
theorems in [10, 13, 14, 19, 26].
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2. Preliminaries

In this section, we briefly give some elements of the time scale calculus, recall the continuation
theorem from coincidence degree theory, and state an auxiliary result that will be used in this
paper.

First, let us present some foundational definitions and results from the calculus on time
scales so that the paper is self-contained. For more details, we refer the reader to [17, 18].

A time scale T is an arbitrary nonempty closed subset T of the real numbers R, which
inherits the standard topology of R. Thus, the real numbers R, the integers Z, and the natural
numbers N are examples of time scales, while the rational numbers Q and the open interval
(1, 2) are no time scales.

Let ω > 0. Throughout this paper, the time scale T is assumed to be ω-periodic; that
is, t ∈ T implies t + ω ∈ T. In particular, the time scale T under consideration is unbounded
above and below.

For t ∈ T, the forward and backward jump operators σ, ρ : T → T are defined by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t} (2.1)

respectively.
If σ(t) = t, t is called right-dense (otherwise: right-scattered), and if ρ(t) = t, then t is

called left-dense (otherwise left-scattered).
A function f : T → R is said to be rd-continuous if it is continuous at right-dense

points in T and its left-sided limits exist (finite) at left-dense points in T. The set of rd-
continuous functions is denoted by Crd(T).

For f : T → R and t ∈ T we define fΔ(t), the delta-derivative of f at t, to be the
number (provided it exists) with the property that, given any ε > 0, there is a neighborhood
U of t (i.e.,U = (t − δ, t + δ) ∩ T for some δ > 0) in T such that

∣∣∣[f(σ(t)) − f(s)
] − fΔ(t)[σ(t) − s]

∣∣∣ ≤ ε|σ(t) − s|, ∀s ∈ U. (2.2)

f is said to be delta-differentiable if its delta-derivative exists for all t ∈ T. The set of functions
f : T → R that are delta-differentiable and whose delta-derivative is rd-continuous functions
is denoted by C1

rd(T).
A function F : T → R is called a delta-antiderivative of f : T → R provided FΔ(t) =

f(t), for all t ∈ T. Then, we define the delta integral by

∫b

a

f(t)Δt = F(b) − F(a), ∀a, b ∈ T. (2.3)

Lemma 2.1. Every delta differentiable function is continuous.

Lemma 2.2. Every rd-continuous function has a delta-antiderivative.

Lemma 2.3. If a, b, c ∈ T, α, β ∈ R and f , g ∈ Crd(T), then

(a)
∫b
a[αf(t) + βg(t)] Δt = α

∫b
a f(t) Δt + β

∫b
a βg(t) Δt,

(b)
∫b
a f(t) Δt =

∫c
a f(t) Δt +

∫b
c f(t) Δt,
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(c) if f(t) ≥ 0 for all a ≤ t < b, then
∫b
a f(t) Δt ≥ 0,

(d) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then | ∫ba f(t) Δt| ≤ ∫b
a g(t) Δt.

Next, let us recall the continuation theorem in coincidence degree theory. To do so, we
need to introduce the following notation.

Let X, Y be real Banach spaces, let L : DomL ⊂ X → Y be a linear mapping, and let
N : X → Y be a continuous mapping.

The mapping L is said to be a Fredholm mapping of index zero, if dim KerL =
codim ImL < +∞ and ImL is closed in Y .

If L is a Fredholm mapping of index zero, then there exist continuous projectors P :
X → X andQ : Y → Y , such that ImP = KerL, KerQ = ImL = Im(I −Q). It follows that the
restriction LP of L to DomL ∩KerP : (I − P)X → ImL is invertible. Denote the inverse of LP

by KP .
The mapping N is said to be L-compact on Ω, if Ω is an open bounded subset of X,

QN(Ω) is bounded, and KP (I −Q)N : Ω → X is compact.
Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.
Here we state the Gaines-Mawhin theorem, which is a main tool in the proof of our

main result.

Lemma 2.4 (continuation theorem [27, page 40]). Let Ω ⊂ X be an open bounded set, let L be a
Fredholm mapping of index zero and let N be L-compact on Ω. Assume

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL, Lx /=λNx;

(b) for each x ∈ ∂Ω ∩ KerL,QNx/= 0;

(c) deg(JQN,Ω ∩ KerL, 0)/= 0.

Then Lx = Nx has at least one solution in Ω ∩DomL.

For convenience and simplicity in the following discussion, we always use the
following notation:

κ=min{[0,+∞) ∩ T}, Iω=[κ, κ +ω] ∩ T, â=
1
ω

∫κ+ω

κ

a(t)Δt, Â=
1
ω

∫κ+ω

κ

|a(t)|Δt,

b̃(x)=
1
ω

∫κ+ω

κ

b(t, x)Δt, B̃(x)=
1
ω

∫κ+ω

κ

|b(t, x)|Δt, ϕ
(
x, y

)
=
1
ω

∫κ+ω

κ

ϕ
(
t, x, y

)
Δt,

(2.4)

where a ∈ Crd(T) is an ω-periodic function, b : T × R → R and ϕ : T × R
2 → R are rd-

continuous and ω-periodic in their first variable.
In order to achieve the priori estimation in the case of dynamic equations on a time

scale T, we now give the following inequality which is proved in [19, Lemma 2.4].

Lemma 2.5. Let t1, t2 ∈ Iω and t ∈ T. If ϕ ∈ C1
rd(T) is an ω-periodic real function, then

ϕ(t) ≤ ϕ(t1) +
∫κ+ω

κ

∣∣∣ϕΔ(t)
∣∣∣Δt, ϕ(t) ≥ ϕ(t2) −

∫κ+ω

κ

∣∣∣ϕΔ(t)
∣∣∣Δt. (2.5)
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3. Existence of Periodic Solutions

In this section, we study the existence of periodic solutions of system (1.1). For the sake of
generality, we make the following fundamental assumptions for system (1.1).

(H1) τi : T → R
+ is rd-continuous and ω-periodic such that t − τi(t) ∈ T for i = 1, 2, 3,

and t ∈ T.

(H2) c : T → R and d : T → (0,+∞) are rd-continuous and ω-periodic.

(H3) g : T × R → R is rd-continuous and ω-periodic in the first variable and
is continuously differentiable in the second variable and (∂g/∂x)(t, x) < 0,
limx→+∞ g(t, x) < 0 for all t ∈ T, x > 0.

(H4) h : T × R
2 → R

+ is rd-continuous and ω-periodic in the first variable and
is continuously differentiable in the last two variables. In addition, there exist a
positive integer m and ω-periodic rd-continuous functions ai : T → R

+, i =
0, 1, . . . , m − 1, such that

h
(
t, x, y

) ≤ a0(t)xm + a1(t)xm−1 + · · · + am−1(t)x, ∀t ∈ T, x > 0, y > 0. (3.1)

Readers familiar with predator-prey models may notice that the above assumptions
are reasonable for population models. Under the above assumptions, system (1.1) covers
many models that have appeared in the literature. For instance, g(t, x) can be taken as the
logistic growth a − bx, the Gilpin growth a − bxθ, and the Smith growth (a − bx)/(D + x) .
h(t, x, y) can be taken as functional responses of the Lotka-Volterra typemx, the Holling type
mxn/(A + xn)(n ≥ 1) , the Ivlev typem(1 − e−Ax), the sigmoidal type mx2/[(A + x)(B + x)],
the Monod-Haldane type mx/(A + Bx + x2), and the Beddington-DeAngelis type mx/(A +
Bx + Cy), and so forth.

By (H3), we have

g̃ ′(x) =
1
ω

∫κ+ω

κ

∂g

∂x
(t, x) Δt < 0, lim

x→+∞
g̃(x) =

1
ω

∫κ+ω

κ

lim
x→+∞

g(t, x) Δt < 0. (3.2)

Thus g̃(x) is strictly decreasing on [0,+∞).
We are now in a position to state and prove our main result.

Theorem 3.1. Under the assumptions (H1)–(H4), system (1.1) has at least one ω-periodic solution if
and only if

(H5) g̃(0) > 0,

(H6) ĉ > 0

hold.
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Proof. “Only if” part: Suppose that (u1(t), u2(t))
T is an ω-periodic solution of system (1.1).

Then by integrating (1.1) on both side from κ to κ +ω, we have

∫κ+ω

κ

[
g
(
t, eu1(t−τ1(t))

)
− h

(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t)

]
Δt =

∫κ+ω

κ

uΔ
1 (t) Δt = 0, (3.3)

∫κ+ω

κ

[
c(t) − d(t)eu2(t)−u1(t−τ3(t))

]
Δt =

∫κ+ω

κ

uΔ
2 (t) Δt = 0. (3.4)

By (H4) and the monotonicity of function g̃(x), we obtain from (3.3) that

g̃(0) >
1
ω

∫κ+ω

κ

g
(
t, eu1(t−τ1(t))

)
Δt =

1
ω

∫κ+ω

κ

h
(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t) Δt ≥ 0, (3.5)

which is (H5).
By (H2) and (3.4), we have

ĉ =
1
ω

∫κ+ω

κ

d(t)eu2(t)−u1(t−τ3(t)) Δt > 0, (3.6)

which gives (H6).
“If” part: Take

X = Y =
{
u = (u1(t), u2(t))T | ui ∈ Crd(T), ui(t +ω) = ui(t), i = 1, 2

}
,

‖u‖ =
∥∥∥(u1(t), u2(t))T

∥∥∥ = max
t∈Iω

|u1(t)| +max
t∈Iω

|u2(t)|
(3.7)

Then X and Y are Banach spaces with the norm ‖ · ‖. Set

L : DomL ⊂ X −→ Y, L

(
u1(t)
u2(t)

)
=
(
uΔ
1 (t)

uΔ
2 (t)

)
, (3.8)

where DomL = {u = (u1(t), u2(t))
T ∈ X | ui ∈ C1

rd(T), i = 1, 2} and

N : X −→ Y, N

(
u1(t)
u2(t)

)
=
(
g
(
t, eu1(t−τ1(t))) − h

(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t)

c(t) − d(t)eu2(t)−u1(t−τ3(t))

)
. (3.9)

With these notations system (1.1) can be written in the form

Lu = Nu, u ∈ X. (3.10)
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Obviously, KerL = R
2, ImL = {(u1(t), u2(t))

T ∈ Y :
∫κ+ω
κ ui(t) Δt = 0, i = 1, 2} is closed in

Y , and dimKerL = codim ImL = 2. Therefore L is a Fredholm mapping of index zero. Now
define two projectors P : X → X and Q : Y → Y as

P

(
u1(t)
u2(t)

)
= Q

(
u1(t)
u2(t)

)
=
(
û1

û2

)
,

(
u1(t)
u2(t)

)
∈ X = Y. (3.11)

Then P and Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I −Q). (3.12)

Furthermore, through an easy computation we find that the generalized inverseKP of LP has
the form

KP : ImL −→ DomL ∩ KerP,

KP (u) =
∫ t

κ

u(s)Δs − 1
ω

∫κ+ω

κ

∫ t

κ

u(s)ΔsΔt.
(3.13)

Then QN : X → Y and KP (I −Q)N : X → X read as

QNu =
1
ω

(∫κ+ω
κ

[
g
(
t, eu1(t−τ1(t))) − h

(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t)

]
Δt∫κ+ω

κ

[
c(t) − d(t)eu2(t)−u1(t−τ3(t))]Δt

)
, (3.14)

KP (I −Q)Nu =

(∫ t
κ

[
g
(
s, eu1(s−τ1(s))) − h

(
s, eu1(s), eu2(s)

)
eu2(s−τ2(s))−u1(s)

]
Δs∫ t

κ

[
c(s) − d(s)eu2(s)−u1(s−τ3(s))]Δs

)

− 1
ω

(
t − κ − 1

ω

∫κ+ω

κ

(s − κ) Δs

)

×
(∫κ+ω

κ

[
g
(
s, eu1(s−τ1(s))) − h

(
s, eu1(s), eu2(s)

)
eu2(s−τ2(s))−u1(s)

]
Δs∫κ+ω

κ

[
c(s) − d(s)eu2(s)−u1(s−τ3(s))]Δs

)

− 1
ω

(∫κ+ω
κ

∫ t
κ

[
g
(
s, eu1(s−τ1(s))) − h

(
s, eu1(s), eu2(s)

)
eu2(s−τ2(s))−u1(s)

]
ΔsΔt∫κ+ω

κ

∫ t
κ

[
c(s) − d(s)eu2(s)−u1(s−τ3(s))]ΔsΔt

)
.

(3.15)

Clearly, QN and KP (I − Q)N are continuous. By using the Arzela-Ascoli theorem, it is not

difficult to prove thatKP (I −Q)N(Ω) is compact for any open bounded setΩ ⊂ X. Moreover,
QN(Ω) is bounded. Therefore N is L-compact on Ωwith any open bounded set Ω ⊂ X.

In order to apply Lemma 2.4, we need to find appropriate open, bounded subsets in
X. Corresponding to the operator equation Lu = λNu , λ ∈ (0, 1), we have

uΔ
1 (t) = λ

[
g
(
t, eu1(t−τ1(t))

)
− h

(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t)

]
,

uΔ
2 (t) = λ

[
c(t) − d(t)eu2(t)−u1(t−τ3(t))

]
.

(3.16)
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Suppose that (u1(t), u2(t))
T ∈ X is a solution of (3.16) for a certain λ ∈ (0, 1). Integrating (3.16)

on both side from κ to κ +ω leads to

∫κ+ω

κ

λ
[
g
(
t, eu1(t−τ1(t))

)
− h

(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t)

]
Δt =

∫κ+ω

κ

uΔ
1 (t) Δt = 0,

∫κ+ω

κ

λ
[
c(t) − d(t)eu2(t)−u1(t−τ3(t))

]
Δt =

∫κ+ω

κ

uΔ
2 (t) Δt = 0.

(3.17)

That is

∫κ+ω

κ

g
(
t, eu1(t−τ1(t))

)
Δt =

∫κ+ω

κ

h
(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t) Δt (3.18)

∫κ+ω

κ

d(t)eu2(t)−u1(t−τ3(t))Δt =
∫κ+ω

κ

c(t)Δt = ĉω. (3.19)

From (3.18), we have

g̃(0)ω =
∫κ+ω

κ

{[
g(t, 0) − g

(
t, eu1(t−τ1(t))

)]
+ h

(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t)

}
Δt . (3.20)

It follows from (3.16), (3.18), (3.19), (3.20), and (H2)–(H4) that

∫κ+ω

κ

∣∣∣uΔ
1 (t)

∣∣∣ Δt ≤ λ

∫κ+ω

κ

∣∣∣g
(
t, eu1(t−τ1(t))

)
− h

(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t)

∣∣∣Δt

<

∫κ+ω

κ

{[
g(t, 0) − g

(
t, eu1(t−τ1(t))

)]
+ h

(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t)

}
Δt

+
∫κ+ω

κ

∣∣g(t, 0)∣∣Δt

=
[
G̃(0) + g̃(0)

]
ω,

(3.21)
∫κ+ω

κ

∣∣∣uΔ
2 (t)

∣∣∣ Δt ≤ λ

∫κ+ω

κ

∣∣∣c(t) − d(t)eu2(t)−u1(t−τ3(t))
∣∣∣ Δt

<

∫κ+ω

κ

|c(t)| Δt +
∫κ+ω

κ

d(t)eu2(t)−u1(t−τ3(t)) Δt

=
[
Ĉ + ĉ

]
ω.

(3.22)

Since (u1(t), u2(t))
T ∈ X, there exist ξi, ηi ∈ Iω such that

ui(ξi) = min
t∈Iω

ui(t), ui

(
ηi
)
= max

t∈Iω
ui(t), i = 1, 2. (3.23)
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Then from (3.19) and (H2), we have

ĉ ≤ 1
ω

∫κ+ω

κ

d(t)eu2(η2)−u1(ξ1) Δt = d̂eu2(η2)−u1(ξ1),

ĉ ≥ 1
ω

∫κ+ω

κ

d(t)eu2(ξ2)−u1(η1) Δt = d̂eu2(ξ2)−u1(η1).

(3.24)

These, together with (H6), yield

u2
(
η2
) ≥ ln

[
ĉ

d̂

]
+ u1(ξ1), (3.25)

u2(ξ2) ≤ ln
[
ĉ

d̂

]
+ u1

(
η1
)
. (3.26)

From (3.18), (H4), and the monotonicity of function g̃(x), we have

g̃
(
eu1(ξ1)

)
≥ 1

ω

∫κ+ω

κ

g
(
t, eu1(t−τ1(t))

)
Δt ≥ 0. (3.27)

In view of (H3), (H5), and the continuity of function g̃(x), it is easy to see that there exists a
positive constant α1 such that

g̃(α1) = 0. (3.28)

Then, from (3.27), (3.28), and the monotonicity of function g̃(x), we have

u1(ξ1) ≤ lnα1. (3.29)

By Lemma 2.5, we obtain from (3.21) and (3.29) that for all t ∈ Iω

u1(t) ≤ u1(ξ1) +
∫κ+ω

κ

∣∣∣uΔ
1 (t)

∣∣∣Δt ≤ lnα1 +
[
G̃(0) + g̃(0)

]
ω := β1. (3.30)

By Lemma 2.5, we also obtain from (3.22), (3.26), and (3.30) that for all t ∈ Iω

u2(t) ≤ u2(ξ2) +
∫κ+ω

κ

∣∣∣uΔ
2 (t)

∣∣∣Δt ≤ β1 + ln
[
ĉ

d̂

]
+
[
Ĉ + ĉ

]
ω := β2. (3.31)

It follows from (H4)and (3.30) that

0 ≤ 1
ω

∫κ+ω

κ

h
(
t, eu1(t), eu2(t)

)
e−u1(t) Δt ≤ â0e(m−1)β1 + â1e(m−2)β1 + · · · + âm−1 := c0. (3.32)
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In order to obtain β3 and β4 such that u1(t) ≥ β3 and u2(t) ≥ β4 for all t ∈ Iω, we
consider the following two cases.

Case 1. If u2(η2) ≥ u1(η1), then from (3.18), (3.23), (3.32), (H4), and monotonicity of
function g̃(x), we have

g̃
(
eu2(η2)

)
≤ g̃

(
eu1(η1)

)
≤ 1

ω

∫κ+ω

κ

g
(
t, eu1(t−τ1(t))

)
Δt

≤ eu2(η2)

ω

∫κ+ω

κ

h
(
t, eu1(t), eu2(t)

)
e−u1(t) Δt ≤ c0eu2(η2).

(3.33)

From (H3), (H5), and the continuity of function g̃(x), one can easily see that there exists a
positive constant α2 such that

g̃(α2)− c0α2 = 0. (3.34)

Then, from (3.33), (3.34), and the monotonicity of function g̃(x) − c0x, we have

u2
(
η2
) ≥ lnα2. (3.35)

By Lemma 2.5, we obtain from (3.22) and (3.35) that for all t ∈ Iω

u2(t) ≥ u2
(
η2
) −

∫κ+ω

κ

∣∣∣uΔ
2 (t)

∣∣∣Δt ≥ lnα2 −
[
Ĉ + ĉ

]
ω := β14. (3.36)

By Lemma 2.5, we also obtain from (3.21), (3.26) that for all t ∈ Iω

u1(t) ≥ u1
(
η1
) −

∫κ+ω

κ

∣∣∣uΔ
1 (t)

∣∣∣Δt ≥ β14 − ln
[
ĉ

d̂

]
−
[
G̃(0) + g̃(0)

]
ω := β13. (3.37)

Case 2. If u2(η2) < u1(η1), then from (3.18), (3.23), (3.32), (H4), and monotonicity of
function g̃(x), we have

g̃
(
eu1(η1)

)
≤ 1

ω

∫κ+ω

κ

g
(
t, eu1(t−τ1(t))

)
Δt ≤ eu2(η2)

ω

∫κ+ω

κ

h
(
t, eu1(t), eu2(t)

)
e−u1(t) Δt

≤ c0eu2(η2) ≤ c0eu1(η1).

(3.38)

Then, from (3.34) and the monotonicity of function g̃(x) − c0x, we have

u1
(
η1
) ≥ lnα2. (3.39)

By Lemma 2.5, we obtain from (3.21), (3.39) that for all t ∈ Iω

u1(t) ≥ u1
(
η1
) −

∫κ+ω

κ

∣∣∣uΔ
1 (t)

∣∣∣Δt ≥ lnα2 −
[
G̃(0) + g̃(0)

]
ω := β23. (3.40)
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By Lemma 2.5, we also obtain from (3.22), (3.25), and (3.40) that for all t ∈ Iω

u2(t) ≥ u2
(
η2
) −

∫κ+ω

κ

∣∣∣uΔ
2 (t)

∣∣∣Δt ≥ β23 + ln
[
ĉ

d̂

]
−
[
Ĉ + ĉ

]
ω := β24. (3.41)

Now, we take β3 =: min{β13, β23} and β4 =: min{β14, β24}. Then it follows from (3.36), (3.37),
(3.40), and (3.41) that for all t ∈ Iω, u1(t) ≥ β3 and u2(t) ≥ β4. Hence from these, (3.30), and
(3.31), we have

sup
t∈Iω

|u1(t)| ≤ max
{∣∣β1

∣∣, ∣∣β3
∣∣} := β5, sup

t∈Iω
|u1(t)| ≤ max

{∣∣β2
∣∣, ∣∣β4

∣∣} := β6. (3.42)

Clearly, β5 and β6 are independent of λ.
On the other hand, for μ ∈ [0, 1], we consider the following algebraic system:

g̃(eu1) − μh(eu1 , eu2)eu2−u1 = 0,

ĉ − d̂eu2−u1 = 0,
(3.43)

where (u1, u2)
T ∈ R

2. From the second equation of (3.43) and (H6), we have

u2 = u1 + ln
[
ĉ

d̂

]
. (3.44)

From the first equation of (3.43) and (H4), we also have

g̃(eu1) = μh(eu1 , eu2)eu2−u1 ≥ 0. (3.45)

Then, from (3.44) and the monotonicity of function g̃(x), we obtain

u1 ≤ lnα1. (3.46)

Substituting (3.44) into the first equation of (3.43), we can get from (H4), (3.30), (3.32), and
(3.46) that

g̃(eu1) = μ
ĉ

d̂
h(eu1 , eu2) ≤ ĉ

d̂
h(eu1 , eu2) ≤ ĉ

d̂

[
â0e(m−1)u1 + â1e(m−2)u1 + · · · + âm−1

]
eu1

≤ ĉ

d̂

[
â0e(m−1)β1 + â1e(m−2)β1 + · · · + âm−1

]
eu1 = c0

ĉ

d̂
eu1 .

(3.47)

In view of (H3), (H5), and the continuity of function g̃(x), it is easy to see that there exists a
positive constant α3 such that

g̃(α3)− c0
ĉ

d̂
α3 = 0. (3.48)
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Then, from (3.47), (3.48), and the monotonicity of function g̃(x), we obtain

u1 ≥ lnα3. (3.49)

It follows from (3.44), (3.46), and (3.49) that

|u1| ≤ max{|lnα1|, |lnα3|} := β7, |u2| ≤ β7 +
∣∣∣ln ĉ − ln d̂

∣∣∣ := β8. (3.50)

Clearly, β7 and β8 are also independent of μ.
We take Ω = {u = (u1(t), u2(t))

T ∈ X | ‖u‖ < β}, here β = β5 + β6 + β7 + β8. Now we
check the conditions of Lemma 2.4.

(a) By (3.42), one can conclude that for each λ ∈ (0, 1), u ∈ ∂Ω ∩DomL, Lu/=λNu.

(b) When (u1(t), u2(t))
T ∈ ∂Ω ∩ KerL, (u1(t), u2(t))

T is a constant vector in R
2, we

denote it by (u1, u2)
T and |u1| + |u2| = β. If

QNu =

(
g̃(eu1) − h(eu1 , eu2)eu2−u1

ĉ − d̂eu2−u1

)
= 0, (3.51)

then (u1, u2)
T is a constant solution of system (3.43)with μ = 1. By (3.50), we have |u1|+ |u2| ≤

β7 + β8 < β. This contradiction implies that for each u ∈ ∂Ω ∩ KerL,QNu/= 0.

(c) In order to verify the condition (c) in Lemma 2.4, we define φ : R
2 × [0, 1] → R

2 by

φ
(
u1, u2, μ

)
=

(
g̃(eu1)

ĉ − d̂eu2−u1

)
+ μ

(
−h(eu1 , eu2)eu2−u1

0

)
, (3.52)

where μ ∈ [0, 1] is a parameter. When (u1, u2)
T ∈ ∂Ω ∩ KerL, (u1, u2)

T is a constant vector
in R

2 with |u1| + |u2| = β. By (3.50) we know φ(u1, u2, μ)/= (0, 0)T on ∂Ω ∩ KerL. Thus, φ is a
homotopy mapping. Moreover, it is not difficult to see that the following algebraic system:

g̃(eu1) = 0, ĉ − d̂eu2−u1 = 0, (3.53)

has a unique solution (u†
1, u

†
2)

T ∈ ∂Ω ∩ KerL. So, due to homotopy invariance theorem of
topology degree and taking J = I : ImQ → KerL, (u1, u2)

T → (u1, u2)
T, we obtain

deg
(
JQN,Ω ∩ KerL, (0, 0)T

)
= deg

(
φ(u1, u2, 1),Ω ∩ KerL, (0, 0)T

)

= deg
(
φ(u1, u2, 0),Ω ∩ KerL, (0, 0)T

)
= sign

{
−g̃

(
eu

†
1

)
eu

†
2

}
/= 0.

(3.54)

By now we have proved that Ω satisfies all the requirements in Lemma 2.4. Hence, system
(1.1) has at least one ω-periodic solution. This completes the proof.
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Noticing that both systems (1.2) and (1.3) are special cases of system (1.1), by
Theorem 3.1, we can obtain the following results.

Theorem 3.2. Under the assumptions (H1)–(H4), system (1.2) has at least one positive ω-periodic
solution if and only if (H5) and (H6) hold.

Theorem 3.3. Under the assumptions (H1)–(H4), system (1.3) has at least one positive ω-periodic
solution if and only if (H5) and (H6) hold.

The proof of Theorem 3.1 shows that it remains valid for the following periodic semi-
ratio-dependent predator-prey system on a time scale:

uΔ
1 (t) = g

(
t, eu1(t−τ1(t))

)
− h

(
t, eu1(t), eu2(t)

)
eu2(t−τ2(t))−u1(t),

uΔ
2 (t) = c(t) − d(t)eu2(t−τ3(t))−u1(t−τ3(t)).

(3.55)

x′(t) = x(t)g(t, x(t − τ1(t))) − h
(
t, x(t), y(t)

)
y(t − τ2(t)),

y′(t) = y(t)
[
c(t) − d(t)

y(t − τ3(t))
x(t − τ3(t))

]
,

(3.56)

x(k + 1) = x(k) exp
[
g(k, x(k − τ1(k))) − h

(
k, x(k), y(k)

)y(k − τ2(k))
x(k)

]
,

y(k + 1) = y(k) exp
[
c(k) − d(k)

y(k − τ3(k))
x(k − τ3(k))

]
,

(3.57)

Remark 3.4. One can easily verify that if their parameters are positive ω-periodic functions,
all the prey growth types and the functional responses mentioned previously satisfy the
assumptions of Theorem 3.1. Therefore, by Theorem 3.1, the system (1.1) with the logistic,
the Gilpin, or the Smith prey growth and with the Lotka-Volterra, the Holling, the sigmoidal,
the Ivlev, theMonod-Haldane, or the Beddington-DeAngelis functional responses always has
at least one ω-periodic solution.

Remark 3.5. Similarly, by Theorems 3.2 and 3.3, the systems (1.2) and (1.3) with the logistic,
the Gilpin, or the Smith prey growth and with the Lotka-Volterra, the Holling, the sigmoidal,
the Ivlev, the Monod-Haldane, or the Beddington-DeAngelis functional responses, always
have at least one positive ω-periodic solution, respectively.

Remark 3.6. Bohner et al. [19], Fazly and Hesaaraki [21] studied the special cases of system
(1.1) for τ1(t) = τ2(t) = τ3(t) = 0, g(t, x) = a(t) − b(t)x, and h(t, x, y) = p(t, x). Zhuang [26]
studied the special case of system (1.1) for τ2(t) = 0, g(t, x) = a(t) − b(t)x, and h(t, x, y) =
k(t)x/(m2 + x2). Therefore, our Theorem 3.1 generalizes and improves Theorem 3.4 in [19]
and Theorem 3.1 in [26] and generalizes Theorem 1 in [21].
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Remark 3.7. Wang et al. [13] studied the special case of system (1.2) for τ1(t) = τ2(t) = τ3(t) =
0, g(t, x) = a(t) − b(t)x, and h(t, x, y) = p(t, x). Ding et al. [10] studied the special case of
system (1.2) for τ2(t) = τ3(t) = 0, g(t, x) = a(t) − b(t)x, and h(t, x, y) = k(t)x/(m2 + x2) . Ding
and Jiang [8] studied the special case of system (1.2) for h(t, x, y) = p(t, x). Liu [11] studied
the special case of system (1.2) for τ1(t) = τ2(t) = τ3(t) = 0 and g(t, x) = a(t) − b(t)x. Liu
and Huang [12] studied the special case of system (3.56) for τ1(t) = τ2(t) = 0 and g(t, x) =
a(t)−b(t)x. Ding and Jiang [9] studied the special case of system (3.56) for τ1(t) = 0. Therefore,
our Theorem 3.2 generalizes and improves Theorem 3.3 in [13] and Theorem 2.1 in [10] and
generalizes Theorem 2.2 in [8], Theorem 2.2 in [9], Theorem 2.1 in [11], and Corollary 3.1 in
[12].

Remark 3.8. Fan and Wang [14], Fazly and Hesaaraki [15] studied the special cases of system
(1.3) for τ1(k) = τ2(k) = τ3(k) = 0, g(k, x) = a(k) − b(k)x, and h(k, x, y) = p(k, x). Liu [16]
studied the special case of system (1.3) for τ1(k) = τ2(k) = τ3(k) = 0 and g(k, x) = a(k)−b(k)x.
Therefore, our Theorem 3.3 generalizes and improves Theorem 2.1 in [14] and generalizes
Theorem 1 in [15] and Theorem 2.1 in [16].
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