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The aim of this work is to investigate the global stability, periodic nature, oscillation, and
the boundedness of all admissible solutions of the difference equation xn+1 = Axn−2r−1/(B −
C
∏k

i=lxn−2i), n = 0, 1, 2, . . . where A,B,C are positive real numbers and l, r, k are nonnegative
integers, such that l ≤ k.

1. Introduction and Preliminaries

Although some difference equations look very simple, it is extremely difficult to understand
thoroughly the global behaviors of their solutions. One can refer to [1, 2]. The study of
nonlinear rational difference equations of higher order is of paramount importance, since we
still know so little about such equations. It is worthwhile to point out that although several
approaches have been developed for finding the global character of difference equations [2–
4], relatively a large number of difference equations have not been thoroughly understood
yet [5–8].

Aloqeili in [9] discussed the stability properties and semicycle behavior of the
solutions of the difference equation:

xn+1 =
xn−1

a − xnxn−1
, n = 0, 1, 2, . . . , (1.1)

with real initial conditions and positive real number a.
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In [10], the authors investigated the global asymptotic stability of the difference
equation:

xn+1 =
Axn−1

B + C
∏k

i=lxn−2i
, n = 0, 1, 2, . . . , (1.2)

whereA,B,C are nonnegative real numbers and l, k are nonnegative integers, such that l ≤ k.
Also in [11], they discussed the existence of unbounded solutions under certain

conditions of the difference equation:

xn+1 =
A
∏k

i=lxn−2i−1

B + C
∏k−1

i=l xn−2i
, n = 0, 1, 2, . . . , (1.3)

where A,B,C are nonnegative real numbers and l, k are nonnegative integers, l < k
In [12], the global asymptotic stability of the difference equation:

xn+1 =
Axn−2r−1

B + Cxn−2lxn−2k
, n = 0, 1, 2, . . . (1.4)

was discussed, where A,B,C are nonnegative real numbers and r, l, k are nonnegative
integers such that l ≤ k and r ≤ k.

In [13], the global stability and periodic nature of the solutions of the difference
equations:

xn+1 =
xn−2

±1 + xnxn−1xn−2
, n = 0, 1, 2, . . . (1.5)

were discussed, where the initial conditions x−2, x−1, x0 are real numbers.
In [14], we discussed the oscillation, boundedness, and the global behavior of all

admissible solutions of the difference equation:

xn+1 =
Axn−1

B − Cxnxn−2
, n = 0, 1, 2, . . . , (1.6)

where A,B,C are positive real numbers.
In this paper, we study the global asymptotic stability of the difference equation

xn+1 =
Axn−2r−1

B − C
∏k

i=lxn−2i
, n = 0, 1, 2, . . . , (1.7)

where A,B,C are nonnegative real numbers and l, r, k are nonnegative integers, such that
l ≤ k.
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Consider the difference equation:

xn+1 = f(xn, xn−1, . . . , xn−k), n = 0, 1, 2 . . . , (1.8)

where f : Rk+1 → R. An equilibrium point for (1.8) is a point x ∈ R such that x =
f(x, x, . . . , x).

(1) An equilibrium point x for (1.8) is called locally stable if for every ε > 0, ∃δ > 0
such that every solution {xn}with initial conditions x−k, x−k+1, . . . , x0 ∈]x − δ, x + δ[
is such that xn ∈]x − ε, x + ε[, ∀n ∈ N. Otherwise x is said to be unstable.

(2) The equilibrium point x of (1.8) is called locally asymptotically stable if it is locally
stable and there exists γ > 0 such that for any initial conditions x−k, x−k+1, . . . , x0 ∈
]x − γ, x + γ[, the corresponding solution {xn} tends to x.

(3) An equilibrium point x for (1.8) is called global attractor if every solution {xn}
converges to x as n → ∞.

(4) The equilibrium point x for (1.8) is called globally asymptotically stable if it is
locally asymptotically stable and global attractor.

The linearized equation associated with (1.8) is

yn+1 =
k∑

i=0

∂f

∂xn−i
(x, . . . , x)yn−i, n = 0, 1, 2, . . . . (1.9)

The characteristic equation associated with (1.9) is

λk+1 −
k∑

i=0

∂f

∂xn−i
(x, . . . , x)λk−i = 0. (1.10)

Theorem 1.1 (see [2]). Assume that f is a C1 function and let x be an equilibrium point of (1.8).
Then the following statements are true.

(1) If all roots of (1.10) lie in the open disk |λ| < 1, then x is locally asymptotically stable.

(2) If at least one root of (1.10) has absolute value greater than one, then x is unstable.

2. Linearized Stability Analysis

Consider the difference equation:

xn+1 =
Axn−2r−1

B − C
∏k

i=lxn−2i
, n = 0, 1, 2, . . . , (2.1)

where A,B,C are nonnegative real numbers and l, r, k are nonnegative integers, such that
l ≤ k.
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The change of variables xn = k−l+1
√
B/Cyn reduces (1.7) to the difference equation:

yn+1 =
γyn−2r−1

1 −∏k
i=lyn−2i

, n = 0, 1, 2, . . . , (2.2)

where γ = A/B.
Now we determine the equilibrium points of (2.2) and discuss their local asymptotic

behavior. It is clear that the values of the equilibrium points depend on whether k − l is even
or odd.

When k − l is odd, we have the equilibrium points y = 0 and y = ± k−l+1
√
1 − γ if γ < 1

and y = 0 only if γ ≥ 1.
When k − l is even, we have the equilibrium points y = 0 and y = k−l+1

√
1 − γ .

Now assume that K = max{2k, 2r + 1}.
The linearized equation associated with (2.2) about y is

zn+1 −
γ

1 − yk−l+1 zn−2r−1 −
γyk−l+1

(
1 − yk−l+1)2

k∑

i=l

zn−2i = 0, n = 0, 1, 2, . . . . (2.3)

The characteristic equation associated with this equation is

λK+1 − γ

1 − yk−l+1 λ
K−2r−1 − γyk−l+1

(
1 − yk−l+1)2

k∑

i=l

λK−2i = 0. (2.4)

We summarize the results of this section in the following two theorems.

Theorem 2.1. Assume that K = 2k > 2r + 1. Then the following statements are true.

(1) The zero equilibrium point is locally asymptotically stable if γ < 1 and unstable (saddle
point) if γ > 1.

(2) When k − l is even, the equilibrium point y = k−l+1
√
1 − γ is unstable if γ < 1 and unstable

(saddle point) if γ > 1.

(3) When k − l is odd, the equilibrium points y = ± k−l+1
√
1 − γ are unstable.

Proof. (1) The linearized equation (2.3) about y = 0 is

zn+1 − γzn−2r−1 = 0, n = 0, 1, 2, . . . . (2.5)

The characteristic equation associated with this equation is

λ2k+1 − γλ2k−2r−1 = 0. (2.6)

So λ = 0, λ = ± 2r+2
√
γ . Therefore the result follows.
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(2) Suppose that k − l is even. The linearized equation (2.3) about y = k−l+1
√
1 − γ is

zn+1 − zn−2r−1 − 1
γ

(
1 − γ

) k∑

i=l

zn−2i = 0, n = 0, 1, 2, . . . . (2.7)

The associated characteristic equation (2.4) becomes

λ2k+1 − λ2k−2r−1 − 1
γ

(
1 − γ

) k∑

i=l

λ2k−2i = 0. (2.8)

Let

f(λ) = λ2k+1 − λ2k−2r−1 − 1
γ

(
1 − γ

) k∑

i=l

λ2k−2i = 0. (2.9)

We can see that f(λ) has a real root in (1,∞) if γ < 1 and when γ > 1, f(λ) has a root in
(1,∞) and some roots with |λ| < 1. Therefore the result follows.

(3) When k − l is odd, f(λ) has a root in (1,∞) and some roots with |λ| < 1, if γ < 1.
Therefore y = ±√1 − γ are unstable.

Theorem 2.2. Assume that K = 2r + 1 > 2k. Then the following statements are true.

(1) The zero equilibrium point is locally asymptotically stable if γ < 1 and a source if γ > 1.

(2) If k − l is even, then the equilibrium point y = k−l+1
√
1 − γ is unstable (saddle point).

(3) If k − l is odd, then the equilibrium points y = ± k−l+1
√
1 − γ are unstable (saddle points).

Proof. It is sufficient to consider the linearized equation about y:

zn+1 −
γ

1 − yk−l+1 zn−2r−1 −
γyk−l+1

(
1 − yk−l+1)2

k∑

i=l

zn−2i = 0, n = 0, 1, 2, . . . (2.10)

and its associated characteristic equation:

λ2r+2 − γ

1 − yk−l+1 − γyk−l+1
(
1 − yk−l+1)2

k∑

i=l

λ2r+1−2i = 0. (2.11)

3. Oscillation

Let t be the largest nonnegative integer such that 0 < 2t + 1 ≤ K and let s be the largest
nonnegative integer such that 0 ≤ 2s ≤ K.
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Theorem 3.1. Assume that γ < 1. Then the interval (− k−l+1
√
1 − γ, k−l+1

√
1 − γ) is an invariant interval

for (2.2).

Proof. The proof is by induction. Suppose that y−i ∈ (− k−l+1
√
1 − γ, k−l+1

√
1 − γ), i = 0, 1, . . . ,K.

Hence |y−i| < k−l+1
√
1 − γ , i = 0, 1, . . . ,K.

This implies that |∏k
i=ly−2i| < 1 − γ . Then

∣
∣y1

∣
∣ =

γ
∣
∣y−2r−1

∣
∣

∣
∣
∣1 −∏k

i=ly−2i
∣
∣
∣
≤ γ

∣
∣y−2r−1

∣
∣

∣
∣
∣1 −

∣
∣
∣
∏k

i=ly−2i
∣
∣
∣
∣
∣
∣
<
∣
∣y−2r−1

∣
∣,

∣
∣y2

∣
∣ =

γ
∣
∣y−2r

∣
∣

∣
∣
∣1 −∏k

i=ly−2i+1
∣
∣
∣
≤ γ

∣
∣y−2r

∣
∣

∣
∣
∣1 −

∣
∣
∣
∏k

i=ly−2i+1
∣
∣
∣
∣
∣
∣
<
∣
∣y−2r

∣
∣.

(3.1)

If for a certain n0 ∈ N we have yn0−K, yn0−K+1, . . . , yn0 ∈ (− k−l+1
√
1 − γ, k−l+1

√
1 − γ), then

∣
∣yn0+1

∣
∣ =

γ
∣
∣yn0−2r−1

∣
∣

∣
∣
∣1 −∏k

i=ly−2i
∣
∣
∣
≤ γ

∣
∣yn−2r−1

∣
∣

∣
∣
∣1 −

∣
∣
∣
∏k

i=ly−2i
∣
∣
∣
∣
∣
∣
<
∣
∣yn0−2r−1

∣
∣ < k−l+1

√
1 − γ. (3.2)

This completes the proof.

Corollary 3.2. Assume that {yn}∞n=−K be a solution of (2.2) such that either y−K, y−K+1, . . . , y−1, y0 ∈
(0, k−l+1

√
1 − γ) (or(− k−l+1

√
1 − γ, 0)). Then {yn}∞n=−K is positive (or negative). Moreover, {yn}∞n=−K

converges to the zero equilibrium point.

Theorem 3.3. Let {yn}∞n=−K be a nontrivial solution of (2.2) such that either

(C1) − k−l+1
√
1 − γ < y−2t−1, y−2t+1, . . . , y−1 < 0 < y−2s, y−2s+2, . . . , y0 < k−l+1

√
1 − γ

or

(C2) − k−l+1
√
1 − γ < y−2s, y−2s+2, . . . , y0 < 0 < y−2t−1, y−2t+1, . . . , y−1 < k−l+1

√
1 − γ is satisfied.

Then {yn}∞n=−K oscillates about y = 0 with semicycles of length one. Moreover y2(r+1)n+2j <
(or >)y2(r+1)(n−1)+2j and y2(r+1)n+2j+1 > (or <)y2(r+1)(n−1)+2j+1, j = 1, 2, . . . , r + 1 and
n = 0, 1, 2, . . ..

Proof. Assume that condition (C1) is satisfied. Then we have y1 = γy−2r−1/(1 − ∏k
i=ly−2i) >

y−2r−1, and y2 = γy−2r/(1 −
∏k

i=ly−2i+1) < y−2r .
By induction we get 0 > y2(r+1)n+2j+1 > y2(r+1)(n−1)+2j+1, and 0 < y2(r+1)n+2j <

y2(r+1)(n−1)+2j , n = 0, 1, 2, . . ..
If condition (C2) is satisfied, the result is similar and will be omitted.
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4. Global Behavior of (2.2)

Theorem 4.1. The following statements are true.

(1) If γ < 1, then the zero equilibrium point is a global attractor with basin
(− k−l+1

√
1 − γ, k−l+1

√
1 − γ)K+1.

(2) If γ = 1, then (2.2) has prime period two solutions of the form . . . , 0, ϕ, 0, ϕ, 0, . . ., where
ϕ ∈ R.

(3) If γ > 1, then there exist solutions which are neither bounded nor persist.

Proof. (1) Suppose that y−K, y−K+1, . . . , y−1, y0 ∈ (− k−l+1
√
1 − γ, k−l+1

√
1 − γ). Then using

Theorem 3.1, we have that yn ∈ (− k−l+1
√
1 − γ, k−l+1

√
1 − γ), n ≥ 1.

Moreover, we have |yn+1| < |yn−2r−1|, n = 0, 1, 2, . . ..
That is, the subsequences {|y2(r+1)n+j |}∞n=−1, j = 1, 2, . . . , 2r + 2 are decreasing.
From (2.2) we have

∣
∣y2(r+1)n+j

∣
∣ =

γ
∣
∣y2(r+1)(n−1)+j

∣
∣

∣
∣
∣1 −∏k

i=ly2(r+1)n+j−2i−1
∣
∣
∣
≤ γ

∣
∣y2(r+1)(n−1)+j

∣
∣

∣
∣
∣1 −

∣
∣
∣
∏k

i=ly2(r+1)n+j−2i−1
∣
∣
∣
∣
∣
∣
. (4.1)

Now suppose that |y2(r+1)n+j | → Lj as n → ∞, j = 1, 2, . . . , 2r + 2. Then the last
inequality implies that

Lj ≤
γLj

∣
∣
∣1 −∏k

i=lLj−2i−1
∣
∣
∣
, j = 1, 2, . . . , 2r + 2. (4.2)

If for a certain j ∈ {1, 2, . . . , 2r + 2} we have Lj /= 0, then |1 −∏k
i=lLj−2i−1| ≤ γ . This implies that

1 + γ ≥
k∏

i=l

Lj−2i−1 ≥ 1 − γ. (4.3)

This is a contradiction as the the subsequences {|y2(r+1)n+j |}∞n=−1, j = 1, 2, . . . , 2r + 2 are
decreasing. Therefore, Lj = 0, j = 1, 2, . . . , 2r + 2, and {yn}∞n=−K converges to zero.

(2) Clear!
(3) Let {yn}∞n=−K be a solution of (2.2) with initial conditions, |y−i| < k−l+1

√
γ − 1 (>

k−l+1
√
γ + 1), i = 2s, 2s − 2, . . . , 2, 0, and |y−i| > k−l+1

√
γ + 1 (< k−l+1

√
γ − 1), i = 2t − 1, 2t − 3, . . . , 1.

We consider only the case |y−i| < k−l+1
√
γ − 1, i = 2s, 2s − 2, . . . 2, 0, and |y−i| > k−l+1

√
γ + 1,

i = 2t − 1, 2t − 3, . . . , 1.
It follows that |∏k

i=ly−2i| = |y−2k||y−2k+2| · · · |y0| < γ − 1.
That is,

−γ + 1 <
k∏

i=l

y−2i < γ − 1. (4.4)
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This implies that −γ + 2 < 1 −∏k
i=ly−2i < γ and so |1 −∏k

i=ly−2i| < γ . Hence we have

∣
∣y1

∣
∣ =

∣
∣γy−2r−1

∣
∣

∣
∣
∣1 −∏k

i=ly−2i
∣
∣
∣
>

γ
∣
∣y−2r−1

∣
∣

γ
=
∣
∣y−2r−1

∣
∣ > k−l+1

√
γ + 1. (4.5)

Also |∏k
i=ly−2i+1| > γ+1 implies that γ+2 < 1−∏k

i=ly−2i+1 < −γ and so |1−∏k
i=ly−2i+1| > γ .

Hence we have

∣
∣y2

∣
∣ =

∣
∣γy−2r

∣
∣

∣
∣
∣1 −∏k

i=ly−2i+1
∣
∣
∣
<

γ
∣
∣y−2r

∣
∣

γ
=
∣
∣y−2r

∣
∣ < k−l+1

√
γ − 1. (4.6)

By induction we get

∣
∣y2(r+1)n+2j+1

∣
∣ >

∣
∣y2(r+1)(n−1)+2j+1

∣
∣ > k−l+1

√
γ + 1,

∣
∣y2(r+1)n+2j

∣
∣ <

∣
∣y2(r+1)(n−1)+2j

∣
∣ < k−l+1

√
γ − 1,

(4.7)

n ≥ 0 and j = 0, 1, . . . , r. Now suppose that

∣
∣y2(r+1)(n−1)+2j+1

∣
∣ −→ L2j+1 ∈

(
k−l+1
√
γ + 1,∞

]

,

∣
∣y2(r+1)(n−1)+2j

∣
∣ −→ L2j ∈

[

0, k−l+1
√
γ − 1

)

,

(4.8)

as n → ∞, j = 0, 1, . . . , r.
But as

∣
∣y2(r+1)n+2j

∣
∣ =

γ
∣
∣y2(r+1)(n−1)+2j

∣
∣

∣
∣
∣1 −∏k

i=ly2(r+1)n+2j−2i−1
∣
∣
∣
≤ γ

∣
∣y2(r+1)(n−1)+2j

∣
∣

∣
∣
∣1 −

∣
∣
∣
∏k

i=ly2(r+1)n+j−2i−1
∣
∣
∣
∣
∣
∣
, (4.9)

then

L2j ≤
γL2j

∣
∣
∣1 −∏k

i=lL2j−2i−1
∣
∣
∣
, j = 0, 1, . . . , r. (4.10)

We claim that for each j = 0, 1, . . . , r, L2j = 0.
For the sake of contradiction suppose that there exists j ∈ {0, 1, . . . , r} with L2j ∈

(0, k−l+1
√
γ − 1).
Then (4.10) gives

∣
∣
∣
∣
∣
1 −

k∏

i=l

L2j−2i−1

∣
∣
∣
∣
∣
≤ γ. (4.11)
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Figure 1: The difference equation yn+1 = 0.6yn−1/(1 − ynyn−2).
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Figure 2: The difference equation yn+1 = 0.7yn−3/(1 − ynyn−2).

This implies that

−γ + 1 ≤
k∏

i=l

L2j−2i−1 ≤ γ + 1. (4.12)

As L2j+1 ∈ ( k−l+1
√
γ + 1,∞], j = 0, 1, . . . , r, we have a contradiction.

Thus it is true that for each j = 0, 1, . . . , r we have L2j = 0 and so limn→∞y2n = 0.
We now claim that for each j = 0, 1, . . . , r, L2j = ∞.
For the sake of contradiction, suppose that there exists j ∈ {0, 1, . . . , r} with L2j+1 ∈

( k−l+1
√
γ + 1,∞). Then

L2j+1 = lim
n→∞

∣
∣y2(r+1)(n−1)+2j+1

∣
∣ =

γ limn→∞
∣
∣y2(r+1)(n−1)+2j+1

∣
∣

∣
∣
∣1 −∏k

i=llimn→∞y2(r+1)n+2j−2i
∣
∣
∣

≥ γ limn→∞
∣
∣y2(r+1)(n−1)+2j+1

∣
∣

1 +
∏k

i=llimn→∞
∣
∣y2(r+1)n+2j−2i

∣
∣
=

γL2j+1

1 +
∏k

i=lL2j

= γL2j+1.

(4.13)
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Global attractivity of a higher×105

Figure 3: The difference equation yn+1 = 2yn−1/(1 − ynyn−2).
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Figure 4: The difference equation yn+1 = 2yn−3/(1 − ynyn−2).

This is a contradiction. Therefore for each j = 0, 1, . . . , r we have L2j+1 = ∞ and so
limn→∞y2n+1 = ∞.

The case when |y−i| > k−l+1
√
γ + 1, i = 2s, 2s − 2, . . . , 2, 0 and |y−i| < k−l+1

√
γ − 1, i = 2t −

1, 2t − 3, . . . , 1 is similar and will be omitted.

5. Numerical Examples

Example 5.1. Figure 1 shows that if r = 0, l = 0, k = 1 (K = max{2k, 2r + 1} = 2) and γ = 0.6,
then the solution {yn}∞n=−2 with initial conditions y−2 = −1, y−1 = 1.3, y0 = 1.1 converges to
zero.

Example 5.2. Figure 2 shows that if r = 1, l = 0, k = 1 (K = max{2k, 2r + 1} = 3) and γ = 0.7,
then the solution {yn}∞n=−3 with initial conditions y−3 = −1, y−2 = −1.2, y−1 = 1.3, y0 = 1.1
converges to zero.

Example 5.3. Figure 3 shows that if r = 0, l = 0, k = 1 (K = max{2k, 2r + 1} = 2) and γ = 2, then
the solution {yn}∞n=−3 with initial conditions y−2 = 2, y−1 = 0.4, y0 = 2.1 is unbounded.
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Example 5.4. Figure 4 shows that if r = 1, l = 0, k = 1 (K = max{2k, 2r + 1} = 3) and γ = 2,
then the solution {yn}∞n=−3 with initial conditions y−3 = 0.5, y−2 = 2, y−1 = 0.4, y0 = 2.1 is
unbounded.

Acknowledgment

This paper was funded by the Deanship of the Scientific Research (DSR), King Abdulaziz
University, Jeddah, under Grant no. (15-662-D1432). The author, therefore, acknowledge with
thanks DSR technical and financial support.

References

[1] R. P. Agarwal, Difference Equations and Inequalities, vol. 155, Marcel Dekker, New York, NY, USA, 1st
edition, 1992.
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