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We investigate the existence of positive solutions for the fractional order eigenvalue problem with 𝑝-Laplacian operator
−D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝑥))(𝑡) = 𝜆𝑓(𝑡, 𝑥(𝑡)), 𝑡 ∈ (0, 1), 𝑥(0) = 0, D

𝑡

𝛼
𝑥(0) = 0, D

𝑡

𝛾
𝑥(1) = ∑

𝑚−2

𝑗=1
𝑎
𝑗
D
𝑡

𝛾
𝑥(𝜉
𝑗
), whereD

𝑡

𝛽
, D
𝑡

𝛼
, D
𝑡

𝛾 are the
standard Riemann-Liouville derivatives and 𝑝-Laplacian operator is defined as 𝜑

𝑝
(𝑠) = |𝑠|

𝑝−2
𝑠, 𝑝 > 1. 𝑓 : (0, 1) × (0, +∞) →

[0, +∞) is continuous and 𝑓 can be singular at 𝑡 = 0, 1 and 𝑥 = 0. By constructing upper and lower solutions, the existence of
positive solutions for the eigenvalue problem of fractional differential equation is established.

1. Introduction

Differential equations of fractional order have been recently
proved to be valuable tools in the modeling of many phe-
nomena arising from science and engineering, such as vis-
coelasticity, electrochemistry, control, porous media, and
electromagnetism. For detail, see the monographs of Kilbas
et al. [1],Miller and Ross [2], and Podlubny [3] and the papers
[4–23] and the references therein.

In [16], the authors investigated the nonlinear nonlocal
boundary value problem:

D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝑥)) (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, D
𝑡

𝛼
𝑥 (0) = 0, 𝑥 (1) = 𝑎𝑥 (𝜉) ,

(1)

where 0 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1, 0 ≤ 𝑎 ≤ 1, 0 < 𝜉 < 1. By using
Krasnoselskii’s fixed point theorem and the Leggett-Williams
theorem, some sufficient conditions for the existence of
positive solutions to the above BVP are obtained. In [17], by
using the upper and lower solutions method, under suitable

monotone conditions, the authors investigated the existence
of positive solutions to the following nonlocal problem:

D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝑥)) (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, D
𝑡

𝛼
𝑥 (0) = 0, 𝑥 (1) = 𝑎𝑥 (𝜉) ,

D
𝑡

𝛼
𝑥 (1) = 𝑏D

𝑡

𝛼
𝑥 (𝜂) ,

(2)

where 0 < 𝛼, 𝛽 ≤ 2, 0 ≤ 𝑎, 𝑏 ≤ 1, 0 < 𝜉, 𝜂 < 1. Recently,
by means of the fixed point theorem on cones, Chai [18]
investigated two-point boundary value problem of fractional
differential equation with 𝑝-Laplacian operator:

D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝑥)) (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, D
𝑡

𝛼
𝑥 (0) = 0, 𝑥 (1) + 𝑎D

𝑡

𝛾
𝑥 (1) = 0.

(3)

Some existence and multiplicity results of positive solutions
are obtained.
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As far aswe know, no result has been obtained for the exis-
tence of positive solution for the fractional order eigenvalue
problem with 𝑝-Laplacian operator:

−D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝑥)) (𝑡) = 𝜆𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, D
𝑡

𝛼
𝑥 (0) = 0,

D
𝑡

𝛾
𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝑥 (𝜉
𝑗
) ,

(4)

where D
𝑡

𝛽, D
𝑡

𝛼, D
𝑡

𝛾 are the standard Riemann-Liouville
derivatives with 1 < 𝛼 ≤ 2, 0 < 𝛽 ≤ 1, 0 < 𝛾 ≤ 1,

0 ≤ 𝛼 − 𝛾 − 1, 0 < 𝜉
1
< 𝜉
2
< ⋅ ⋅ ⋅ < 𝜉

𝑝−2
< 1, 𝑎

𝑗
∈ [0, +∞)

with 𝑐 = ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
< 1, 𝑝-Laplacian operator is defined

as 𝜑
𝑝
(𝑠) = |𝑠|

𝑝−2
𝑠, 𝑝 > 1, 𝑓 can be singular at 𝑡 = 0, 1,

and 𝑥 = 0. In order to obtain the existence of positive
solutions of the fractional order eigenvalue problem (4), we
will apply the upper and lower solutions method associated
with the Schauder’s fixed point theorem. It is worth empha-
sizing that the problem (4) not only includes the well-known
Sturm-Liouville boundary value problems and the nonlocal
boundary value problems as special case, but also 𝑓 can be
singular at 𝑡 = 0, 1 and 𝑥 = 0.

The organization of this paper is as follows. In Section 2,
we present some necessary definitions and preliminary
results that will be used to prove our main results. In
Section 3, we put forward and prove ourmain results. Finally,
we will give an example to demonstrate our main results.

2. Preliminaries and Lemmas

In this section, we introduce some preliminary facts which
are used throughout this paper.

Definition 1 (see [1–3]). The Riemann-Liouville fractional
integral of order 𝛼 > 0 of a function 𝑥 : (0, +∞) → R is
given by

𝐼
𝛼
𝑥 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑥 (𝑠) 𝑑𝑠 (5)

provided that the right-hand side is pointwise defined on
(0, +∞).

Definition 2 (see [1–3]). The Riemann-Liouville fractional
derivative of order 𝛼 > 0 of a function 𝑥 : (0, +∞) → R

is given by

D
𝑡

𝛼
𝑥 (𝑡) =

1

Γ (𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑥 (𝑠) 𝑑𝑠, (6)

where 𝑛 = [𝛼] + 1 and [𝛼] denotes the integer part of number
𝛼, provided that the right-hand side is pointwise defined on
(0, +∞).

Proposition 3 (see [1–3]). (1) If 𝑥 ∈ 𝐿
1
(0, 1), ] > 𝜎 > 0, then

𝐼
]
𝐼
𝜎
𝑥 (𝑡) = 𝐼

]+𝜎
𝑥 (𝑡) , D

𝑡

𝜎
𝐼
]
𝑥 (𝑡) = 𝐼

]−𝜎
𝑥 (𝑡) ,

D
𝑡

𝜎
𝐼
𝜎
𝑥 (𝑡) = 𝑥 (𝑡) .

(7)

(2) If ] > 0, 𝜎 > 0, then

D
𝑡

]
𝑡
𝜎−1

=
Γ (𝜎)

Γ (𝜎 − ])
𝑡
𝜎−]−1

. (8)

Proposition 4 (see [1–3]). Let 𝛼 > 0, and 𝑓(𝑥) is integrable,
then

𝐼
𝛼
D
𝑡

𝛼
𝑓 (𝑥) = 𝑓 (𝑥) + 𝑐

1
𝑥
𝛼−1

+ 𝑐
2
𝑥
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛
𝑥
𝛼−𝑛

,

(9)

where 𝑐
𝑖
∈ R (𝑖 = 1, 2, . . . , 𝑛) and 𝑛 is the smallest integer

greater than or equal to 𝛼.

Definition 5. A continuous function 𝜓(𝑡) is called a lower
solution of the BVP (4), if it satisfies

−D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝜓)) (𝑡) ≤ 𝜆𝑓 (𝑡, 𝜓 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝜓 (0) ≥ 0, D
𝑡

𝛾
𝜓 (1) ≥

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝜓 (𝜉
𝑗
) ,

D
𝑡

𝛼
𝜓 (0) ≥ 0.

(10)

Definition 6. A continuous function 𝜙(𝑡) is called an upper
solution of the BVP (4), if it satisfies

−D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝜙)) (𝑡) ≥ 𝜆𝑓 (𝑡, 𝜙 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝜙 (0) ≤ 0, D
𝑡

𝛾
𝜙 (1) ≤

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝜙 (𝜉
𝑗
) ,

D
𝑡

𝛼
𝜙 (0) ≤ 0.

(11)

For forthcoming analysis, we first consider the following
linear fractional differential equation:

D
𝑡

𝛼
𝑥 (𝑡) + ℎ (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, D
𝑡

𝛾
𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝑥 (𝜉
𝑗
) .

(12)

Lemma 7 (see [15]). If 1 < 𝛼 ≤ 2 and ℎ ∈ 𝐿
1
[0, 1], then the

boundary value problem (12) has the unique solution

𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (13)

where

𝐺 (𝑡, 𝑠) = 𝑔
1
(𝑡, 𝑠) +

𝑡
𝛼−1

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

𝑚−2

∑

𝑗=1

𝑎
𝑗
𝑔
2
(𝜉
𝑗
, 𝑠) (14)
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is the Green function of the boundary value problem (12) and

𝑔
1
(𝑡, 𝑠) =

{{{{

{{{{

{

𝑡
𝛼−1

(1 − 𝑠)
𝛼−𝛾−1

− (𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡
𝛼−1

(1 − 𝑠)
𝛼−𝛾−1

Γ (𝛼)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝑔
2
(𝑡, 𝑠) =

{{{{

{{{{

{

(𝑡 (1 − 𝑠))
𝛼−𝛾−1

− (𝑡 − 𝑠)
𝛼−𝛾−1

Γ (𝛼)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(𝑡 (1 − 𝑠))
𝛼−𝛾−1

Γ (𝛼)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(15)

Lemma 8. The Green function 𝐺(𝑡, 𝑠) in Lemma 7 has the fol-
lowing properties:

(i) 𝐺(𝑡, 𝑠) is continuous on [0, 1] × [0, 1];
(ii) 𝐺(𝑡, 𝑠) > 0 for any 𝑠, 𝑡 ∈ (0, 1);
(iii) 𝑡𝛼−1𝜎

1
(𝑠) ≤ 𝐺(𝑡, 𝑠) ≤ 𝑡

𝛼−1
𝜎
2
(𝑠), for 𝑡, 𝑠 ∈ [0, 1], where

𝜎
1
(𝑠) =

∑
𝑚−2

𝑗=1
𝑎
𝑗
𝑔
2
(𝜉
𝑗
, 𝑠)

1 − ∑
𝑚−2

𝑗=1
𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗

,

𝜎
2
(𝑠) =

(1 − 𝑠)
𝛼−𝛾−1

Γ (𝛼)
+ 𝜎
1
(𝑠) .

(16)

Let 𝑞 > 1 satisfy the relation 1/𝑞 + 1/𝑝 = 1, where 𝑝 is
given by (4). To studyBVP (4), we first consider the associated
linear BVP:

D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝑥)) (𝑡) + ℎ (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, D
𝑡

𝛼
𝑥 (0) = 0,

D
𝑡

𝛾
𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝑥 (𝜉
𝑗
) ,

(17)

for ℎ ∈ 𝐿
1
[0, 1] and ℎ ≥ 0. For convenience, let

𝑏 = (Γ (𝛽))
1−𝑞

, (18)

then we have the following lemma.

Lemma 9. The associated linear BVP (17) has the unique pos-
itive solution

𝑥 (𝑡) = 𝑏∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

ℎ (𝜏) 𝑑𝜏)

𝑞−1

𝑑𝑠. (19)

Proof. In fact, let 𝑤 = D
𝑡

𝛼
𝑥, V = 𝜑

𝑝
(𝑤). By Proposition 4,

the solution of initial value problem

D
𝑡

𝛽
V (𝑡) + ℎ (𝑡) = 0, 𝑡 ∈ (0, 1) ,

V (0) = 0

(20)

is given by V(𝑡) = 𝐶
1
𝑡
𝛽−1

− 𝐼
𝛽
ℎ(𝑡), 𝑡 ∈ [0, 1]. From the

relations V(0) = 0, 0 < 𝛽 ≤ 1, it follows that 𝐶
1
= 0, and

so

V (𝑡) = −𝐼
𝛽
ℎ (𝑡) , 𝑡 ∈ [0, 1] . (21)

Noting thatD
𝑡

𝛼
𝑥 = 𝑤, 𝑤 = 𝜑

−1

𝑝
(V), it follows from (21) that

the solution of (17) satisfies

D
𝑡

𝛼
𝑥 (𝑡) = 𝜑

−1

𝑝
(−𝐼
𝛽
ℎ (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, D
𝑡

𝛾
𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝑥 (𝜉
𝑗
) .

(22)

By Lemma 7, the solution of (22) can be written as

𝑥 (𝑡) = −∫

1

0

𝐺 (𝑡, 𝑠) 𝜑
−1

𝑝
(−𝐼
𝛽
ℎ (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] . (23)

Since ℎ(𝑠) ≥ 0, 𝑠∈[0, 1], we have 𝜑−1
𝑝
(−𝐼
𝛽
ℎ(𝑠))=−(𝐼

𝛽
ℎ(𝑠))
𝑞−1

,

𝑠 ∈ [0, 1], which implies that the solution of (22) is given by

𝑥 (𝑡) = 𝑏∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

ℎ (𝜏) 𝑑𝜏)

𝑞−1

𝑑𝑠,

𝑡 ∈ [0, 1] .

(24)

The following lemma is a straightforward conclusion of
Lemma 9.

Lemma 10. If 𝑥 ∈ 𝐶([0, 1], 𝑅) satisfies

𝑥 (0) = 0, D
𝑡

𝛾
𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝑥 (𝜉
𝑗
) , (25)

and −D
𝑡

𝛼
𝑥(𝑡) ≥ 0 for any 𝑡 ∈ (0, 1), then 𝑥(𝑡) ≥ 0, for 𝑡 ∈

[0, 1].

3. Main Results

Set

𝑒 (𝑡) = 𝑡
𝛼−1

. (26)

We present the following two assumptions.
(H1)𝑓 : ((0, 1) × (0,∞) → [0, +∞)) is continuous and

decreasing in 𝑥.
(H2) For any 𝜇 > 0, 𝑓(𝑡, 𝜇) ̸≡ 0, and

0 < ∫

1

0

𝜎
2
(𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝜇𝑒 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠 < +∞.

(27)

Let 𝐸 = 𝐶[0, 1], and

𝑃 = {𝑦 ∈ 𝐸 : there exist positive numbers

0 < 𝑙
𝑥
< 1, 𝐿

𝑥
> 1 such that 𝑙

𝑥
𝑒 (𝑡) ≤ 𝑥 (𝑡) ≤ 𝐿

𝑥
𝑒 (𝑡) ,

𝑡 ∈ [0, 1]} .

(28)
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Clearly, 𝑒(𝑡) ∈ 𝑃, so 𝑃 is nonempty. For any 𝑥 ∈ 𝑃, define an
operator 𝑇 by

(𝑇
𝜆
𝑥) (𝑡) = 𝜆𝑏∫

1

0

𝐺 (𝑡, 𝑠)

× (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠,

𝑡 ∈ [0, 1] .

(29)

Theorem 11. Suppose conditions (H1) and (H2) hold. In addi-
tion, if the following condition (S1) holds:

(S1)

lim
𝜅→+∞

𝜅
1/(𝑞−1)

𝑓 (𝑡, 𝜅𝑥) = +∞, (30)

for (𝑡, 𝑥) ∈ (0, 1) × (0,∞) uniformly holds. Then there exists a
constant 𝜆∗ > 0 such that the BVP (4) has at least one positive
solution 𝑤 for any 𝜆 ∈ (𝜆

∗
, +∞), and there exists one positive

constant 𝑛 >1 such that

𝑒 (𝑡) ≤ 𝑤 (𝑡) ≤ 𝑛𝑒 (𝑡) , 𝑡 ∈ [0, 1] . (31)

Proof. The proof is divided into four steps.

Step 1. We show that 𝑇
𝜆
is well defined on 𝑃 and 𝑇

𝜆
(𝑃) ⊂ 𝑃,

and 𝑇
𝜆
is decreasing in 𝑥.

In fact, for any 𝑥 ∈ 𝑃, by the definition of 𝑃, there exists
two positive numbers 0 < 𝑙

𝑥
< 1, 𝐿

𝑥
> 1 such that 𝑙

𝑥
𝑒(𝑡) ≤

𝑥(𝑡) ≤ 𝐿
𝑥
𝑒(𝑡) for any 𝑡 ∈ [0, 1]. It follows from Lemma 8 and

(H1)-(H2) that

(𝑇
𝜆
𝑥) (𝑡) = 𝜆𝑏∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

≤ 𝜆𝑏𝑒 (𝑡) ∫

1

0

𝜎
2
(𝑠)

× (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑙
𝑥
𝑒 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

< +∞.

(32)

Now take 𝑐 = max
𝑡∈[0,1]

𝑥(𝑡), by (H2), for any 𝑠 ∈ (0, 1),
𝑓(𝑠, 𝑐) ̸≡ 0. Thus by the continuity of 𝑓(𝑡, 𝑥) and Lemma 8
and (32), we have

(𝑇
𝜆
𝑥) (𝑡) ≥ 𝜆𝑏𝑒 (𝑡) ∫

1

0

𝜎
1
(𝑠)

× (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

≥ 𝜆𝑏𝑒 (𝑡) ∫

1

0

𝜎
1
(𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑐) 𝑑𝜏)

𝑞−1

𝑑𝑠

> 0, 𝑡 ∈ (0, 1) .

(33)

Take

𝑙


𝑥
= min{1, 𝜆𝑏∫

1

0

𝜎
1
(𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑐) 𝑑𝜏)

𝑞−1

𝑑𝑠} ,

𝐿


𝑥
= max{1, 𝜆𝑏

×∫

1

0

𝜎
2
(𝑠) (∫

𝑠

0

(𝑠−𝜏)
𝛽−1

𝑓 (𝜏, 𝑙
𝑥
𝑒 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠} ,

(34)

then by (32) and (33),

𝑙


𝑥
𝑒 (𝑡) ≤ (𝑇

𝜆
𝑥) (𝑡) ≤ 𝐿



𝑥
𝑒 (𝑡) , (35)

which implies that 𝑇
𝜆
is well defined and 𝑇

𝜆
(𝑃) ⊂ 𝑃. And the

operator 𝑇
𝜆
is decreasing in 𝑥 from (H1). Moreover, by direct

computations, we also have

−D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
(𝑇
𝜆
𝑥))) (𝑡) = 𝜆𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

(𝑇
𝜆
𝑥) (0) = 0, D

𝑡

𝛼
(𝑇
𝜆
𝑥) (0) = 0,

D
𝑡

𝛾
(𝑇
𝜆
𝑥) (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
(𝑇
𝜆
𝑥) (𝜉
𝑗
) .

(36)

Step 2. In this step, we will focus on lower and upper solutions
of the fractional boundary value problem (4).

By Lemma 8, we have

𝑏∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑒 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

≥ 𝑒 (𝑡) 𝑏 ∫

1

0

𝜎
1
(𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓(𝜏, 𝑒 (𝜏))𝑑𝜏)

𝑞−1

𝑑𝑠,

∀𝑡 ∈ [0, 1] .

(37)

Let

𝜇 = (𝑏∫

1

0

𝜎
1
(𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓(𝜏, 𝑒 (𝜏))𝑑𝜏)

𝑞−1

𝑑𝑠)

−1

;

(38)

it follows from (37) that

𝜇𝑏∫

1

0

𝐺 (𝑡, 𝑠)(∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑒 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠 ≥ 𝑒 (𝑡) ,

∀𝑡 ∈ [0, 1] .

(39)

On the other hand, take

] (𝑡) = 𝑏∫

1

0

𝐺 (𝑡, 𝑠) (∫

s

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑒 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠;

(40)
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then by monotonicity of 𝑓 in 𝑥 and (37)–(40), for any 𝜆 > 𝜇,
we have

∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝜆] (𝜏)) 𝑑𝜏)
𝑞−1

𝑑𝑠

≤ ∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝜇] (𝜏)) 𝑑𝜏)
𝑞−1

𝑑𝑠

≤ ∫

1

0

𝜎
2
(𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑒 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

< +∞.

(41)

From (S1), we have

lim
𝜅→+∞

𝜅
1/(𝑞−1)

𝑓 (𝑡, 𝜅𝑥) = +∞, (42)

uniformly on (𝑡, 𝑥) ∈ (0, 1) × (0,∞). Thus there exists large
enough 𝜆

∗
> 𝜇 > 0, such that, for any 𝑡 ∈ (0, 1),

𝜆
∗1/(𝑞−1)

𝑓 (𝑠, 𝜆
∗
𝑒 (s)) ≥

𝛽

𝑏
(∫

1

0

𝜎
1
(𝑠) 𝑠
𝛽(𝑞−1)

𝑑𝑠)

−1/(𝑞−1)

,

(43)

which yields

𝜆
∗
𝑏∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝜆
∗
𝑒 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

≥ 𝛽(∫

1

0

𝜎
1
(𝑠) 𝑠
𝛽(𝑞−1)

𝑑𝑠)

−1/(𝑞−1)

× ∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑑𝜏)

𝑞−1

𝑑𝑠

≥ 𝛽(∫

1

0

𝜎
1
(𝑠) 𝑠
𝛽(𝑞−1)

𝑑𝑠)

−1/(𝑞−1)

× ∫

1

0

𝜎
1
(𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑑𝜏)

𝑞−1

𝑑𝑠𝑒 (𝑡) = 𝑒 (𝑡) ,

∀𝑡 ∈ [0, 1] .

(44)

Letting

𝜙 (𝑡) = 𝜆
∗
𝑏∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑒 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

= 𝜆
∗
] (𝑡) = 𝑇

𝜆
∗𝑒,

𝜓 (𝑡) = 𝜆
∗
𝑏∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝜆
∗
] (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

= 𝑇
𝜆
∗𝜙,

(45)

and by Lemma 9, (39), (44), and (45), one has

𝜙 (𝑡) = 𝜆
∗
𝑏∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓(𝜏, 𝑒(𝜏))𝑑𝜏)

𝑞−1

𝑑𝑠

≥ 𝑒 (𝑡) ,

𝜙 (0) = 0, D
𝑡

𝜙
𝜙 (0) = 0,

D
𝑡

𝛾
(𝜙𝑥) (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝜙 (𝜉
𝑗
) ,

(46)

𝜓 (𝑡) = 𝜆
∗
𝑏∫

1

0

𝐺 (𝑡, 𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝜆
∗
] (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

≥ 𝑒 (𝑡) ,

𝜓 (0) = 0, D
𝑡

𝜙
𝜓 (0) = 0,

D
𝑡

𝛾
(𝜓𝑥) (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝜓 (𝜉
𝑗
) .

(47)

By Step 1 and (46), (47), we know 𝜙(𝑡), 𝜓(𝑡) ∈ 𝑃. And it
follows from (45)–(47) that

𝑒 (𝑡) ≤ 𝜓 (𝑡) ≤ 𝜙 (𝑡) , ∀𝑡 ∈ [0, 1] . (48)

Consequently, it follows from (44)–(48) that

D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝜓)) (𝑡) + 𝜆

∗
𝑓 (𝑡, 𝜓 (𝑡))

= D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
(𝑇
𝜆
∗𝜙))) (𝑡) + 𝜆

∗
𝑓 (𝑡, 𝜓 (𝑡))

= −𝜆
∗
𝑓 (𝑡, 𝜙 (𝑡)) + 𝜆

∗
𝑓 (𝑡, 𝜓 (𝑡)) ≥ 0,

D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝜙)) (𝑡) + 𝜆

∗
𝑓 (𝑡, 𝜙 (𝑡))

= D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
(𝑇
𝜆
∗𝑒))) (𝑡) + 𝜆

∗
𝑓 (𝑡, 𝜙 (𝑡))

= −𝜆
∗
𝑓 (𝑡, 𝑒 (𝑡)) + 𝜆

∗
𝑓 (𝑡, 𝜙 (𝑡)) ≤ 0;

(49)

that is, 𝜙(𝑡) and 𝜓(𝑡) are a couple of lower and upper solu-
tions of fractional boundary value problem (4) by (46)–
(49), respectively.

Step 3. Let

𝐹 (𝑡, 𝑥) =

{{

{{

{

𝑓(𝑡, 𝜓 (𝑡)) , 𝑥 < 𝜓 (𝑡) ,

𝑓 (𝑡, 𝑥 (𝑡)) , 𝜓 (𝑡) ≤ 𝑥 ≤ 𝜙 (𝑡) ,

𝑓 (𝑡, 𝜙 (𝑡)) , 𝑥 > 𝜙 (𝑡) .

(50)

It follows from (H1) and (46) that 𝐹 : (0, 1) × [0, +∞) →

[0, +∞) is continuous.
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We will show that the fractional boundary value problem

−D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝑥)) (𝑡) = 𝜆

∗
𝐹 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, D
𝑡

𝛼
𝑥 (0) = 0,

D
𝑡

𝛾
𝑥 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝑥 (𝜉
𝑗
)

(51)

has a positive solution.
To see this, we consider the operator 𝐴

𝜆
∗ : 𝐶[0, 1] →

𝐶[0, 1] defined as follows:

(𝐴
𝜆
∗𝑥) (𝑡) = 𝜆

∗
𝑏∫

1

0

𝐺 (𝑡, 𝑠)

× (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝐹 (𝜏, 𝑥 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠,

𝑡 ∈ [0, 1] .

(52)

Obviously, a fixed point of the operator 𝐴
𝜆
∗ is a solution of

the BVP (51). Noting that 𝜙 ∈ 𝑃, then there exists a constant
0 < 𝑙

𝜙
< 1 such that 𝜙(𝑡) ≥ 𝑙

𝜙
𝑒(𝑡), 𝑡 ∈ [0, 1]. Thus for all

𝑥 ∈ 𝐸, it follows from Lemma 8, (50), and (H2) that

(𝐴
𝜆
∗𝑥) (𝑡)

≤ 𝜆
∗
𝑏∫

1

0

𝜎
2
(𝑠) (∫

s

0

(𝑠 − 𝜏)
𝛽−1

𝐹 (𝜏, 𝑥 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

≤ 𝜆
∗
𝑏∫

1

0

𝜎
2
(𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝜙 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

≤ 𝜆
∗
𝑏∫

1

0

𝜎
2
(𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝑙
𝜙
𝑒 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

< +∞,

(53)

which implies that the operator 𝐴
𝜆
∗ is uniformly bounded.

From the uniform continuity of 𝐺(𝑡, 𝑠) and the Lebesgue
dominated convergence theorem, we easily obtain that 𝐴 is
equicontinuous. Thus by the means of the Arzela-Ascoli the-
orem, we have that 𝐴

𝜆
∗ : 𝐸 → 𝐸 is completely continuous.

TheSchauder fixedpoint theorem implies that𝐴
𝜆
∗ has at least

a fixed point 𝑤 such that 𝑤 = 𝐴
𝜆
∗𝑤.

Step 4. We will prove that the boundary value problem (4) has
at least one positive solution.

In fact, we only need to prove that

𝜓 (𝑡) ≤ 𝑤 (𝑡) ≤ 𝜙 (𝑡) , 𝑡 ∈ [0, 1] . (54)

By (46), (47) and noticing that 𝑤 is fixed point of 𝐴
𝜆
∗ , we

know that

𝜙 (0) = 0, D
𝑡

𝛾
𝜙 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝜙 (𝜉
𝑗
) ,

D
𝑡

𝛼
𝜙 (0) = 0,

𝑤 (0) = 0, D
𝑡

𝛾
𝑤 (1) =

𝑚−2

∑

𝑗=1

𝑎
𝑗
D
𝑡

𝛾
𝑤(𝜉
𝑗
) ,

D
𝑡

𝛼
𝑤 (0) = 0.

(55)

Notice that the definition of 𝐹 and the function 𝑓(𝑡, 𝑥) is
nonincreasing in 𝑥, we obtain

𝑓 (𝑡, 𝜙 (𝑡)) ≤ 𝐹 (𝑡, 𝑥 (𝑡)) ≤ 𝑓 (𝑡, 𝜓 (𝑡)) , ∀𝑥 ∈ 𝐸. (56)

So by (48) and (56),

𝑓 (𝑡, 𝜙 (𝑡)) ≤ 𝐹 (𝑡, 𝑥 (𝑡)) ≤ 𝑓 (𝑡, 𝑒 (𝑡)) , ∀𝑥 ∈ 𝐸. (57)

Thus one has by (57)

D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝜙)) (𝑡) −D

𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝑤)) (𝑡)

= D
𝑡

𝛽
(𝜑
𝑝
(D
𝑡

𝛼
𝜙) − 𝜑

𝑝
(D
𝑡

𝛼
𝑤)) (𝑡)

= −𝜆
∗
𝑓 (𝑡, 𝑒 (𝑡)) + 𝜆

∗
𝐹 (𝑡, 𝑤 (𝑡)) ≤ 0,

∀𝑡 ∈ [0, 1] .

(58)

Let 𝑧(𝑡) = 𝜑
𝑝
(D
𝑡

𝛼
𝜙(𝑡)) − 𝜑

𝑝
(D
𝑡

𝛼
𝑤(𝑡)); then

D
𝑡

𝛽
𝑧 (𝑡) ≤ 0, 𝑡 ∈ [0, 1] , (59)

and (55) implies that 𝑧(0) = 0. It follows from (21) that

𝑧 (𝑡) ≤ 0, (60)

and then

𝜑
𝑝
(D
𝑡

𝛼
𝜙 (𝑡)) − 𝜑

𝑝
(D
𝑡

𝛼
𝑤 (𝑡)) ≤ 0. (61)

Notice that 𝜑
𝑝
is monotone increasing; we have

D
𝑡

𝛼
𝜙 (𝑡) ≤ D

𝑡

𝛼
𝑤 (𝑡) , that is, D

𝑡

𝛼
(𝜙 − 𝑤) (𝑡) ≤ 0. (62)

It follows from Lemma 10 and (55) that

𝜙 (𝑡) − 𝑤 (𝑡) ≥ 0. (63)

Thus we have 𝑤(𝑡) ≤ 𝜙(𝑡) on [0, 1]. By the same way, we also
have 𝑤(𝑡) ≥ 𝜓(𝑡) on [0, 1]. So

𝜓 (𝑡) ≤ 𝑤 (𝑡) ≤ 𝜙 (𝑡) , 𝑡 ∈ [0, 1] . (64)

Consequently, 𝐹(𝑡, 𝑤(𝑡)) = 𝑓(𝑡, 𝑤(𝑡)), 𝑡 ∈ [0, 1]. Then𝑤(𝑡) is
a positive solution of the problem (4).

Finally, by (48) and (64) and 𝜙 ∈ 𝑃, we have

𝑒 (𝑡 ) ≤ 𝜓 (𝑡) ≤ 𝑤 (𝑡) ≤ 𝜙 (𝑡) ≤ 𝑙
𝜙
𝑒 (𝑡) = 𝑛𝑒 (𝑡) , (65)

where

𝑛 = 𝑙
𝜙
> 1. (66)
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In the end of this work we also remark the above results
to the problem (4) with which 𝑓(𝑡, 𝑥) is nonsingular at 𝑥 = 0

and 𝑡 = 0, 1; that is, we have the following result.

Theorem 12. If 𝑓(𝑡, 𝑥) : [0, 1] × [0, +∞) → [0, +∞) is
continuous, decreasing in 𝑥 and 𝑓(𝑡, 𝜇) ̸≡ 0, for any 𝜇 > 0,
then the boundary value problem (4) has at least one positive
solution 𝑤(𝑡) for any 𝜆 > 0, and there exists a constant 𝑛 > 1

such that

𝑒 (𝑡) ≤ 𝑤 (𝑡) ≤ 𝑛𝑒 (𝑡) . (67)

Proof. The proof is similar to Theorem 11; we omit it here.

Example 13. Consider the following boundary value prob-
lem:

−D
𝑡

4/3
(𝜑
2
(D
𝑡

3/2
𝑥)) (𝑡) =

1

√𝑡1/2𝑥 (𝑡)

, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, D
𝑡

1/6
𝑥 (1) =

1

8
D
𝑡

1/6
𝑥(

1

4
) +

1

3
D
𝑡

1/6
𝑥(

3

4
) ,

D
𝑡

3/2
𝑥 (0) = 0.

(68)

Let 𝛼 = 3/2, 𝛽 = 4/3, 𝛾 = 1/6, 𝑝 = 2, and

𝑓 (𝑡, 𝑥) =
1

√𝑥𝑡1/2
. (69)

Firstly,

𝑐 =

𝑝−2

∑

𝑗=1

𝑎
𝑗
𝜉
𝛼−𝛾−1

𝑗
=
1

8
(
1

4
)

1/3

+
1

3
(
3

4
)

1/3

= 0.3816 < 1. (70)

And, it is easy to check that (H1) holds. For any 𝜇 > 0,
𝑓(𝑡, 𝜇) ̸≡ 0 and

0 < ∫

1

0

𝜎
2
(𝑠) (∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

𝑓 (𝜏, 𝜇𝑒 (𝜏)) 𝑑𝜏)

𝑞−1

𝑑𝑠

= ∫

1

0

𝜎
2
(𝑠) ∫

𝑠

0

(𝑠 − 𝜏)
1/3

𝜏
−1/2

𝜇
−1/2

𝑑𝜏 𝑑𝑠

= ∫

1

0

𝑠
5/6

𝜎
2
(𝑠) ∫

1

0

(1 − 𝜏)
1/3

𝜏
−1/2

𝜇
−1/2

𝑑𝜏 𝑑𝑠

= 𝜇
−1/2

∫

1

0

𝑠
5/6

𝜎
2
(𝑠) 𝑑𝑠𝐵 (

4

3
,
1

2
) < +∞,

(71)

which implies that (H2) holds.
On the other hand,

lim
𝜅→+∞

𝜅
1/(𝑞−1)

𝑓 (𝑡, 𝜅𝑥) = lim
𝜅→+∞

𝜅
1

√𝜅𝑥𝑡1/2
= +∞. (72)

Thus (S1) also holds.
By Theorem 11, the boundary value problem (68) has at

least one positive solution.
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