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This paper investigates the complete periodic synchronization of memristor-based neural networks with time-varying delays.
Firstly, under the framework of Filippov solutions, by using M-matrix theory and the Mawhin-like coincidence theorem in set-
valued analysis, the existence of the periodic solution for the network system is proved. Secondly, complete periodic synchronization
is considered for memristor-based neural networks. According to the state-dependent switching feature of the memristor, the error
system is divided into four cases. Adaptive controller is designed such that the considered model can realize global asymptotical
synchronization. Finally, an illustrative example is given to demonstrate the validity of the theoretical results.

1. Introduction

Memristor, as the fourth fundamental passive circuit, was
firstly postulated by Chua [1] in 1971. On May 1, 2008, the
Hewlett-Packard (HP) research team announced their real-
ization of a memristor prototype, with an official publication
in Nature [2, 3]. This new circuit element of memristor
shares many properties of resistors and shares the same
unit of measurement. Recently, memristor has received a
great deal of attention because of its potential applications in
next generation computer and powerful brain-like “neural”
computer. The papers [4–21] have given a detailed introduc-
tion on the memristor, so readers can consult [4–21] to get
more explanation. As noted in [10], from a systems-theoretic
point of view and a mathematical point of view, memris-
tor dynamics strictly obey Bernoulli’s nonlinear differential
equation, so the mathematical framework and its useful-
ness are worth studying. The paper [10] by Wu and Zeng
discussed the exponential stabilization of memristive neural
networks with time delays. The papers [11–14] investigated
the synchronization and antisynchronization control of a
class of memristor-based recurrent neural networks. A series
of results on stability analysis of memristor-based recurrent
neural networks were presented in [15–18]. The papers [19–
21] dealt with the existence and stability of periodic solution

of almost periodic of a class of memristor-based recurrent
neural networks.

Different from the previous works, in this paper, we
will study complete periodic synchronization of memristor-
based neural networks described by the following differential
equation:
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are negative constants). At first

glance, one might intuitively believe that the chaotic motion
is more complicated compared with the periodic motion,
the synchronization of chaotic oscillators is also complicated
than those of periodic oscillators [22]. However, this is not
always true, just as indicated in [23, 24], where an opposite
result was given.

The rest of this paper is organized as follows. In Section 2,
some preliminaries are introduced. In Section 3, the proof
of the existence of periodic solutions is presented. Com-
plete periodic synchronization is discussed in Section 4. In
Section 5, a numerical example is presented to demonstrate
the validity of the proposed results. Some conclusions are
drawn in Section 6.

Notation. R denotes the set of real numbers, R𝑛 denotes the
𝑛-dimensional Euclidean space, and R𝑚×𝑛 denotes the set of
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‖𝜑‖ = sup

−𝑟≤𝑠≤0
|𝜑(𝑠)|. [⋅, ⋅] represents the interval. co(𝑄)

denotes the closure of the convex hull of 𝑄. 𝐸
𝑛
denotes

the identity matrix of size 𝑛. A vector or matrix 𝐴 ≥ 0

means that all entries of 𝐴 are greater than or equal to zero;
𝐴 > 0 can be defined similarly. For vectors or matrices 𝐴
and 𝐵, 𝐴 ≥ 𝐵 (or 𝐴 > 𝐵) means that 𝐴 − 𝐵 ≥ 0 (or
𝐴 − 𝐵 > 0). 𝐾(R𝑛) denotes the collection of all nonempty
compact subsets of R with the Hausdorff metric 𝜌 defined
by 𝜌(𝐴, 𝐵) = max{𝛽(𝐴, 𝐵), 𝛽(𝐵, 𝐴)}, 𝐴, 𝐵 ∈ 𝐾(R𝑛), and
𝜌(𝐴, 𝐵) = sup{dist(𝑥, 𝐵) : 𝑥 ∈ 𝐴}, 𝜌(𝐵, 𝐴) = sup{dist(𝑦, 𝐴) :
𝑦 ∈ 𝐵}, 𝐾𝜐(R𝑛) = {𝐴 ∈ 𝐾(R𝑛) : 𝐴 is convex}.

2. Preliminaries

In this section, we give some definitions and properties,
which are needed later.

Definition 1 (see [25]). Suppose 𝐸 ⊆ R𝑛; then 𝑥 → 𝐹(𝑥) is
called a set-valued map from 𝐸 → R𝑛, if for each point 𝑥 ∈
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𝑁. A solution in Filippov’s sense of the Cauchy problem for
this system with initial condition 𝑥(0) = 𝑥

0
is an absolutely

continuous function 𝑥(𝑡), 𝑡 ∈ [0, 𝑇], which satisfies 𝑥(0) = 𝑥
0

and differential inclusion

�̇� (𝑡) ∈ 𝐹 (𝑡, 𝑥) , for a.a 𝑡 ∈ [0, 𝑇] . (4)

The initial value associated with system (1) is 𝑥
𝑖
(𝑡) =

𝜙(𝑡) ∈ 𝐶([−𝜏, 0];R), 𝑖 = 1, 2, . . . , 𝑛. Let 𝑑
𝑖
= min{ ́𝑑

𝑖
,

̀

𝑑

𝑖
},

𝑑

𝑖
= max{ ́𝑑

𝑖
,

̀

𝑑

𝑖
}, 𝑎
𝑖𝑗
= min{ ́𝑎

𝑖𝑗
, ̀𝑎

𝑖𝑗
}, 𝑎
𝑖𝑗
= max{ ́𝑎

𝑖𝑗
, ̀𝑎

𝑖𝑗
},

𝑏

𝑖𝑗
= min{ ́𝑏

𝑖𝑗
,

̀

𝑏

𝑖𝑗
}, 𝑏
𝑖𝑗
= max{ ́𝑏

𝑖𝑗
,

̀

𝑏

𝑖𝑗
}, 𝑎
𝑖𝑗
= max{|𝑎

𝑖𝑗
|, |𝑎

𝑖𝑗
|},

and ̃𝑏
𝑖𝑗
= max{|𝑏

𝑖𝑗
|, |𝑏

𝑖𝑗
|}. We define

co (𝑑
𝑖
(𝑥

𝑖 (
𝑡))) =

{

{

{

{

{

́

𝑑

𝑖
,









𝑥

𝑖 (
𝑡)









< 𝑇

𝑖
,

[𝑑

𝑖
, 𝑑

𝑖
] ,









𝑥

𝑖 (
𝑡)









= 𝑇

𝑖
,

̀

𝑑

𝑖
,









𝑥

𝑖 (
𝑡)









> 𝑇

𝑖
,

co (𝑎
𝑖𝑗
(𝑥

𝑖 (
𝑡))) =

{

{

{

{

{

́𝑎

𝑖𝑗
,









𝑥

𝑖 (
𝑡)









< 𝑇

𝑖
,

[𝑎

𝑖𝑗
, 𝑎

𝑖𝑗
] ,









𝑥

𝑖 (
𝑡)









= 𝑇

𝑖
,

̀𝑎

𝑖𝑗
,









𝑥

𝑖 (
𝑡)









> 𝑇

𝑖
,

co (𝑏
𝑖𝑗
(𝑥

𝑖 (
𝑡))) =

{

{

{

{

{

́

𝑏

𝑖𝑗
,









𝑥

𝑖 (
𝑡)









< 𝑇

𝑖
,

[𝑏

𝑖𝑗
, 𝑏

𝑖𝑗
] ,









𝑥

𝑖 (
𝑡)









= 𝑇

𝑖
,

̀

𝑏

𝑖𝑗
,









𝑥

𝑖 (
𝑡)









> 𝑇

𝑖
.

(5)

Clearly, system (1) is a differential equation with discontin-
uous right-hand side; its solution in the conventional sense
does not exist. Inspired by [10, 20, 21, 27–30], we adopt the
following definition of the solution in the sense of Filippov
for system (1).

Definition 3. Suppose that 𝜙(𝑠) = (𝜙
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𝐶([−𝜏, 0];R𝑛) is a continuous function. An absolutely con-
tinuous function 𝑥(𝑡) is said to be a solution with initial data
𝜙(𝑠) of system (1), if 𝑥(𝑡) satisfies the differential inclusion

�̇�

𝑖 (
𝑡) ∈ − co (𝑑𝑖 (𝑥𝑖 (𝑡))) 𝑥𝑖 (𝑡)

+

𝑛

∑

𝑗=1

co (𝑎
𝑖𝑗
(𝑥

𝑖 (
𝑡))) 𝑓𝑗

(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

co (𝑏
𝑖𝑗
(𝑥

𝑖 (
𝑡))) 𝑔𝑗

(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝐼𝑖 (

𝑡) ,

(6)

for all 𝑖 = 1, 2, . . . , 𝑛, or equivalently, there exist 𝑑
𝑖
(𝑡) ∈

co(𝑑
𝑖
(𝑥

𝑖
(𝑡))), 𝑎

𝑖𝑗
(𝑡) ∈ co(𝑎

𝑖𝑗
(𝑥

𝑖
(𝑡))), and 𝑏

𝑖𝑗
(𝑡) ∈ co(𝑏

𝑖𝑗
(𝑥

𝑖
(𝑡))),

such that

�̇�

𝑖 (
𝑡) = − 𝑑

𝑖 (
𝑡) 𝑥𝑖 (

𝑡) +

𝑛

∑

𝑗=1

𝑎

𝑖𝑗 (
𝑡) 𝑓𝑗

(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑏

𝑖𝑗 (
𝑡) 𝑔𝑗

(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝐼𝑖 (

𝑡) .

(7)

Remark 4. From the theoretical point of view, the above
parameters 𝑑

𝑖
(𝑡), 𝑎

𝑖𝑗
(𝑡), and 𝑏

𝑖𝑗
(𝑡) in (7) are measurable

functions and depend on the state 𝑥
𝑖
(𝑡) and time 𝑡.



Discrete Dynamics in Nature and Society 3

Definition 5. We say that real matrix𝑀 = (𝑚
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𝑖 ̸= 𝑗, and all successive principal minors of𝑀 are positive.

Lemma6 (see [31]). Let𝑀 be an 𝑛×𝑛matrix with nonpositive
off-diagonal elements. Then 𝑀 is an 𝑀-matrix if and only if
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3. Existence of Periodic Solution

In this section, we will give a sufficient condition which
ensures the existence of periodic solution ofmemristor-based
neural network (1).
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𝑖 = 1, 2, . . . , 𝑛. It is obvious that the set-valuedmap𝐹(𝑡, 𝑥) has
nonempty compact convex values. Futhermore, it is USC.

Based on the conditions of Lemma 7, the proof will be
divided into three steps.

Step 1. We need to search for appropriate open bounded
subset Ω. Assume that 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇 is an
arbitrary 𝜔-periodic solution of differential inclusion �̇�(𝑡) ∈
𝜆𝐹(𝑡, 𝑥) for a certain 𝜆 ∈ (0, 1). Then, one has

�̇�

𝑖 (
𝑡) ∈ 𝜆

[

[

− co (𝑑
𝑖
(𝑥

𝑖 (
𝑡))) 𝑥𝑖 (

𝑡)

+

𝑛

∑

𝑗=1

co (𝑎
𝑖𝑗
(𝑥

𝑖 (
𝑡))) 𝑓𝑗

(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

co (𝑏
𝑖𝑗
(𝑥

𝑖 (
𝑡))) 𝑔𝑗

(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝐼𝑖 (

𝑡)

]

]

,

(13)

or equivalently, there exist measurable functions 𝑑
𝑖
(𝑡) ∈

co(𝑑
𝑖
(𝑥

𝑖
(𝑡))), 𝑎

𝑖𝑗
(𝑡) ∈ co(𝑎

𝑖𝑗
(𝑥

𝑖
(𝑡))), and 𝑏

𝑖𝑗
(𝑡) ∈ co(𝑏

𝑖𝑗
(𝑥

𝑖
(𝑡))),

such that

�̇�

𝑖 (
𝑡) = 𝜆

[

[

−𝑑

𝑖 (
𝑡) 𝑥𝑖 (

𝑡) +

𝑛

∑

𝑗=1

𝑎

𝑖𝑗 (
𝑡) 𝑓𝑗

(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑏

𝑖𝑗 (
𝑡) 𝑔𝑗

(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝐼𝑖 (

𝑡)

]

]

,

(14)

for 𝑖 = 1, 2, . . . , 𝑛. Multiplying both sides of (14) by 𝑥
𝑖
(𝑡) and

integrating over the interval [0, 𝜔], one has

∫

𝜔

0

𝑑

𝑖 (
𝑡) 𝑥

2

𝑖
(𝑡) 𝑑𝑡

= ∫

𝜔

0

𝑥

𝑖 (
𝑡)

[

[

𝑛

∑

𝑗=1

𝑎

𝑖𝑗 (
𝑡) 𝑓𝑗

(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑏

𝑖𝑗 (
𝑡) 𝑔𝑗

(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝐼𝑖 (

𝑡)

]

]

𝑑𝑡.

(15)
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Noting that

∫

𝜔

0











𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))











𝑑𝑡

= ∫

𝜔−𝜏
𝑖𝑗
(𝜔)

−𝜏
𝑖𝑗
(0)











𝑥

𝑗 (
𝑡)











1 − ̇𝜏

𝑖𝑗
(𝜅

−1

𝑖𝑗
(𝑡))

𝑑𝑡

= ∫

𝜔

0











𝑥

𝑗 (
𝑡)











1 − ̇𝜏

𝑖𝑗
(𝜅

−1

𝑖𝑗
(𝑡))

𝑑𝑡 ≤

1

1 − 𝜇

𝑖𝑗

∫

𝜔

0











𝑥

𝑗 (
𝑡)











𝑑𝑡,

(16)

where 𝜅−1
𝑖𝑗

is the inverse function of 𝜅
𝑖𝑗
(𝑡) = 𝑡 − 𝜏

𝑖𝑗
(𝑡), 𝑖, 𝑗 =

1, 2, . . . , 𝑛, from (15) and (16), it yields

𝑑

𝑖
∫

𝜔

0









𝑥

𝑖 (
𝑡)









2
𝑑𝑡

≤

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
∫

𝜔

0









𝑥

𝑖 (
𝑡)



















𝑓

𝑗
(𝑥

𝑗 (
𝑡))











𝑑𝑡

+

𝑛

∑

𝑗=1

̃

𝑏

𝑖𝑗
∫

𝜔

0









𝑥

𝑖 (
𝑡)



















𝑔

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))











𝑑𝑡

+

̃

𝐼

𝑖
∫

𝜔

0









𝑥

𝑖 (
𝑡)









𝑑𝑡

≤

𝑛

∑

𝑗=1

𝑎

𝑖𝑗


𝑗
∫

𝜔

0









𝑥

𝑖 (
𝑡)



















𝑥

𝑗 (
𝑡)











𝑑𝑡

+

𝑛

∑

𝑗=1

̃

𝑏

𝑖𝑗
𝜌

𝑗
∫

𝜔

0









𝑥

𝑖 (
𝑡)



















𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))











𝑑𝑡

+

̃

𝐼

𝑖
∫

𝜔

0









𝑥

𝑖 (
𝑡)









𝑑𝑡

≤

𝑛

∑

𝑗=1

(𝑎

𝑖𝑗


𝑗
+

̃

𝑏

𝑖𝑗
𝜌

𝑗

1 − 𝜇

𝑖𝑗

)∫

𝜔

0









𝑥

𝑖 (
𝑡)



















𝑥

𝑗 (
𝑡)











𝑑𝑡

+

̃

𝐼

𝑖
∫

𝜔

0









𝑥

𝑖 (
𝑡)









𝑑𝑡

≤

𝑛

∑

𝑗=1

(𝑎

𝑖𝑗


𝑗
+

̃

𝑏

𝑖𝑗
𝜌

𝑗

1 − 𝜇

𝑖𝑗

)(∫

𝜔

0









𝑥

𝑖 (
𝑡)









2
𝑑𝑡)

1/2

× (∫

𝜔

0











𝑥

𝑗 (
𝑡)











2

𝑑𝑡)

1/2

+

̃

𝐼

𝑖
√
𝜔(∫

𝜔

0









𝑥

𝑖 (
𝑡)









2
𝑑𝑡)

1/2

,

(17)

where ̃𝐼
𝑖
= sup

𝑡∈[0,𝜔]
|𝐼

𝑖
(𝑡)|. This means

(∫

𝜔

0









𝑥

𝑖 (
𝑡)









2
𝑑𝑡)

1/2

≤

𝑛

∑

𝑗=1

𝑞

𝑖𝑗
(∫

𝜔

0











𝑥

𝑗 (
𝑡)











2

𝑑𝑡)

1/2

+

√𝜔

̃

𝐼

𝑖

𝑑

𝑖

.

(18)

Define ‖𝑥
𝑖
‖

𝜔

2
= (∫

𝜔

0
|𝑥

𝑖
(𝑡)|

2
𝑑𝑡)

1/2,𝑥
𝑖
∈ 𝐶(R,R), 𝑖 = 1, 2, . . . , 𝑛,

and 𝐼
𝑁
= (

̃

𝐼

1
/𝑑

1
,

̃

𝐼

2
/𝑑

2
, . . . ,

̃

𝐼

𝑛
/𝑑

𝑛
)

𝑇. From (18), we have

(𝐸

𝑛
− 𝑄) (









𝑥

1









𝜔

2
,









𝑥

2









𝜔

2
, . . . ,









𝑥

𝑛









𝜔

2
)

𝑇

≤
√
𝜔𝐼

𝑁
.

(19)

Since 𝐸
𝑛
− 𝑄 is an 𝑀-matrix, we can choose a vector 𝜉 =

(𝜉

1
, 𝜉

2
, . . . , 𝜉

𝑛
) > (0, 0, . . . , 0) such that

𝜉

∗
= (𝜉

∗

1
, 𝜉

∗

2
, . . . , 𝜉

∗

𝑛
) = 𝜉 (𝐸

𝑛
− 𝑄) > (0, 0, . . . , 0) . (20)

By combining (19) and (20) together, one can derive

min {𝜉∗
1
, 𝜉

∗

2
, . . . , 𝜉

∗

𝑛
} (









𝑥

1









𝜔

2
+









𝑥

2









𝜔

2
+ ⋅ ⋅ ⋅ +









𝑥

𝑛









𝜔

2
)

≤ 𝜉

∗

1









𝑥

1









𝜔

2
+ 𝜉

∗

2









𝑥

2









𝜔

2
+ ⋅ ⋅ ⋅ + 𝜉

∗

𝑛









𝑥

𝑛









𝜔

2

= 𝜉 (𝐸

𝑛
− 𝑄) (









𝑥

1









𝜔

2
,









𝑥

2









𝜔

2
, . . . ,









𝑥

𝑛









𝜔

2
)

𝑇

≤ 𝜉
√
𝜔(

̃

𝐼

1

𝑑

1

,

̃

𝐼

2

𝑑

2

, . . . ,

̃

𝐼

𝑛

𝑑

𝑛

)

𝑇

=
√
𝜔

𝑛

∑

𝑖=1

𝜉

𝑖

̃

𝐼

𝑖

𝑑

𝑖

.

(21)

Thus, we can easily get that









𝑥

𝑖









𝜔

2
= (∫

𝜔

0









𝑥

𝑖 (
𝑡)









2
𝑑𝑡)

1/2

≤
√
𝜔𝑁, 𝑖 = 1, 2, . . . , 𝑛,

(22)

where 𝑁 = ∑

𝑛

𝑖=1
(𝜉

𝑖
̃

𝐼

𝑖
/𝑑

𝑖
)/min{𝜉∗

1
, 𝜉

∗

2
, . . . , 𝜉

∗

𝑛
}. Then, there

exists 𝑡∗ ∈ [0, 𝜔] such that









𝑥

𝑖
(𝑡

∗
)









≤ 𝑁, 𝑖 = 1, 2, . . . , 𝑛. (23)

Obviously, for 𝑡 ∈ [0, 𝜔], 𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡

∗
)+∫

𝑡

𝑡
∗
�̇�

𝑖
(𝑠)𝑑𝑠. It follows

from (23) that









𝑥

𝑖 (
𝑡)









≤ 𝑁 + ∫

𝜔

0









�̇�

𝑖 (
𝑡)









𝑑𝑡, 𝑖 = 1, 2, . . . , 𝑛. (24)

On the other hand, from (14), one easily obtains that

∫

𝜔

0









�̇�

𝑖 (
𝑡)









𝑑𝑡 < ∫

𝜔

0









𝑑

𝑖 (
𝑡)

















𝑥

𝑖 (
𝑡)









𝑑𝑡

+

𝑛

∑

𝑗=1

∫

𝜔

0











𝑎

𝑖𝑗 (
𝑡)





















𝑓

𝑗
(𝑥

𝑗 (
𝑡))











𝑑𝑡

+

𝑛

∑

𝑗=1

∫

𝜔

0











𝑏

𝑖𝑗 (
𝑡)





















𝑔

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))











𝑑𝑡

+ ∫

𝜔

0









𝐼

𝑖 (
𝑡)









𝑑𝑡

≤ 𝑑

𝑖
∫

𝜔

0









𝑥

𝑖 (
𝑡)









𝑑𝑡 +

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
∫

𝜔

0











𝑓

𝑗
(𝑥

𝑗 (
𝑡))











𝑑𝑡

+

𝑛

∑

𝑗=1

̃

𝑏

𝑖𝑗
∫

𝜔

0











𝑔

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗(𝑡)
))











𝑑𝑡 + 𝜔

̃

𝐼

𝑖
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≤ 𝑑

𝑖
∫

𝜔

0









𝑥

𝑖 (
𝑡)









𝑑𝑡 +

𝑛

∑

𝑗=1

𝑎

𝑖𝑗


𝑗
∫

𝜔

0











𝑥

𝑗 (
𝑡)











𝑑𝑡

+

𝑛

∑

𝑗=1

̃

𝑏

𝑖𝑗
𝜌

𝑗
∫

𝜔

0











𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))











𝑑𝑡 + 𝜔

̃

𝐼

𝑖

≤ 𝑑

𝑖
√
𝜔









𝑥

𝑖









𝜔

2

+

𝑛

∑

𝑗=1

(

𝑗
𝑎

𝑖𝑗
+

𝜌

𝑗
̃

𝑏

𝑖𝑗

√
1 − 𝜇

𝑖𝑗

)
√
𝜔











𝑥

𝑗











𝜔

2
+ 𝜔

̃

𝐼

𝑖

≤
√
𝜔𝑁(𝑑

𝑖
+ 𝑑

𝑖

𝑛

∑

𝑗=1

𝑞

𝑖𝑗
) + 𝜔

̃

𝐼

𝑖
.

(25)

Let𝑀
𝑖
= √𝜔𝑁(𝑑

𝑖
+ 𝑑

𝑖
∑

𝑛

𝑗=1
𝑞

𝑖𝑗
) + 𝜔

̃

𝐼

𝑖
; combining (24) and

(25), we can derive









𝑥

𝑖 (
𝑡)









< 𝑁 +𝑀

𝑖
= 𝑅

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (26)

Clearly, 𝑅
𝑖
is independent of 𝜆. In addition, since 𝐸

𝑛
− 𝑄 is

an 𝑀-matrix, there exists a vector 𝜂 = (𝜂

1
, 𝜂

2
, . . . , 𝜂

𝑛
)

𝑇
>

(0, 0, . . . , 0)

𝑇 such that (𝐸
𝑛
− 𝑄)𝜂 > (0, 0, . . . , 0)

𝑇. Thus, we
can choose a sufficiently large constant 𝜃 such that 𝜂∗ =
(𝜂

∗

1
, 𝜂

∗

2
, . . . , 𝜂

∗

𝑛
)

𝑇
= (𝜃𝜂

1
, 𝜃𝜂

2
, . . . , 𝜃𝜂

𝑛
)

𝑇
= 𝜃𝜂, 𝜂∗

𝑖
= 𝜃𝜂

𝑖
> 𝑅

𝑖
,

and

(𝐸

𝑛
− 𝑄) 𝜂

∗
> 𝐼

𝑁
. (27)

Taking Ω = {𝑥(𝑡) ∈ 𝐶

𝜔
| −𝜂

∗
< 𝑥(𝑡) < 𝜂

∗
}, then, Ω is an

open bounded set of 𝐶
𝜔
and 𝑥 ∉ 𝜕Ω for any 𝜆 ∈ (0, 1). This

proves that condition (1) in Lemma 7 is satisfied.

Step 2. Suppose that there exists a solution 𝑢 = (𝑢
1
, 𝑢

2
, . . . ,

𝑢

𝑛
)

𝑇
∈ 𝜕Ω⋂R𝑛 of the inclusion 0 ∈ (1/𝜔) ∫𝜔

0
𝐹(𝑡, 𝑢)𝑑𝑡 =

𝜛(𝑢); then 𝑢 is a constant vector onR𝑛 such that |𝑢
𝑖
| = 𝜂

∗

𝑖
for

some 𝑖 ∈ {1, 2, . . . , 𝑛}. Therefore, one has

0 ∈ (𝜛 (𝑢))𝑖

= −

𝑢

𝑖

𝜔

∫

𝜔

0

co (𝑑
𝑖
(𝑥

𝑖 (
𝑡))) 𝑑𝑡

+

𝑛

∑

𝑗=1

1

𝜔

∫

𝜔

0

co (𝑎
𝑖𝑗
(𝑥

𝑖 (
𝑡))) 𝑓𝑗

(𝑢

𝑗
) 𝑑𝑡

+

𝑛

∑

𝑗=1

1

𝜔

∫

𝜔

0

co (𝑏
𝑖𝑗
(𝑥

𝑖 (
𝑡))) 𝑔𝑗

(𝑢

𝑗
) 𝑑𝑡

+

1

𝜔

∫

𝜔

0

𝐼

𝑖 (
𝑡) 𝑑𝑡,

(28)

or equivalently, there exist 𝑑
𝑖
(𝑡) ∈ co(𝑑

𝑖
(𝑥

𝑖
(𝑡))), 𝑎

𝑖𝑗
(𝑡) ∈

co(𝑎
𝑖𝑗
(𝑥

𝑖
(𝑡))), and 𝑏

𝑖𝑗
(𝑡) ∈ co(𝑏

𝑖𝑗
(𝑥

𝑖
(𝑡))), such that

0 = −

𝑢

𝑖

𝜔

∫

𝜔

0

𝑑

𝑖 (
𝑡) 𝑑𝑡 +

𝑛

∑

𝑗=1

𝑓

𝑗
(𝑢

𝑗
)

𝜔

∫

𝜔

0

𝑎

𝑖𝑗 (
𝑡) 𝑑𝑡

+

𝑛

∑

𝑗=1

𝑔

𝑗
(𝑢

𝑗
)

𝜔

∫

𝜔

0

𝑏

𝑖𝑗 (
𝑡) 𝑑𝑡 +

1

𝜔

∫

𝜔

0

𝐼

𝑖 (
𝑡) 𝑑𝑡.

(29)

Then, there exists 𝑡
∗
∈ [0, 𝜔] such that

0 = − 𝑢

𝑖
𝑑

𝑖
(𝑡

∗
) +

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑡

∗
) 𝑓

𝑗
(𝑢

𝑗
)

+

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
(𝑡

∗
) 𝑔

𝑗
(𝑢

𝑗
) + 𝐼

𝑖
(𝑡

∗
) .

(30)

It follows from (30) that

𝜂

∗

𝑖
=









𝑢

𝑖









≤

1

𝑑

𝑖

[

[

𝑛

∑

𝑗=1

(𝑎

𝑖𝑗


𝑗
+

̃

𝑏

𝑖𝑗
𝜌

𝑗
)











𝑢

𝑗











+

̃

𝐼

𝑖
]

]

≤

𝑛

∑

𝑗=1

𝑞

𝑖𝑗











𝑢

𝑗











+

̃

𝐼

𝑖

𝑑

𝑖

=

𝑛

∑

𝑗=1

𝑞

𝑖𝑗
𝜂

∗

𝑗
+

̃

𝐼

𝑖

𝑑

𝑖

.

(31)

This means (𝐸
𝑛
− 𝑄)𝜂

∗
≤ 𝐼

𝑁
, which contradicts (27).

Step 3. We define a homotopic set-valued map 𝜙 : Ω⋂R𝑛 ×

[0, 1] → 𝐶

𝜔
by 𝜙(𝑢, ℎ) = − diag(ℎ𝑑

1
, ℎ𝑑

2
, . . . , ℎ𝑑

𝑛
)𝑢 + (1 −

ℎ)𝜛(𝑢).
If 𝑢 = (𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑛
)

𝑇
∈ 𝜕Ω⋂R𝑛, then 𝑢 is a constant

vector on R𝑛 such that |𝑢
𝑖
| = 𝜂

∗

𝑖
for some 𝑖 ∈ {1, 2, . . . , 𝑛}. It

follows that

(𝜙 (𝑢, ℎ))

𝑖

= −ℎ𝑑

𝑖
𝑢

𝑖

+ (1 − ℎ)

[

[

− co (𝑑
𝑖
(𝑥

𝑖 (
𝑡))) 𝑢𝑖

+

𝑛

∑

𝑗=1

𝑓

𝑗
(𝑢

𝑗
)

𝜔

∫

𝜔

0

co (𝑎
𝑖𝑗
(𝑥

𝑖 (
𝑡))) 𝑑𝑡

+

𝑛

∑

𝑗=1

𝑔

𝑗
(𝑢

𝑗
)

𝜔

∫

𝜔

0

co (𝑏
𝑖𝑗
(𝑥

𝑖 (
𝑡))) 𝑑𝑡

+

1

𝜔

∫

𝜔

0

𝐼

𝑖 (
𝑡) 𝑑𝑡

]

]

.

(32)
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In fact, we have 0 ∉ (𝜙(𝑢, ℎ))

𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑛}. If 0 ∈

(𝜙(𝑢, ℎ))

𝑖
, that is,

0 ∈ − ℎ𝑑

𝑖
𝑢

𝑖

+ (1 − ℎ)

[

[

− co (𝑑
𝑖
(𝑥

𝑖 (
𝑡))) 𝑢𝑖

+

𝑛

∑

𝑗=1

𝑓

𝑗
(𝑢

𝑗
)

𝜔

∫

𝜔

0

co (𝑎
𝑖𝑗
(𝑥

𝑖 (
𝑡))) 𝑑𝑡

+

𝑛

∑

𝑗=1

𝑔

𝑗
(𝑢

𝑗
)

𝜔

∫

𝜔

0

co (𝑏
𝑖𝑗
(𝑥

𝑖 (
𝑡))) 𝑑𝑡

+

1

𝜔

∫

𝜔

0

𝐼

𝑖 (
𝑡) 𝑑𝑡

]

]

,

(33)

or

0 = − ℎ𝑑

𝑖
𝑢

𝑖

+ (1 − ℎ)

[

[

−𝑑

𝑖 (
𝑡) 𝑢𝑖

+

𝑛

∑

𝑗=1

𝑓

𝑗
(𝑢

𝑗
)

𝜔

∫

𝜔

0

𝑎

𝑖𝑗 (
𝑡) 𝑑𝑡

+

𝑛

∑

𝑗=1

𝑔

𝑗
(𝑢

𝑗
)

𝜔

∫

𝜔

0

𝑏

𝑖𝑗 (
𝑡) 𝑑𝑡 +

1

𝜔

∫

𝜔

0

𝐼

𝑖 (
𝑡) 𝑑𝑡

]

]

.

(34)

There exists 𝑡
0
∈ [0, 𝜔], such that

0 = − ℎ𝑑

𝑖
𝑢

𝑖

+ (1 − ℎ)

[

[

−𝑑

𝑖
(𝑡

0
) 𝑢

𝑖
+

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑡

0
) 𝑓

𝑗
(𝑢

𝑗
)

+

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
(𝑡

0
) 𝑔

𝑗
(𝑢

𝑗
) + 𝐼

𝑖
(𝑡

0
)

]

]

,

(35)

that is,

ℎ (𝑑

𝑖
− 𝑑

𝑖
(𝑡

0
)) 𝑢

𝑖
+ 𝑑

𝑖
(𝑡

0
) 𝑢

𝑖

= (1 − ℎ)

[

[

𝑛

∑

𝑗=1

(𝑎

𝑖𝑗
(𝑡

0
) 𝑓

𝑗
(𝑢

𝑗
) + 𝑏

𝑖𝑗
(𝑡

0
) 𝑔

𝑗
(𝑢

𝑗
)) + 𝐼

𝑖
(𝑡

0
)

]

]

.

(36)

Therefore, we have

𝜂

∗

𝑖
=









𝑢

𝑖









≤

1 − ℎ

ℎ (𝑑

𝑖
− 𝑑

𝑖
(𝑡

0
)) + 𝑑

𝑖
(𝑡

0
)

×

[

[

𝑛

∑

𝑗=1

(











𝑎

𝑖𝑗
(𝑡

0
)





















𝑓

𝑗
(𝑢

𝑗
)











+











𝑏

𝑖𝑗
(𝑡

0
)





















𝑔

𝑗
(𝑢

𝑗
)











)

+









𝐼

𝑖
(𝑡

0
)









]

]

≤

1

𝑑

𝑖

[

[

𝑛

∑

𝑗=1

(𝑎

𝑖𝑗


𝑗
+

̃

𝑏

𝑖𝑗
𝜌

𝑗
)











𝑢

𝑗











+

̃

𝐼

𝑖
]

]

≤

𝑛

∑

𝑗=1

𝑞

𝑖𝑗











𝑢

𝑗











+

̃

𝐼

𝑖

𝑑

𝑖

=

𝑛

∑

𝑗=1

𝑞

𝑖𝑗
𝜂

∗

𝑖
+

̃

𝐼

𝑖

𝑑

𝑖

.

(37)

This means that (𝐸
𝑛
− 𝑄)𝜂

∗
≤ 𝐼

𝑁
, which contradicts

(27). Thus, 0 ∉ (𝜙(𝑢, ℎ))

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. It follows that

(0, 0, . . . , 0)

𝑇
∉ 𝜙(𝑢, ℎ), for any 𝑢 = (𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑛
)

𝑇
∈

𝜕Ω⋂R𝑛, ℎ ∈ [0, 1]. Therefore, by the homotopy invariance
and the solution properties of the topological degree, one has

deg {𝜛,Ω⋂R
𝑛
, 0} = deg {𝜙 (𝑢, 0) , Ω⋂R

𝑛
, 0}

= deg {𝜙 (𝑢, 1) , Ω⋂R
𝑛
, 0}

= deg {(−𝑑
1
𝑢

1
, −𝑑

2
𝑢

2
, . . . , −𝑑

𝑛
𝑢

𝑛
)

𝑇

, Ω⋂R
𝑛
, (0, 0, . . . , 0)

𝑇
}

= sign































−𝑑

1
⋅ ⋅ ⋅ 0

... d
...

0 . . . −𝑑

𝑛































= (−1)

𝑛
̸= 0,

(38)

where deg(⋅, ⋅, ⋅) denotes the topological degree for USC set-
valued maps with compact convex values.

Up to now, we have proved that Ω satisfies all the
conditions in Lemma 7, then system (1) has at least one 𝜔-
periodic solution. This completes the proof.

Notice that a constant function can be regarded as
a special periodic function with arbitrary period or zero
amplitude. Hence, we can obtain the following result.

Corollary 9. Suppose assumption (A
2
) holds and 𝐼

𝑖
(𝑡) = 𝐼

𝑖
,

𝜏

𝑖𝑗
(𝑡) = 𝜏

𝑖𝑗
, if 𝐸
𝑛
− 𝑄 is an𝑀-matrix, where 𝑄 = (𝑞

𝑖𝑗
)

𝑛×𝑛
and

𝑞

𝑖𝑗
=

1

𝑑

𝑖

(

𝑗
𝑎

𝑖𝑗
+ 𝜌

𝑗
̃

𝑏

𝑖𝑗
) , 𝑖, 𝑗 = 1, 2, . . . , 𝑛, (39)

then system (1) exists at least one equilibrium point.

Remark 10. By employing the method based on the 𝑀-
matrix theory, our results can be easily verified and are much
different from these in the literature [20, 21]. It is also worth
mentioning that the𝑀-matrix theory is one of the effective
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and important methods to deal with the existence of periodic
solution and equilibrium point for large-scale dynamical
neuron systems.

4. Complete Periodic Synchronization

In this paper, we consider model (1) as the master system,
and a slave system for (1) can be described by the following
equation:

̇𝑦

𝑖 (
𝑡) = − 𝑑

𝑖
(𝑦

𝑖 (
𝑡)) 𝑥𝑖 (

𝑡) +

𝑛

∑

𝑗=1

𝑎

𝑖𝑗
(𝑦

𝑖 (
𝑡)) 𝑓𝑗

(𝑦

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑏

𝑖𝑗
(𝑦

𝑖 (
𝑡)) 𝑔𝑗

(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝐼𝑖 (

𝑡) + 𝑢𝑖 (
𝑡) ,

𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

(40)

where 𝑢
𝑖
(𝑡) is the controller to be designed, and

𝑑

𝑖
(𝑦

𝑖 (
𝑡)) = {

́

𝑑

𝑖
,









𝑦

𝑖 (
𝑡)









≤ 𝑇

𝑖
,

̀

𝑑

𝑖
,









𝑦

𝑖 (
𝑡)









> 𝑇

𝑖
,

𝑎

𝑖𝑗
(𝑦

𝑖 (
𝑡)) = {

́𝑎

𝑖𝑗
,









𝑦

𝑖 (
𝑡)









≤ 𝑇

𝑖
,

̀𝑎

𝑖𝑗
,









𝑦

𝑖 (
𝑡)









> 𝑇

𝑖
,

𝑏

𝑖𝑗
(𝑦

𝑖 (
𝑡)) = {

́

𝑏

𝑖𝑗
,









𝑦

𝑖 (
𝑡)









≤ 𝑇

𝑖
,

̀

𝑏

𝑖𝑗
,









𝑦

𝑖 (
𝑡)









> 𝑇

𝑖
.

(41)

Let 𝑒
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝑥

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛; one can obtain the

following result.

Theorem 11. Suppose that all the conditions of Theorem 8 are
satisfied; then the salve system (40) can globally synchronize
with the master system (1) under the following adaptive
controller:

𝑢

𝑖 (
𝑡) = −𝛼𝑖 (

𝑡) 𝑒𝑖 (
𝑡) − 𝛿𝑖

𝛽

𝑖 (
𝑡) sign (𝑒𝑖 (𝑡)) ,

�̇�

𝑖 (
𝑡) = −𝜀𝑖

𝑒

2

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛,

̇

𝛽

𝑖 (
𝑡) = −𝜂𝑖









𝑒

𝑖 (
𝑡)









, 𝑖 = 1, 2, . . . , 𝑛,

(42)

where 𝛼
𝑖
, 𝜂
𝑖
are arbitrary positive constants and 𝛿

𝑖
> 1.

Proof. Consider the following Lyapunov functional:

𝑉 (𝑡) =

1

2

𝑛

∑

𝑖=1

𝑒

2

𝑖
(𝑡) +

𝑛

∑

𝑖,𝑗=1

1

2 (1 − 𝜇

𝑖𝑗
)

∫

𝑡

𝑡−𝜏
𝑖𝑗
(𝑡)

𝑒

2

𝑖
(𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

1

2𝜀

𝑖

(𝛼

𝑖 (
𝑡) − 𝐾𝑖

)

2
+

𝑛

∑

𝑖=1

1

2𝜂

𝑖

(𝑀

𝑖
− 𝛽

𝑖 (
𝑡))

2
,

(43)

where

𝐾

𝑖
≥ max

{

{

{

−

́

𝑑

𝑖
+

𝑛

∑

𝑗=1



2

𝑗
́𝑎

2

𝑖𝑗
+ 𝜌

2

𝑗
́

𝑏

2

𝑖𝑗
+ 1

2

+

𝑛

∑

𝑗=1

1

2 (1 − 𝜇

𝑗𝑖
)

, −

̀

𝑑

𝑖

+

𝑛

∑

𝑗=1



2

𝑗
̀𝑎

2

𝑖𝑗
+ 𝜌

2

𝑗
̀

𝑏

2

𝑖𝑗
+ 1

2

+

𝑛

∑

𝑗=1

1

2 (1 − 𝜇

𝑗𝑖
)

}

}

}

,

𝑀

𝑖
≥











̀

𝑑

𝑖
−

́

𝑑

𝑖











𝑇

𝑖
+

𝑛

∑

𝑗=1



𝑗











́𝑎

𝑖𝑗
− ̀𝑎

𝑖𝑗











𝑇

𝑖
+

𝑛

∑

𝑗=1











́

𝑏

𝑖𝑗
−

̀

𝑏

𝑖𝑗











𝐺

𝑗
.

(44)

The master system (1) and the slave system (40) are state-
dependent switching systems; then, the four casesmay appear
in the following at time 𝑡.

Case 1. If |𝑥
𝑖
(𝑡)| ≤ 𝑇

𝑖
, |𝑦
𝑖
(𝑡)| ≤ 𝑇

𝑖
at time 𝑡, then the master

system (1) and the slave system (40) reduce to the following
systems, respectively,

�̇�

𝑖 (
𝑡) = −

́

𝑑

𝑖
𝑥

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

́𝑎

𝑖𝑗
𝑓

𝑗
(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑖=𝑗

́

𝑏

𝑖𝑗
𝑔

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝐼𝑖 (

𝑡) ,

(45)

̇𝑦

𝑖 (
𝑡) = −

́

𝑑

𝑖
𝑦

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

́𝑎

𝑖𝑗
𝑓

𝑗
(𝑦

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

́

𝑏

𝑖𝑗
𝑔

𝑗
(𝑦

𝑗
(t − 𝜏
𝑖𝑗 (
𝑡))) + 𝐼𝑖 (

𝑡) + 𝑢𝑖 (
𝑡) .

(46)

Correspondingly, the error system can be written as

̇𝑒

𝑖 (
𝑡) = −

́

𝑑

𝑖
𝑒

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

́𝑎

𝑖𝑗
𝑓

𝑗
(𝑒

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

́

𝑏

𝑖𝑗
𝑔

𝑗
(𝑒

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝑢𝑖 (

𝑡) ,

(47)

where 𝑓
𝑗
(𝑒

𝑗
(𝑡)) = 𝑓

𝑗
(𝑦

𝑗
(𝑡)) − 𝑓

𝑗
(𝑥

𝑗
(𝑡)), 𝑔

𝑗
(𝑒

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) =

𝑔

𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) − 𝑔

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))). Under assumption (A

2
),

evaluating the upper right derivation 𝐷+𝑉(𝑡) of 𝑉(𝑡) along
the trajectory of (47) gives

𝐷

+
𝑉 (𝑡)

≤

𝑛

∑

𝑖=1

{

{

{

𝑒

𝑖 (
𝑡)

[

[

−

́

𝑑

𝑖
𝑒

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

́𝑎

𝑖𝑗
𝑓

𝑗
(𝑒

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

́

𝑏

𝑖𝑗
𝑔

𝑗
(𝑒
𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)) − 𝛼𝑖 (

𝑡) 𝑒𝑖 (
𝑡)

−𝛿

𝑖
𝛽

𝑖 (
𝑡) sign (𝑒𝑖 (𝑡)) ]

]

+

𝑛

∑

𝑗=1

(

1

2 (1 − 𝜇

𝑖𝑗
)

𝑒

2

𝑗
(𝑡) −

1

2

𝑒

2

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))
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+ (𝛼

𝑖 (
𝑡) − 𝐾𝑖

) 𝑒

2

𝑖
(𝑡) − (𝑀𝑖

− 𝛽

𝑖 (
𝑡)









𝑒

𝑖 (
𝑡)









)

}

}

}

≤

𝑛

∑

𝑖=1

{

{

{

[

[

−

́

𝑑

𝑖
𝑒

2

𝑖
(𝑡) +

𝑛

∑

𝑗=1



𝑗











́𝑎

𝑖𝑗



















𝑒

𝑖 (
𝑡)



















𝑒

𝑗 (
𝑡)











+

𝑛

∑

𝑗=1

𝜌

𝑗











́

𝑏

𝑖𝑗



















𝑒

𝑖 (
𝑡)



















𝑒

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))











− 𝛿

𝑖
𝛽

𝑖 (
𝑡)









𝑒

𝑖 (
𝑡)









]

]

+

𝑛

∑

𝑗=1

(

1

2 (1 − 𝜇

𝑖𝑗
)

𝑒

2

𝑗
(𝑡) −

1

2

𝑒

2

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

−𝐾

𝑖
𝑒

2

𝑖
(𝑡) − 𝑀𝑖









𝑒

𝑖 (
𝑡)









+ 𝛽

𝑖 (
𝑡)









𝑒

𝑖 (
𝑡)









}

}

}

≤

𝑛

∑

𝑖=1

{

{

{

[

[

− (𝐾

𝑖
+

́

𝑑

𝑖
) 𝑒

2

𝑖
(𝑡) +

𝑛

∑

𝑗=1

(

1

2



2

𝑗
́𝑎

2

𝑖𝑗
𝑒

𝑖(
𝑡)

2
+

1

2

𝑒

𝑗(
𝑡)

2
)

+

𝑛

∑

𝑗=1

(

1

2

𝜌

2

𝑗
́

𝑏

2

𝑖𝑗
𝑒

𝑖(
𝑡)

2
+

1

2

𝑒

2

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

− (𝛿

𝑖
− 1) 𝛽

𝑖 (
𝑡)









𝑒

𝑖 (
𝑡)









]

]

+

𝑛

∑

𝑗=1

(

1

2 (1 − 𝜇

𝑖𝑗
)

𝑒

2

𝑗
(𝑡) −

1

2

𝑒

2

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

−𝑀

𝑖









𝑒

𝑖 (
𝑡)









}

}

}

=

𝑛

∑

𝑖=1

{

{

{

[

[

−𝐾

𝑖
−

́

𝑑

𝑖
+

𝑛

∑

𝑗=1



2

𝑗
́𝑎

2

𝑖𝑗
+ 𝜌

2

𝑗
́

𝑏

2

𝑖𝑗
+ 1

2

+

𝑛

∑

𝑗=1

1

2 (1 − 𝜇

𝑗𝑖
)

]

]

𝑒

2

𝑖
(𝑡)

− (𝛿

𝑖
− 1) 𝛽

𝑖 (
𝑡)









𝑒

𝑖 (
𝑡)









− 𝑀

𝑖









𝑒

𝑖 (
𝑡)









}

}

}

.

(48)

Considering the definition of 𝐾
𝑖
, and 𝛿

𝑖
> 1,𝑀

𝑖
> 0, one has

𝐷

+
𝑉 (𝑡) ≤ 0. (49)

Case 2. If |𝑥
𝑖
(𝑡)| > 𝑇

𝑖
, |𝑦
𝑖
(𝑡)| > 𝑇

𝑖
at time 𝑡, then the master

system (1) and the slave system (40) reduce to the following
systems, respectively,

�̇�

𝑖 (
𝑡) = −

̀

𝑑

𝑖
𝑥

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

̀𝑎

𝑖𝑗
𝑓

𝑗
(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑖=𝑗

̀

𝑏

𝑖𝑗
𝑔

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝐼𝑖 (

𝑡) ,

(50)

̇𝑦

𝑖 (
𝑡) = −

̀

𝑑

𝑖
𝑦

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

̀𝑎

𝑖𝑗
𝑓

𝑗
(𝑦

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

̀

𝑏

𝑖𝑗
𝑔

𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝐼𝑖 (

𝑡) + 𝑢𝑖 (
𝑡) .

(51)

Correspondingly, the error system can be rewritten as

̇𝑒

𝑖 (
𝑡) = −

̀

𝑑

𝑖
𝑒

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

̀𝑎

𝑖𝑗
𝑓

𝑗
(𝑒

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

̀

𝑏

𝑖𝑗
𝑔

𝑗
(𝑒

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝑢𝑖 (

𝑡) .

(52)

Arguing as in the proof of Case 1, we can obtain

𝐷

+
𝑉 (𝑡)

≤

𝑛

∑

𝑖=1

{

{

{

[

[

−𝐾

𝑖
−

̀

𝑑

𝑖
+

𝑛

∑

𝑗=1



2

𝑗
̀𝑎

2

𝑖𝑗
+ 𝜌

2

𝑗
̀

𝑏

2

𝑖𝑗
+ 1

2

+

𝑛

∑

𝑗=1

1

2 (1 − 𝜇

𝑗𝑖
)

]

]

𝑒

2

𝑖
(𝑡)

− (𝛿

𝑖
− 1) 𝛽

𝑖 (
𝑡)









𝑒

𝑖 (
𝑡)









− 𝑀

𝑖









𝑒

𝑖 (
𝑡)









}

}

}

≤ 0.

(53)

Case 3. If |𝑥
𝑖
(𝑡)| > 𝑇

𝑖
, |𝑦
𝑖
(𝑡)| ≤ 𝑇

𝑖
at time 𝑡, then the master

system (1) and the slave system (40) reduce to (50) and (46).
Correspondingly, the error system can be rewritten as

̇𝑒

𝑖 (
𝑡) = −

̀

𝑑

𝑖
𝑒

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

̀𝑎

𝑖𝑗
𝑓

𝑗
(𝑒

𝑗 (
𝑡)) +

𝑛

∑

𝑗=1

̀

𝑏

𝑖𝑗
𝑔

𝑗
(𝑒

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

+ (

̀

𝑑

𝑖
−

́

𝑑

𝑖
) 𝑦

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

( ́𝑎

𝑖𝑗
− ̀𝑎

𝑖𝑗
) 𝑓

𝑗
(𝑦

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

(

́

𝑏

𝑖𝑗
−

̀

𝑏

𝑖𝑗
) 𝑔

𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝑢𝑖 (

𝑡) .

(54)

Similarly, evaluating the upper right derivation 𝐷+𝑉(𝑡) of
𝑉(𝑡) along the trajectory of (54), we have

𝐷

+
𝑉 (𝑡)

≤

𝑛

∑

𝑖=1

{

{

{

[

[

−𝐾

𝑖
−

̀

𝑑

𝑖
+

𝑛

∑

𝑗=1



2

𝑗
̀𝑎

2

𝑖𝑗
+ 𝜌

2

𝑗
̀

𝑏

2

𝑖𝑗
+ 1

2

+

𝑛

∑

𝑗=1

1

2 (1 − 𝜇

𝑗𝑖
)

]

]

𝑒

2

𝑖
(𝑡)

+









𝑒

𝑖 (
𝑡)









[

[











̀

𝑑

𝑖
−

́

𝑑

𝑖



















𝑦

𝑖 (
𝑡)









+

𝑛

∑

𝑗=1











́𝑎

𝑖𝑗
− ̀𝑎

𝑖𝑗





















𝑓

𝑗
(𝑦

𝑗 (
𝑡))
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+

𝑛

∑

𝑗=1











́

𝑏

𝑖𝑗
−

̀

𝑏

𝑖𝑗





















𝑔

𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))











]

]

− (𝛿

𝑖
− 1) 𝛽

𝑖 (
𝑡)









𝑒

𝑖 (
𝑡)









− 𝑀

𝑖









𝑒

𝑖 (
𝑡)









}

}

}

.

(55)

Note that |𝑦
𝑖
(𝑡)| ≤ 𝑇

𝑖
; by using assumption (A

2
), one has

𝐷

+
𝑉 (𝑡) ≤

𝑛

∑

𝑖=1

{

{

{

[

[

−𝐾

𝑖
−

̀

𝑑

𝑖
+

𝑛

∑

𝑗=1



2

𝑗
̀𝑎

2

𝑖𝑗
+ 𝜌

2

𝑗
̀

𝑏

2

𝑖𝑗
+ 1

2

+

𝑛

∑

𝑗=1

1

2 (1 − 𝜇

𝑗𝑖
)

]

]

𝑒

2

𝑖
(𝑡)

+









𝑒

𝑖 (
𝑡)









[

[











̀

𝑑

𝑖
−

́

𝑑

𝑖











𝑇

𝑖
+

𝑛

∑

𝑗=1



𝑗











́𝑎

𝑖𝑗
− ̀𝑎

𝑖𝑗











𝑇

𝑖

+

𝑛

∑

𝑗=1











́

𝑏

𝑖𝑗
−

̀

𝑏

𝑖𝑗











𝐺

𝑗
]

]

− (𝛿

𝑖
− 1) 𝛽

𝑖 (
𝑡)









𝑒

𝑖 (
𝑡)









− 𝑀

𝑖









𝑒

𝑖 (
𝑡)









}

}

}

.

(56)

According to the definition of𝐾
𝑖
,𝑀
𝑖
, and 𝛿

𝑖
> 1, one has

𝐷

+
𝑉 (𝑡) ≤ 0. (57)

Case 4. If |𝑥
𝑖
(𝑡)| ≤ 𝑇

𝑖
, |𝑦
𝑖
(𝑡)| > 𝑇

𝑖
at time 𝑡, then the master

system (1) and the slave system (40) reduce to (45) and (51).
Correspondingly, the error system can be rewritten as

̇𝑒

𝑖 (
𝑡) = −

̀

𝑑

𝑖
𝑒

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

̀𝑎

𝑖𝑗
𝑓

𝑗
(𝑒

𝑗 (
𝑡)) +

𝑛

∑

𝑗=1

̀

𝑏

𝑖𝑗
𝑔

𝑗
(𝑒

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡)))

+ (

́

𝑑

𝑖
−

̀

𝑑

𝑖
) 𝑥

𝑖 (
𝑡) +

𝑛

∑

𝑗=1

( ̀𝑎

𝑖𝑗
− ́𝑎

𝑖𝑗
) 𝑓

𝑗
(𝑥

𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

(

̀

𝑏

𝑖𝑗
−

́

𝑏

𝑖𝑗
) 𝑔

𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗 (
𝑡))) + 𝑢𝑖 (

𝑡) .

(58)

By using |𝑥
𝑖
(𝑡)| ≤ 𝑇

𝑖
, we can also have

𝐷

+
𝑉 (𝑡) ≤

𝑛

∑

𝑖=1

{

{

{

[

[

−𝐾

𝑖
−

̀

𝑑

𝑖
+

𝑛

∑

𝑗=1



2

𝑗
̀𝑎

2

𝑖𝑗
+ 𝜌

2

𝑗
̀

𝑏

2

𝑖𝑗
+ 1

2

+

𝑛

∑

𝑗=1

1

2 (1 − 𝜇

𝑗𝑖
)

]

]

𝑒

2

𝑖
(𝑡)

+









𝑒

𝑖 (
𝑡)









[

[











̀

𝑑

𝑖
−

́

𝑑

𝑖











𝑇

𝑖

+

𝑛

∑

𝑗=1



𝑗











́𝑎

𝑖𝑗
− ̀𝑎

𝑖𝑗











𝑇

𝑖

+

𝑛

∑

𝑗=1











́

𝑏

𝑖𝑗
−

̀

𝑏

𝑖𝑗











𝐺

𝑗
]

]

− (𝛿

𝑖
− 1) 𝛽

𝑖 (
𝑡)









𝑒

𝑖 (
𝑡)









− 𝑀

𝑖









𝑒

𝑖 (
𝑡)









}

}

}

≤ 0.

(59)

The above proving procedures clearly imply that one always
has 𝐷+𝑉(𝑡) ≤ 0 at time 𝑡. Therefore, the salve system (40)
globally synchronizes with the master system (1) under the
adaptive controller (42). This completes the proof.

Remark 12. In the literature, some results on stability analysis
of periodic solution (or equilibrium point) or synchroniza-
tion (or antisynchronization) control of memristor-based
neural network were obtained [11–13, 16, 17, 20, 21]. A typical
assumption is that

[𝑑

𝑖
, 𝑑

𝑖
] 𝑥 − [𝑑

𝑖
, 𝑑

𝑖
] 𝑦 ⊆ [𝑑

𝑖
, 𝑑

𝑖
] (𝑥 − 𝑦) , . . . . (60)

However,We can prove that this assumption holds only when
𝑥 and 𝑦 have different sign, or 𝑥 = 0, or 𝑦 = 0. Without this
assumption, we divide the error system into four cases in this
paper. Under the adaptive controller (42), globally periodic
synchronization criterion between system (1) and (40) is
derived. The synchronization criterion of this paper which
does not solve any inequality or linear matrix inequality is
easily verified.

Remark 13. As far as we know, there is no work on the
periodic synchronization ofmemristor-based neural network
via adaptive control. Thus, our outcomes are brand new
and original compared to the existing results ([11–14]). In
addition, the obtained results in this paper are also applicable
to the common systems without memristor or the memduc-
tance of thememristor equals a constant since they are special
cases of memristor-based neural networks.

5. Numerical Example

In this section, one example is offered to illustrate the
effectiveness of the results obtained in this paper.

Example 1. Consider the second-order memristor-based
neural network (1) with the following system parameters:

𝑑

1
(𝑥

1 (
𝑡)) =

{

{

{

{

{

{

{

6.5,









𝑥

1 (
𝑡)









≤

1

4

,

6,









𝑥

1 (
𝑡)









>

1

4

,
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𝑑

2
(𝑥

2 (
𝑡)) =

{

{

{

{

{

{

{

6,









𝑥

2 (
𝑡)









≤

1

4

,

6.5,









𝑥

2 (
𝑡)









>

1

4

,

𝑎

11
(𝑥

1 (
𝑡)) =

{

{

{

{

{

{

{

−2,









𝑥

1 (
𝑡)









≤

1

4

,

2,









𝑥

1 (
𝑡)









>

1

4

,

𝑎

12
(𝑥

1 (
𝑡)) =

{

{

{

{

{

{

{

−1,









𝑥

1 (
𝑡)









≤

1

4

,

1,









𝑥

1 (
𝑡)









>

1

4

,

𝑎

21
(𝑥

2 (
𝑡)) =

{

{

{

{

{

{

{

1,









𝑥

2 (
𝑡)









≤

1

4

,

−1,









𝑥

2 (
𝑡)









>

1

4

,

𝑎

22
(𝑥

2 (
𝑡)) =

{

{

{

{

{

{

{

−2,









𝑥

2 (
𝑡)









≤

1

4

,

2,









𝑥

2 (
𝑡)









>

1

4

,

𝑏

11
(𝑥

1 (
𝑡)) =

{

{

{

{

{

{

{

1,









𝑥

1 (
𝑡)
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(61)

and the activation functions are taken as follows:

𝑓

1 (
𝑠) = 𝑓2 (

𝑠) = 𝑠, 𝑔

1 (
𝑠) = 𝑔2 (

𝑠) =

1

2

tanh 𝑠. (62)

It can be verified that 𝑑
1
= 𝑑

2
= 6, 𝑎

11
= 𝑎

22
= 2, 𝑎

12
= 𝑎

21
=

1, ̃𝑏
𝑖𝑗
= 1, 𝑖, 𝑗 = 1, 2, 

1
= 

2
= 1, and 𝜌

1
= 𝜌

2
= 1/2.

We take 𝜏
𝑖𝑗
(𝑡) = 3/4 − (1/4) sin 3𝑡, 𝑖, 𝑗 = 1, 2. A

straightforward calculation gives 𝜏 = 1 and 𝜇
𝑖𝑗
= 3/4.

Then, we get 𝐸
2
− 𝑄 = (

1/2 −1/3

−1/3 1/2
). Obviously, 𝐸

2
− 𝑄 is

an 𝑀-matrix. Thus, the conditions required in Theorem 8
are satisfied. When 𝐼(𝑡) is a periodic function, in the view
of Theorem 8, this neural network has at least one periodic
solution.

For numerical simulations, we choose the external input
(𝐼

1
(𝑡), 𝐼

2
(𝑡))

𝑇
= (0.65 sin 3𝑡−2, 0.65 cos 3𝑡+2)𝑇.The periodic
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Figure 1: Time-domain behavior of the state variables 𝑥
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(𝑡) and
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Figure 2: Time-domain behavior of the state variables 𝑥
2
(𝑡) and

𝑦

2
(𝑡) with 𝑢

𝑖
(𝑡) = 0.

dynamic behavior of the master system (1) and the slave
system (40) with 𝑢

𝑖
(𝑡) = 0 is given in Figures 1, 2, and 3, with

the initial states chosen as 𝑥(𝑡) = (0.6 sin 2𝑡, 0.3 cos 𝑡)𝑇 and
𝑦(𝑡) = (−0.2 cos 2𝑡, −0.8 sin 2𝑡)𝑇 for 𝑡 ∈ [−1, 0].

In order to demonstrate the adaptive controller (42)
can realize complete periodic synchronization of memristor-
based neural networks, some initial parameters are taken as
𝛼

1
(𝑡) = 𝛼

2
(𝑡) = 0.2, 𝛽

1
(𝑡) = 𝛽

2
(𝑡) = 0.1 for 𝑡 ∈ [−1, 0],

𝛿

𝑖
= 10, 𝜀

𝑖
= 𝜂

𝑖
= 0.1, 𝑖 = 1, 2. We get the simulation results

shown in Figures 4–6. Figure 4 describes the time responses
of synchronization errors 𝑒

𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝑥

𝑖
(𝑡), 𝑖 = 1, 2, which

turn to zero quickly as time goes. Figure 5 shows the time
response of 𝛼(𝑡) = (𝛼

1
(𝑡), 𝛼

2
(𝑡))

𝑇. Figure 6 depicts the time
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1
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2
(𝑡) under the

adaptive controller (42).

response of 𝛽(𝑡) = (𝛽
1
(𝑡), 𝛽

2
(𝑡))

𝑇. From Figures 5 and 6 one
can see that the control parameters 𝛼

𝑖
(𝑡) and 𝛽

𝑖
(𝑡), 𝑖 = 1, 2,

turn out to be some constants eventually.

6. Conclusion

In this paper, complete periodic synchronization of a class of
memristor-based neural networks has been investigated. The
master system synchronizes with the slave system by using
adaptive control. The obtained results are novel since there
are few works about complete periodic synchronization issue
of memristor-based neural networks via adaptive control.
In addition, the easily testable condition which ensures the
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(𝑡) and 𝛼

2
(𝑡).
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Figure 6: Trajectories of control parameters 𝛽
1
(𝑡) and 𝛽

2
(𝑡).

existence of periodic solution of a class of memristor-based
recurrent neural network is also much different from the
existing work. The obtained results are also applicable to
the continuous systems without switching jumps. Finally,
a numerical example has been given to illustrate the validity
of the present results.
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