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This paper studies the consensus problem for a high-order multi-agent systems without or with delays. Consensus protocols,
which only depend on the own partial information of agents and partial relative information with its neighbors, are proposed
for consensus and quasi-consensus, respectively. Firstly, some lemmas are presented, and then a necessary and sufficient condition
for guaranteeing the consensus is established under the consensus protocol without delays. Furthermore, communication delays
are considered. Some necessary and sufficient conditions for solving quasi-consensus problem with delays are obtained. Finally,
some simulations are given to verify the theoretical results.

1. Introduction

In recent years, the consensus problemofmulti-agent systems
has received a great deal of attention due to its broad
applications in formation control of unmanned air vehicles,
the design of sensor networks, the cooperative control of
mobile robots, and automated highway system. In a word, we
say all agents reach the consensus upon certain quantities of
interest if all agents agree on a common state eventually; the
precise definitionwill be introduced in the following sections.
Many researches have been devoted to the consensus problem
of multi-agent systems. In 1995, Vicsek et al. [1] proposed a
discrete-time model and concluded that all the headings of
the agents converged to a common value by simulations. In
2003, Jadbabaie et al. [2] provided a theoretical explanation
for Vicsek’s simulation results by graph theory. Gradually, the
consensus problemofmulti-agent systems received a growing
attention. For example, Olfati-Saber and Murray [3] dis-
cussed consensus problems for networks of dynamic agents
with fixed and switching topologies under three cases. Ren
and Beard [4] considered the problem of information con-
sensus under dynamically changing interaction topologies

and weighting factors. Recently, the second-order consensus
problem of multi-agent systems has attracted more and more
researchers’ attention [5–14]. Different from [5–7, 10], Yu
et al. [9], Song et al. [11], and Wen et al. [14] all studied
the second-order consensus problem of multi-agent systems
with nonlinear dynamics. Compared with synchronization
in complex networks which are of nonlinear dynamics,
a generalized consensus was investigated. From a unified
viewpoint, [15] provided a novel framework for the consensus
of multi-agent systems and the synchronization of complex
networks. Viewed from the leader-following consensus, both
Song et al. [11] and Zhu and Cheng [12] considered the
consensus problemwith a leader. In general, the second-order
consensus problem pays attention to whether the relative
position and velocity of each agent will converge to common
state.

At the same time, the high-order consensus problem of
multi-agent systems is also worth being studied. Generally
speaking, the first-order consensus problem of multi-agent
systems can be considered as a special case of the synchro-
nization of complex dynamic networks. Moreover, second-
order consensus problem of multi-agent system means that
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the relative position and velocity of each agent will be
converged to common. However, the birds achieving the
consensus should be on the acceleration besides the relative
position and velocity for the flocks of birds [16], whichmeans
that all the position, velocity, and acceleration will be con-
verged to common. Recently, there aremore andmore studies
on the high-order consensus or swarming problem (see [16–
20] and the references therein).

Motivated by the previouslymentioned results, consensus
of high-order multi-agent systems is investigated in this
paper. A new consensus protocol which only depends on
the own partial information of agents and partial relative
information with its neighbors is proposed. In other words,
the consensus protocol in this paper does not need the global
information of agents and the global relative information. It
is convenient to be designed when the global information
states cannot be available. Furthermore, we consider the
quasi-consensus problem of high-order multi-agent systems
with a time-delay protocol. The delay is nonnegligible in the
information exchanges due to the limited transmission speed
or memory effect. Therefore, there are many papers focusing
on the consensus problem with delay [21–25]. It is worth
noting that Yu et al. [25] considered the quasi-consensus
problem of second-order multi-agent systems with delay
under the protocol

𝑢
𝑖 (
𝑡) = 𝛼

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐺
𝑖𝑗
(𝑥
𝑗(
𝑡) − 𝑥𝑖(

𝑡))

−𝛼

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐺
𝑖𝑗
(𝑥
𝑗(
𝑡 − 𝜏) − 𝑥𝑖(

𝑡 − 𝜏)) .

(1)

This delay is caused by the fact that the agent needs some
memory to store the outdated information from its neigh-
boring agents. It found that this delay can induce quasi-
consensus; that is, all agents have the same velocity but keep
a distance from each other eventually. Therefore, the delay
in this sense looks very interesting. This paper considers
quasi-consensus of high-order multi-agent systems with the
delay in the sense of memory effect. Based on the Nyquist
stability criterion, some results on the quasi-consensus of
high-order multi-agent systems are obtained. It is worth
noting that the results on the consensus of high-order multi-
agent systems with a protocol of communication delay hold
similarly. Furthermore, some simulations are given to verify
the theoretical results.

Notations. Let R𝑛 denote the 𝑛-dimensional Euclidian space.
Let 0
𝑁

and 𝐼
𝑁

be the 𝑁 × 𝑁 zero matrix and identity
matrix, respectively. If𝑀 is a matrix, then rank𝑀 and 𝜎(𝑀)

denote the rank and the spectrum of 𝑀, respectively. Let
1 and 0 denote the 𝑁 × 1 column vectors of all ones and
all zeros, respectively. The symbol ⊗ denotes the Kronecker
product.

2. Preliminaries and Model

Consider a multi-agent systems of 𝑁 agents. The dynamics
of each agent is governed by the following general ℓth-order
integrator:

̇
𝜉
(0)

𝑖
= 𝜉
(1)

𝑖
,

...

̇
𝜉
(ℓ−2)

𝑖
= 𝜉
(ℓ−1)

𝑖
,

̇
𝜉
(ℓ−1)

𝑖
= 𝑢
𝑖
,

(2)

where 𝑖 = 1, 2, . . . , 𝑁, ℓ ≥ 1 is a positive integer and denotes
the order of the differential equations, 𝜉(𝑘)

𝑖
∈ R𝑚, 𝑘 =

0, 1, . . . , ℓ−1, are the states of agent 𝑖, 𝑢
𝑖
∈ R𝑚 is the consensus

protocol, and 𝜉(𝑘)
𝑖

denotes the 𝑘th-order derivative of 𝜉
𝑖
. The

initial state denotes 𝜉
𝑖0
= [𝜉
𝑖
(0), 𝜉
(1)

𝑖
(0), . . . , 𝜉

(ℓ−1)

𝑖
(0)].

We use the weighted undirected graph G to model the
interaction topology of the multi-agent systems; that is, each
vertex represents an agent of systems; each arc (edge) 𝑒

𝑗𝑖

represents that there is a communication link from agent 𝑗
to agent 𝑖. 𝑎

𝑖𝑗
> 0 is the weight of the communication link

𝑒
𝑗𝑖
. One can see [26] for more details. Now, we propose the

following consensus protocol:

𝑢
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= − ∑
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1
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( ∑

𝑘∈𝑀
2

𝛾
𝑘
(𝜉
(𝑘)

𝑖
− 𝜉
(𝑘)

𝑗
)) ,

(3)

where 𝑀 = {0, 1, 2, . . . , ℓ − 1}. Let 𝑀
1
,𝑀
2
⊂ 𝑀 be two

nonempty subsets such that 𝑀
1
∪ 𝑀
2
= 𝑀,𝑀

1
∩ 𝑀
2
= 0,

𝛼 is the coupling strength and 𝛾
𝑘
> 0 is the feedback gain of

relative information. 𝑐
𝑘
̸= 0 ⇔ 𝑘 ∈ 𝑀

1
, otherwise, 𝑐

𝑘
= 0 and

let 𝑐
0
= 0; 𝛾

𝑘
̸= 0 ⇔ 𝑘 ∈ 𝑀

2
, otherwise, 𝛾

𝑘
= 0 and let 𝛾

0
̸= 0.

Let 𝑛
0
= min{𝑘 : 𝑘 ∈ 𝑀

1
}.

Let 𝜉(0) = [𝜉
(0)

1

𝑇

, 𝜉
(0)

2

𝑇

, . . . , 𝜉
(0)

𝑁

𝑇

]
𝑇 and 𝜉(𝑛+1) = ̇

𝜉
(𝑛), 𝑛 =

0, 1, . . . , ℓ − 2. By employing the consensus protocol (3), the
dynamics equations of all agents can be written as follows:

[

[

[

[

[

[

̇
𝜉
(0)

̇
𝜉
(1)

...
̇
𝜉
(ℓ−1)

]

]

]

]

]

]

= (Φ ⊗ 𝐼
𝑚
)

[

[

[

[

[

[

𝜉
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(1)

...
𝜉
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]

]

]

]

]

]

, (4)
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where

Φ = 𝐴 ⊗ 𝐼
𝑁
− 𝛼𝐵 ⊗ 𝐿, (5)

𝐴 =

[

[

[

[

[

[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
...

...
0 0 0 ⋅ ⋅ ⋅ 1
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]
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,
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...
...

...
...
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𝛾
0
𝛾
1
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ℓ−1

]

]

]

]

]

]

]ℓ×ℓ

,

(6)

𝐿 = [ℓ
𝑖𝑗
] is the associated Laplacian ofG; that is ℓ
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= ∑
𝑗 ̸= 𝑖

𝑎
𝑖𝑗
,

ℓ
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. It is easy to note that
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, (7)

where Δ
𝑘
= 𝑐
𝑘
𝐼
𝑁
+ 𝛼𝛾
𝑘
𝐿.

Definition 1. The multi-agent systems governed by (4) are
said to achieve consensus if lim

𝑡→∞
‖𝜉
(𝑘)

𝑖
(𝑡) − 𝜉

(𝑘)

𝑗
(𝑡)‖ = 0,

𝑘 = 0, 1, 2, . . . , ℓ − 1, 𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝑗, for any initial
values.

Remark 2. For convenience, we assume 𝑚 = 1 in the
following discussion; however, all the results hereafter remain
valid for𝑚 > 1 by the Kronecker product.

3. Consensus Analysis

In this section, we consider the consensus problem defined
in the Section 2 for the multi-agent systems (4) with fixed
topology. To this end, we establish the following lemmas
which are needed for the main results.

Denote Γ = 𝐼
𝑁
⊗𝐴−𝛼𝐿⊗𝐵. One has the following lemmas.

Lemma 3. Φ is similar to Γ.

Proof. See the appendix.

Lemma 4. Assume that Φ is defined in (5) and 𝜆
1
, 𝜆
2
, . . . ,

𝜆
𝑁
∈ 𝜎(𝐿); then the characteristic polynomial of Φ is

det(𝜇𝐼
𝑁ℓ

− Φ) =

𝑁

∏

𝑖=1

(𝜇
ℓ
+ 𝛿
𝑖

ℓ−1
𝜇
ℓ−1

+ ⋅ ⋅ ⋅ + 𝛿
𝑖

1
𝜇 + 𝛼𝜆

𝑖
𝛾
0
) ,

(8)

where 𝛿𝑖
𝑘
= 𝑐
𝑘
+ 𝛼𝜆
𝑖
𝛾
𝑘
, 𝑘 = 1, 2, . . . , ℓ − 1, 𝑖 = 1, 2, . . . , 𝑁.

Proof. See the appendix.

Lemma 5. Φ has at least 𝑛
0
zero eigenvalues. It has exactly 𝑛

0

zero eigenvalues if and only if 𝐿 has a simple zero eigenvalue. If
𝐿 has a simple zero eigenvalue, then the geometric multiplicity
of the zero eigenvalue of Φ equals one. Moreover, the left and
right eigenvector of Φ associated with eigenvalue zero are as
follows:

V
𝑙
=

1

𝑐
𝑛
0

[𝑐
1
, . . . , 𝑐

ℓ−1
, 1] ⊗ 1𝑇,

𝑤
𝑟
=

1

√𝑁

𝑒
1
⊗ 1.

(9)

Proof. See the appendix.

Based on the previous lemmas, here we give the main
result.

Theorem 6. Under the consensus protocol (3), the multi-agent
systems (4) achieve the consensus if and only if Φ has exactly
𝑛
0
zero eigenvalues and all of other eigenvalues are negative.

Proof (Sufficiency). If Φ has exactly 𝑛
0
zero eigenvalues, then

Φ has the Jordan canonical form [

𝐽
1

𝐽
2

], where

𝐽
1
=

[

[

[

[

[

[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

...
...

...
0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]𝑛
0
×𝑛
0

; (10)

𝐽
2
is the upper diagonal block matrix with diagonal entries

being the nonzero eigenvalues of Φ. Moreover, one has

Φ = [𝑤
1
, 𝑤
2
, . . . , 𝑤

ℓ𝑁
]

× [

𝐽
1

0
𝑛
0
×(𝑁ℓ−𝑛

0
)

0
(𝑁ℓ−𝑛

0
)×𝑛
0

𝐽
2

]

×

[

[

[

[

[

[

[

V𝑇
1

V𝑇
2

...
V𝑇
ℓ𝑁

]

]

]

]

]

]

]

,

(11)

where 𝑤
𝑖
∈ Rℓ𝑁, 𝑖 = 1, 2, . . . , ℓ𝑁, can be chosen to be

the right eigenvectors or generalized eigenvectors of Φ, V
𝑖
∈

Rℓ𝑁, 𝑖 = 1, 2, . . . , ℓ𝑁, can be chosen to be the left eigen-
vectors or generalized eigenvectors of Φ. Without of loss
generality, assume that 𝑀

2
= {0, 1, . . . , 𝑛

0
− 1} and 𝑀

1
=

{𝑛
0
, 𝑛
0
+ 1, . . . , ℓ − 1}. Let 𝑤

1
= [1𝑇, 0𝑇, . . . , 0𝑇]𝑇, 𝑤

2
=

[0𝑇, 1𝑇, . . . , 0𝑇]𝑇, . . . , 𝑤
𝑛
0

= [0𝑇, 0𝑇, . . . , 1𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛
0

, 0𝑇, . . . , 0𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℓ−𝑛
0

]
𝑇; one

can verify that 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
0

are a right eigenvector and
𝑛
0
−1 generalized right eigenvectors ofΦ associated with zero

eigenvalue, respectively. SinceΦ has exactly 𝑛
0
zero eigenval-

ues, without loss of generality, one can denote them by 𝜇
1
=

𝜇
2
= ⋅ ⋅ ⋅ = 𝜇

𝑛
0

= 0. By Lemma 5, we know that 𝐿 has a simple
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zero eigenvalue,which implies that there is a nonnegative vec-
tor 𝑝 = (1/𝑁)1 such that 𝑝𝑇𝐿 = 0, 𝑝𝑇1 = 1 by [16]. Then we
choose, V

1
= (1/𝑐

𝑛
0

)[𝑐
𝑛
0

𝑝
𝑇
, . . . , 𝑐

ℓ−1
𝑝
𝑇
, 𝑝
𝑇
, 0𝑇, . . . , 0𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛
0
−1

]
𝑇
, . . .,

V
2
= (1/𝑐

𝑛
0

)[0𝑇, 𝑐
𝑛
0

𝑝
𝑇
, . . . , 𝑐

ℓ−1
𝑝
𝑇
, 𝑝
𝑇
, 0𝑇, . . . , 0𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛
0
−2

]
𝑇
, . . ., V

𝑛
0

=

(1/𝑐
𝑛
0

)[0𝑇, . . . , 0𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛
0
−1

, 𝑐
𝑛
0

𝑝
𝑇
, . . . , 𝑐

ℓ−1
𝑝
𝑇
, 𝑝
𝑇
]
𝑇. It follows from

Lemma 5 that they are 𝑛
0
− 1 generalized left eigenvectors

and a left eigenvector of Φ associated with eigenvalue zero,
respectively. Moreover, V𝑇

𝑖
𝑤
𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑛

0
. It is noted

that

𝑒
Φ𝑡
= [𝑤1

, 𝑤
2
, . . . , 𝑤

ℓ𝑁]

× [

𝑒
𝐽
1
𝑡

0
𝑛
0
×(𝑁ℓ−𝑛

0
)

0
(𝑁ℓ−𝑛

0
)×𝑛
0

𝑒
𝐽
2
𝑡 ]

[

[

[

[

[

[

[

V𝑇
1

V𝑇
2

...
V𝑇
ℓ𝑁

]

]

]

]

]

]

]

,

(12)

where lim
𝑡→∞

𝑒
𝐽
2
𝑡
= 0
𝑁ℓ−𝑛

0

since the nonzero eigenvalues
have negative real parts and

𝑒
𝐽
1
𝑡
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 𝑡

𝑡
2

2!

⋅ ⋅ ⋅

𝑡
𝑛
0
−1

(𝑛
0
− 1)!

0 1 𝑡 ⋅ ⋅ ⋅

𝑡
𝑛
0
−2

(𝑛
0
− 2)!

...
...

...
...

...

0 0 0 ⋅ ⋅ ⋅ 𝑡

0 0 0 ⋅ ⋅ ⋅ 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]𝑛
0
×𝑛
0

. (13)

Therefore, for enough large 𝑡, the dominant terms of 𝑒Φ𝑡
denoted by Φ

𝑑
is

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1𝑝𝑇 (

𝑐
𝑛
0
+1

𝑐
𝑛
0

+ 𝑡) 1𝑝𝑇 ⋅ ⋅ ⋅

𝑛
0
−1

∑

𝑘=0

𝑐
𝑛
0
+𝑘
𝑡
𝑛
0
−𝑘−1

𝑐
𝑛
0

(𝑛
0
− 𝑘 − 1)!

1𝑝𝑇
𝑛
0

∑

𝑘=1

𝑐
𝑛
0
+𝑘
𝑡
𝑛
0
−𝑘

𝑐
𝑛
0

(𝑛
0
− 𝑘)!

1𝑝𝑇 ⋅ ⋅ ⋅

𝑡
𝑛
0
−11𝑝𝑇

𝑐
𝑛
0

(𝑛
0
− 1)!

0
𝑁

1𝑝𝑇 ⋅ ⋅ ⋅

𝑛
0
−2

∑

𝑘=0

𝑐
𝑛
0
+𝑘
𝑡
𝑛
0
−𝑘−2

𝑐
𝑛
0

(𝑛
0
− 𝑘 − 2)!

1𝑝𝑇
𝑛
0
−1

∑

𝑘=1

𝑐
𝑛
0
+𝑘
𝑡
𝑛
0
−𝑘−1

𝑐
𝑛
0

(𝑛
0
− 𝑘 − 1)!

1𝑝𝑇 ⋅ ⋅ ⋅

𝑡
𝑛
0
−21𝑝𝑇

𝑐
𝑛
0

(𝑛
0
− 2)!

...
...

...
...

...
...

...

0
𝑁

0
𝑁

⋅ ⋅ ⋅ 1𝑝𝑇
𝑐
𝑛
0
+1

𝑐
𝑛
0

1𝑝𝑇 ⋅ ⋅ ⋅

1𝑝𝑇

𝑐
𝑛
0

0
𝑁

0
𝑁

⋅ ⋅ ⋅ 0
𝑁

0
𝑁

⋅ ⋅ ⋅ 0
𝑁

...
...

...
...

...
...

...
0
𝑁

0
𝑁

⋅ ⋅ ⋅ 0
𝑁

0
𝑁

⋅ ⋅ ⋅ 0
𝑁

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]
ℓ×ℓ

. (14)

Thus, we write Φ
𝑑
by a compact form

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1𝑝𝑇 𝑟
12(
𝑡) 1𝑝𝑇 ⋅ ⋅ ⋅ 𝑟1𝑛

0
(𝑡) 1𝑝𝑇 ⋅ ⋅ ⋅ 𝑟

1ℓ(
𝑡) 1𝑝𝑇

0
𝑁

1𝑝𝑇 ⋅ ⋅ ⋅ 𝑟
2𝑛
0
(𝑡) 1𝑝𝑇 ⋅ ⋅ ⋅ 𝑟

2ℓ(
𝑡) 1𝑝𝑇

...
...

...
...

0
𝑁

0
𝑁
⋅ ⋅ ⋅ 1𝑝𝑇 ⋅ ⋅ ⋅ 𝑟

𝑛
0
ℓ(
𝑡) 1𝑝𝑇

0
𝑁

0
𝑁
⋅ ⋅ ⋅ 0

𝑁
⋅ ⋅ ⋅ 0

𝑁

...
...

...
...

0
𝑁

0
𝑁
⋅ ⋅ ⋅ 0

𝑁
⋅ ⋅ ⋅ 0

𝑁

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (15)

where 𝑟
𝑖𝑗
(𝑡), 𝑗 > 𝑖 is a polynomial of 𝑡 with degree 𝑗 − 𝑖. It

follows from (4) that

[

[

[

[

[

[

𝜉
(0)
(𝑡)

𝜉
(1)
(𝑡)

...
𝜉
(ℓ−1)

(𝑡)

]

]

]

]

]

]

= 𝑒
Φ𝑡

[

[

[

[

[

[

𝜉
(0)
(0)

𝜉
(1)
(0)

...
𝜉
(ℓ−1)

(0)

]

]

]

]

]

]

, (16)

that is, for enough large 𝑡,

𝜉
(𝑘)
(𝑡) = [𝜉

(𝑘)

1
(𝑡) , 𝜉
(𝑘)

2
(𝑡) , . . . , 𝜉

(𝑘)

𝑁
(𝑡)]

𝑇

= 1𝑝𝑇𝜉(𝑘) (0) + 𝑟𝑘+1,𝑘+2 (𝑡) 1𝑝
𝑇
𝜉
(𝑘+1)

(0)

+ ⋅ ⋅ ⋅ + 𝑟
𝑘+1,ℓ (

𝑡) 1𝑝𝑇𝜉(ℓ−1) (0) , 𝑘 ≤ 𝑛
0
− 1,

(17)

which implies that 𝜉(𝑘)
𝑖
(𝑡) → 𝜉

(𝑘)

𝑗
(𝑡) as 𝑡 → ∞ for 𝑘 ≤ 𝑛

0
−1.
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If 𝑘 ≥ 𝑛
0
, then 𝜉

(𝑘)
(𝑡) → 0 as 𝑡 → ∞. Therefore,

𝜉
(𝑘)

𝑖
(𝑡) → 𝜉

(𝑘)

𝑗
(𝑡) as 𝑡 → ∞, for all 𝑖 ̸= 𝑗, 𝑘 = 0, 1, . . . , ℓ − 1.

This implies that the multi-agent systems achieve the consen-
sus.

(Necessity). By reduction to absurdity, suppose that the
sufficient condition dose not hold; then there are two cases
may be hold.

Case 1. Φ has more than 𝑛
0
zero eigenvalues.

Case 2. Φ has exactly 𝑛
0
zero eigenvalues, but it has at least

one eigenvalue with nonnegative real part.
If Case 1 holds, then rank(lim

𝑡→∞
𝑒
Φ𝑡
) ≥

rank(lim
𝑡→∞

𝑒
𝐽
1
𝑡
) > 𝑛
0
.

If Case 2 holds, then lim
𝑡→∞

𝑒
𝐽
2
𝑡
̸= 0
𝑁ℓ−𝑛

0

, and
rank(lim

𝑡→∞
𝑒
Φ𝑡
) ≥ rank(lim

𝑡→∞
𝑒
𝐽
1
𝑡
)+rank(lim

𝑡→∞
𝑒
𝐽
2
𝑡
) >

𝑛
0
. However, it follows from Φ

𝑑
(the dominant terms of 𝑒Φ𝑡)

that if the consensus is achieved, then rank(lim
𝑡→∞

𝑒
Φ𝑡
) ≤ 𝑛
0
.

This is a contradiction.

Remark 7. From Theorem 6, if (4) achieves the consensus,
then Φ has exactly 𝑛

0
zero eigenvalues. Therefore, 𝐿 has a

simple zero eigenvalue, which implies that the information
exchange topologyG is connected.

Remark 8. Compared to the consensus protocols proposed
in [16–19], protocol (3) only depends on the own partial
information of agents and the partial relative states with its
neighbors, which does not need the global information of
agents or the global relative information. It is convenient to
design when global information states cannot be available.

To illustrate the previous result, we consider the following
example.

Example 9. Considering the following third-order system of
8 agents, where the dynamics of each agent are governed by

𝑥̇
𝑖
= V
𝑖
, V̇

𝑖
= 𝑎
𝑖
, ̇𝑎

𝑖
= 𝑢
𝑖
, (18)

where 𝑥
𝑖
, V
𝑖
, 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 8, denote the position, velocity,

and acceleration of agent 𝑖, respectively, let Laplacian matrix
𝐿 be

[

[

[

[

[

[

[

[

[

[

[

1 0 −1 0 0 0 0 0

0 2 −1 0 0 −1 0 0

−1 −1 4 −1 0 0 −1 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 1 0 0 0

0 −1 0 0 0 1 0 0

0 0 −1 0 0 1 0 0

0 0 0 0 0 0 −1 1

]

]

]

]

]

]

]

]

]

]

]

. (19)

It follows from the 𝐿 that the graph is connected. Moreover,
the eigenvalues of 𝐿 are 0, 0.382, 0.6086, 1, 1, 2.2271, 2.618,
and 5.1642. If we choose 𝛼 = 1, 𝛾

0
= 1, 𝛾

1
= 2, and 𝑐

2
= 2,

then 𝑛
0
= 2. Furthermore, Φ has 2 zero eigenvalues and the

real parts of all other eigenvalues are negative. Let the initial
values be the 𝑥(0) = [10, 20, 30, 5, −10, −20, −30, −5], V(0) =

0 5 10 15 20 25 30
−30

−20

−10

0

10

20

30

40

t

x

Figure 1: The trajectories of 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 8.

0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

15

20

t

�

Figure 2: The trajectories of V
𝑖
, 𝑖 = 1, 2, . . . , 8.

[2, −8, 3, −3, −2, 5, 8, −5], 𝑎(0) = [−2, 2, 3, −3, 5, −5, 1, −1]. By
Theorem 6, consensus in dynamical multi-agent systems (18)
with network topology (19) can be achieved. Figures 1, 2, and
3 show the plots of 𝑥

𝑖
, V
𝑖
, 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 8, respectively.

4. Quasi-Consensus Problem with Delays

Because of the limited transmission speed or memory effect,
there exist nonnegligible delays in the communication pro-
cess. Therefore, it is necessary to consider the influence of
delays on the consensus. In [25], the authors considered the
delays in the sense of memory store by the fact that the agent
uses the memory to store the outdated information of its
neighbors. Such delays are so interesting that can deduce
quasi-consensus. In this section, we consider the consensus



6 Discrete Dynamics in Nature and Society
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−40
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Figure 3: The trajectories of 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 8.

problem with the protocol of delays in the sense of memory
store as follows:

𝑢
𝑖
= − ∑

𝑘∈𝑀
1

𝑐
𝑘
𝜉
(𝑘)

𝑖
+ 𝛼

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
∑

𝑘∈𝑀
2

𝛾
𝑘
(𝜉
(𝑘)

𝑗
(𝑡) − 𝜉

(𝑘)

𝑖
(𝑡))

+ ∑

𝑘∈𝑀
1

𝑐
𝑘
𝜉
(𝑘)

𝑖
(𝑡 − 𝜏)

− 𝛼

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
∑

𝑘∈𝑀
2

𝛾
𝑘
(𝜉
(𝑘)

𝑗
(𝑡 − 𝜏) − 𝜉

(𝑘)

𝑖
(𝑡 − 𝜏)) ,

(20)

where 𝜏 > 0. Let 𝜂
𝑖
= [𝜉
(0)

𝑖
, 𝜉
(1)

𝑖
, . . . , 𝜉

(ℓ−1)

𝑖
], 𝜂 = [𝜂

𝑇

1
, 𝜂
𝑇

2
,

. . . , 𝜂
𝑇

𝑁
]
𝑇.

With the consensus protocol (20), the closed loop of
multi-agent systems (2) can be written as

̇𝜂
𝑖
= 𝐴𝜂
𝑖
− 𝐴𝜂
𝑖 (
𝑡 − 𝜏) − 𝛼

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝐵𝜂
𝑗

+ 𝛼

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝐵𝜂
𝑗 (
𝑡 − 𝜏) ,

(21)

where 𝐴, 𝐵 are defined as (5) and

𝐴 =

[

[

[

[

[

[

[

0 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 0

0 −𝑐
1
⋅ ⋅ ⋅ −𝑐

ℓ−1

]

]

]

]

]

]

]ℓ×ℓ

. (22)

Therefore,

̇𝜂 = (𝐼
𝑁
⊗ 𝐴) 𝜂 − (𝐼

𝑁
⊗ 𝐴) 𝜂 (𝑡 − 𝜏)

− 𝛼 (𝐿 ⊗ 𝐵) 𝜂 + 𝛼 (𝐿 ⊗ 𝐵) 𝜂 (𝑡 − 𝜏) .

(23)

Let 𝐽 be the Jordan matrix associate with the 𝐿. Therefore,
there exists orthogonal matrix 𝑄 such that 𝑄𝑇𝐿𝑄 = 𝐽 =

diag{𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑁
}. Then,

(𝑄
𝑇
⊗ 𝐼
ℓ
) ̇𝜂 (𝑡)

= (𝑄
𝑇
⊗ 𝐼
ℓ
) [(𝐼
𝑁
⊗ 𝐴) − 𝛼 (𝐿 ⊗ 𝐵)] 𝜂 (𝑡)

− (𝑄
𝑇
⊗ 𝐼
ℓ
) [(𝐼
𝑁
⊗ 𝐴) − 𝛼 (𝐿 ⊗ 𝐵)] 𝜂 (𝑡 − 𝜏)

= [(𝐼
𝑁
⊗ 𝐴) − 𝛼 (𝐽 ⊗ 𝐵)] (𝑄

𝑇
⊗ 𝐼
ℓ
) 𝜂 (𝑡)

− [(𝐼
𝑁
⊗ 𝐴) − 𝛼 (𝐽 ⊗ 𝐵)] (𝑄

𝑇
⊗ 𝐼
ℓ
) 𝜂 (𝑡 − 𝜏) .

(24)

Let 𝜃(𝑡) = (𝑄
𝑇
⊗ 𝐼
ℓ
)𝜂(𝑡) = [𝜃

𝑇

1
(𝑡), 𝜃
𝑇

2
(𝑡), . . . , 𝜃

𝑇

𝑁
(𝑡)]
𝑇. Then, it

follows from (24) that

̇
𝜃 (𝑡) = [(𝐼

𝑁
⊗ 𝐴) − 𝛼 (𝐽 ⊗ 𝐵)] 𝜃 (𝑡)

− [(𝐼
𝑁
⊗ 𝐴) − 𝛼 (𝐽 ⊗ 𝐵)] 𝜃 (𝑡 − 𝜏) ;

(25)

that is

̇
𝜃
𝑖 (
𝑡) = (𝐴 − 𝛼𝜆

𝑖
𝐵) 𝜃
𝑖 (
𝑡)

− (𝐴 − 𝛼𝜆
𝑖
𝐵) 𝜃
𝑖 (
𝑡 − 𝜏) .

(26)

The characteristic equation of the multi-agent system (26) is

𝜆
ℓ
+ [𝑐
ℓ−1

+ 𝛼𝜆
𝑖
𝛾
ℓ−1
] (1 − 𝑒

−𝜆𝜏
) 𝜆
ℓ−1

+ ⋅ ⋅ ⋅ + [𝑐
1
+ 𝛼𝜆
𝑖
𝛾
1
] (1 − 𝑒

−𝜆𝜏
) 𝜆

+ 𝛼𝜆
𝑖
𝛾
0
(1 − 𝑒

−𝜆𝜏
) = 0, 𝑖 = 1, 2, . . . , 𝑁.

(27)

Definition 10. Themulti-agent systems (2) are said to achieve
quasi-consensus if

lim
𝑡→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝜉
(0)

𝑖
(𝑡) − 𝜉

(0)

𝑗
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
= 𝑐
𝑖𝑗
,

lim
𝑡→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝜉
(𝑘)

𝑖
(𝑡) − 𝜉

(𝑘)

𝑗
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0,

(28)

for any initial conditions, where 𝑐
𝑖𝑗
are constants, for all 𝑘 =

1, 2, . . . , ℓ − 1 and 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

Theorem 11. Assume thatG is connected. Quasi-consensus of
multi-agent systems (2) with protocol (20) can be achieved if
and only if each equation of (27) (𝑖 = 2, 3, . . . , 𝑁) has only
simple zero root and the real parts of all other roots are negative.

Proof (Sufficiency). If G is connected, then 𝐿 has only a
simple zero eigenvalue with associated right eigenvector 𝑞

1
=

(1/√𝑁)1, where 𝑄𝑇𝐿𝑄 = 𝐽, 𝑄 = [𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑁
], 𝑞
𝑖
=

[𝑞
𝑖1
, 𝑞
𝑖2
, . . . , 𝑞

𝑖𝑁
]
𝑇, 𝑖 = 1, 2, . . . , 𝑁. If each equation of (27)

(𝑖 = 2, 3, . . . , 𝑁) has only simple zero root and the real parts
of all other roots are negative, then the states in (26) converge
to some constants. It follows from the 𝜃(𝑡) = (𝑄

𝑇
⊗ 𝐼
ℓ
)𝜂(𝑡)
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that 𝜃
𝑖
(𝑡) = (𝑞

𝑇

𝑖
⊗ 𝐼
ℓ
)𝜂(𝑡) = ∑

𝑁

𝑗=1
𝑞
𝑖𝑗
𝜂
𝑗
(𝑡). Denote 𝜃

𝑖
(𝑡) =

[𝜃
𝑖0
(𝑡), 𝜃
𝑖1
(𝑡), . . . , 𝜃

𝑖ℓ−1
(𝑡)]
𝑇; then one has

𝜃
𝑖𝑘 (
𝑡) =

𝑁

∑

𝑗=1

𝑞
𝑖𝑗
𝜉
(𝑘)

𝑗
(𝑡) , 𝑘 = 0, 1, . . . , ℓ − 1. (29)

Noting that ̇
𝜃
𝑖𝑘
(𝑡) = 𝜃

𝑖𝑘+1
(𝑡), if one of the 𝜃

𝑖1
(𝑡), 𝜃
𝑖2
(𝑡),

. . . , 𝜃
𝑖ℓ−1

(𝑡) does not converge to zero, then lim
𝑡→∞

‖𝜃
𝑖0
(𝑡)‖ =

∞. Therefore, lim
𝑡→∞

‖𝜃
𝑖𝑘
(𝑡)‖ = 0, 𝑖 = 2, 3, . . . , 𝑁, 𝑘 =

1, . . . , ℓ−1. Moreover, one has 𝜂
𝑖
(𝑡) = ∑

𝑁

𝑗=1
𝑞
𝑗𝑖
𝜃
𝑗
(𝑡); therefore,

𝜉
(𝑘)

𝑖
(𝑡) =

𝑁

∑

𝑗=1

𝑞
𝑗𝑖
𝜃
𝑗𝑘 (

𝑡) , 𝑘 = 0, 1, . . . , ℓ − 1. (30)

Thus,

lim
𝑡→∞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜉
(𝑘)
(𝑡) −

1

√𝑁

[𝜃
1𝑘 (

𝑡) , 𝜃1𝑘 (
𝑡) , . . . , 𝜃1𝑘 (

𝑡)]
𝑇
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

= 0, (31)

where 𝑘 = 1, 2, . . . , ℓ−1, ̇
𝜃
1
(𝑡) = 𝐴𝜃

1
(𝑡).Therefore, the quasi-

consensus is reached.
(Necessity). If the quasi-consensus can be reached, then

there exists 𝜎(𝑡) = [𝜎
0
(𝑡), 𝜎
1
(𝑡), . . . , 𝜎

ℓ−1
(𝑡)]
𝑇 such that

lim
𝑡→∞

‖𝜉
(𝑘)
(𝑡) − 1

𝑁
⊗ 𝜎
𝑘
(𝑡)‖ = 0. Since 𝐺 is connected, 𝐿

has only one zero eigenvalue with associated eigenvector 𝑞
1
=

(1/√𝑁)1. Thus, 0 = 𝑄
𝑇
𝐿1 = 𝐽𝑄

𝑇1 = [𝜆
1
𝑞
𝑇

1
1, 𝜆
2
𝑞
𝑇

2
1, . . . ,

𝜆
𝑁
𝑞
𝑇

𝑁
1]𝑇; that is, 𝑞𝑇

𝑖
1 = 0, 𝑖 = 2, 3, . . . , 𝑁. Therefore, it

follows from 𝜃
𝑖
(𝑡) = 𝑞

𝑖1
𝜂
1
(𝑡) + 𝑞

𝑖2
𝜂
2
(𝑡) + ⋅ ⋅ ⋅ + 𝑞

𝑖𝑁
𝜂
𝑁
(𝑡) =

(𝑞
𝑇

𝑖
⊗ 𝐼
ℓ
)𝜂(𝑡) that

lim
𝑡→∞

󵄩
󵄩
󵄩
󵄩
𝜃
𝑖𝑘 (
𝑡)
󵄩
󵄩
󵄩
󵄩
= lim
𝑡→∞

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑞
𝑇

𝑖
1) ⊗ 𝜎

𝑘 (
𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
= 0, (32)

𝑖 = 2, 3, . . . , 𝑁, 𝑘 = 1, 2, . . . , ℓ − 1, ̇
𝜃
1
(𝑡) = 𝐴𝜃

1
(𝑡). By way of

contradiction, assume that the sufficient condition does not
hold; then there are two cases.

Case 1. Each of𝑁−1 equations (27) (𝑖 = 2, 3, . . . , 𝑁) hasmore
than one zero roots.

Case 2. Each of 𝑁 − 1 equations (27) (𝑖 = 2, 3, . . . , 𝑁) has
simple zero root; however, there exists nonnegative real part.

If one of the previous two cases holds, then there exists a
1 ≤ 𝑘 ≤ ℓ−1 such that lim

𝑡→∞
‖𝜃
𝑖𝑘
(𝑡)‖ ̸= 0 for 𝑖 = 2, 3, . . . , 𝑁,

which contradicts formula (32).

𝑒
−𝜆𝜏 can be expressed by Taylor expansion; therefore, (27)

can be rewritten as follows:

𝜆
ℓ
+ 𝜆[𝜏 −

∞

∑

𝑘=2

(−𝜏)
𝑘
𝜆
𝑘−1

𝑘!

]

ℓ−1

∑

𝑘=0

𝛿
𝑖

𝑘
𝜆
𝑘
= 0. (33)

Since 𝜏 > 0 and 𝛿𝑖
0
= 𝛼𝜆
𝑖
𝛾
0
> 0, 𝑖 = 2, 3, . . . , 𝑁, (33) has only

simple zero root for 𝑖 = 2, 3, . . . , 𝑁. When 𝑠 ̸= 0, let 𝐹
𝑖
(𝜆) =

1 + 𝐺
𝑖
(𝜆), where

𝐺
𝑖 (
𝜆) =

∑
ℓ−1

𝑘=0
𝛿
𝑖

𝑘
𝜆
𝑘

𝜆
ℓ

(1 − 𝑒
−𝜆𝜏

) , 𝑖 = 2, 3, . . . , 𝑁. (34)

Based on the Nyquist stability criterion, therefore, the real
parts of nonzero roots of (27) are negative if and only if𝐺

𝑖
(𝑗𝜔)

does not enclose the point (−1, 𝑗0) for 𝜔 ∈ R, where 𝑗 is
imaginary unit.

Without loss of generality, assume that ℓ is an odd
number. Denote 𝑆

1
= {0, 2, . . . , ℓ−1} and 𝑆

2
= {1, 3, . . . , ℓ−2}.

By some calculations, one can obtain

𝐺
𝑖
(𝑗𝜔) =

∑
ℓ−1

𝑘=0
𝛿
𝑖

𝑘
(𝑗𝜔)
𝑘

(𝑗𝜔)
ℓ

(1 − 𝑒
−𝑗𝜔𝜏

)

=

∑
ℓ−1

𝑘=0
𝛿
𝑖

𝑘
𝜔
𝑘
𝑗
𝑘+ℓ

(−𝜔)
ℓ

2 sin 𝜔𝜏
2

𝑒
𝑗((𝜋−𝜔𝜏)/2)

= ((𝑗∑

𝑘∈𝑆
1

𝛿
𝑖

𝑘
𝜔
𝑘
(−1)
(𝑘+ℓ−1)/2

+ ∑

𝑘∈𝑆
2

𝛿
𝑖

𝑘
𝜔
𝑘
(−1)
(𝑘+ℓ)/2

)

×(−𝜔
ℓ
)

−1

)2 sin 𝜔𝜏
2

𝑒
𝑗((𝜋−𝜔𝜏)/2)

.

(35)

Let 𝑎
𝑖

= ∑
𝑘∈𝑆
2

𝛿
𝑖

𝑘
𝜔
𝑘
(−1)
(𝑘+ℓ)/2, 𝑏

𝑖
=

∑
𝑘∈𝑆
1

𝛿
𝑖

𝑘
𝜔
𝑘
(−1)
(𝑘+ℓ−1)/2.

Therefore,

𝐺
𝑖
(𝑗𝜔) =

𝑎
𝑖
+ 𝑏
𝑖
𝑗

−𝜔
ℓ
2 sin 𝜔𝜏

2

𝑒
𝑗((𝜋−𝜔𝜏)/2)

=

2 sin (𝜔𝜏/2)√𝑎2
𝑖
+ 𝑏
2

𝑖

𝜔
ℓ

𝑒
𝑗(((−𝜋−𝜔𝜏)/2)+arctan (𝑏

𝑖
/𝑎
𝑖
))
.

(36)

Therefore, Theorem 11 is equivalent to the following
theorem.

Theorem 12. Assume thatG is connected. Quasi-consensus of
multi-agent systems (2) with protocol (20) can be achieved if
and only if

𝐺
𝑖
(𝑗𝜔) =

2 sin (𝜔𝜏/2)√𝑎2
𝑖
+ 𝑏
2

𝑖

𝜔
ℓ

𝑒
𝑗(((−𝜋−𝜔𝜏)/2)+arctan(𝑏

𝑖
/𝑎
𝑖
))

(37)

does not enclose the point (−1, 𝑗0) for 𝑖 ∈ {2, 3, . . . , 𝑁}

and 𝜔 ∈ R, where 𝑎
𝑖

= ∑
𝑘∈𝑆
2

𝛿
𝑖

𝑘
𝜔
𝑘
(−1)
(𝑘+ℓ)/2, 𝑏

𝑖
=

∑
𝑘∈𝑆
1

𝛿
𝑖

𝑘
𝜔
𝑘
(−1)
(𝑘+ℓ−1)/2

.

As the symmetric property of the Nyquist plot, we only
need to consider the case of 𝜔 > 0. When 𝜔 ∈ (0, +∞),
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|𝐺
𝑖
(𝑗𝜔)| ≤ (2∑

ℓ−1

𝑘=0
𝛿
𝑖

𝑘
𝜔
𝑘
)/𝜔
ℓ is monotonously decreasing;

furthermore,

arg (𝐺
𝑖
(𝑗𝜔))

=

{
{
{
{

{
{
{
{

{

arctan
𝑏
𝑖

𝑎
𝑖

−

𝜋

2

−

𝜔𝜏

2

, 2𝑛𝜋 ≤

𝜔𝜏

2

< 2𝑛𝜋 + 𝜋;

arctan
𝑏
𝑖

𝑎
𝑖

+

𝜋

2

−

𝜔𝜏

2

, 2𝑛𝜋 + 𝜋 ≤

𝜔𝜏

2

< 2𝑛𝜋 + 2𝜋,

(38)

where 𝑛 ≥ 0 is the nonnegative integer.
When 𝜔 ∈ (0, +∞), 𝐺

𝑖
(𝑗𝜔) crosses the negative real axis

for the first time at 𝜔𝑖
1
, one has

𝜔
𝑖

1
𝜏

2

= arctan
𝑏
1

𝑖

𝑎
1

𝑖

+

𝜋

2

,

󵄨
󵄨
󵄨
󵄨
󵄨
𝐺
𝑖
(𝑗𝜔
𝑖

1
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

2∑
𝑘∈𝑆
2

𝛿
𝑖

𝑘
(𝜔
𝑖

1
)

𝑘

(𝜔
𝑖

1
)
ℓ

,

(39)

where 𝑎
1

𝑖
= ∑

𝑘∈𝑆
2

𝛿
𝑖

𝑘
(𝜔
𝑖

1
)

𝑘

(−1)
(𝑘+ℓ)/2, 𝑏1

𝑖
=

∑
𝑘∈𝑆
1

𝛿
𝑖

𝑘
(𝜔
𝑖

1
)

𝑘

(−1)
(𝑘+ℓ−1)/2.

Therefore, one has the following result equivalently.

Theorem 13. Assume thatG is connected. Quasi-consensus of
multi-agent systems (2) with protocol (20) can be achieved if
and only if

2∑

𝑘∈𝑆
2

𝛿
𝑖

𝑘
(𝜔
𝑖

1
)

𝑘

< (𝜔
𝑖

1
)

ℓ

, for 𝑖 = 2, 3, . . . , 𝑁, (40)

where 𝜔𝑖
1
is defined by 𝜔𝑖

1
𝜏/2 = arctan(𝑏1

𝑖
/𝑎
1

𝑖
) + 𝜋/2.

Denote 𝛿max = max
𝑖,𝑘
𝛿
𝑖

𝑘
. If all 𝜔𝑖

1
satisfy

2∑

𝑘∈𝑆
2

𝛿max(𝜔
𝑖

1
)

𝑘

≤ (𝜔
𝑖

1
)

ℓ

, for 𝑖 = 2, 3, . . . , 𝑁, (41)

thenTheorem 13 holds.

Remark 14. If one considers consensus protocol with com-
munication delays as follows:

𝑢
𝑖
= − ∑

𝑘∈𝑀
1

𝑐
𝑘
𝜉
(𝑘)

𝑖
+ 𝛼

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
∑

𝑘∈𝑀
2

𝛾
𝑘
(𝜉
(𝑘)

𝑗
(𝑡) − 𝜉

(𝑘)

𝑖
(𝑡))

− ∑

𝑘∈𝑀
1

𝑐
𝑘
𝜉
(𝑘)

𝑖
(𝑡 − 𝜏)

+ 𝛼

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
∑

𝑘∈𝑀
2

𝛾
𝑘
(𝜉
(𝑘)

𝑗
(𝑡 − 𝜏) − 𝜉

(𝑘)

𝑖
(𝑡 − 𝜏)) ,

(42)

then the similar results can be obtained.

Example 15. Considering the multi-agent systems which is
similar to example 1, here we take (20) as the quasi-consensus

0 10 20 30 40 50
−20

0

20

40

60

80

100

120

t

x

Figure 4: The trajectories of 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 8.
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Figure 5: The trajectories of V
𝑖
, 𝑖 = 1, 2, . . . , 8.

protocol. We take the same parameters; that is, the Laplacian
matrix 𝐿 is also

[

[

[

[

[

[

[

[

[

[

[

1 0 −1 0 0 0 0 0

0 2 −1 0 0 −1 0 0

−1 −1 4 −1 0 0 −1 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 1 0 0 0

0 −1 0 0 0 1 0 0

0 0 −1 0 0 1 0 0

0 0 0 0 0 0 −1 1

]

]

]

]

]

]

]

]

]

]

]

, (43)

𝛼 = 1, 𝛾
0
= 1, 𝛾
1
= 2 and 𝑐

2
= 2 and 𝑛

0
= 2. Then, eigenvalues

of 𝐿 are 𝜆
1
= 0, 𝜆

2
= 0.382, 𝜆

3
= 0.6086, 𝜆

4
= 𝜆
5
= 1,

𝜆
6
= 2.2271, 𝜆

7
= 2.618, and 𝜆

8
= 5.1642. By simulation,

𝜏max = 1.3224. Moreover, we choose 𝜏 = 0.5. By Theorem 13,
one knows that the quasi-consensus can be reached. Figures
4, 5 and 6 show that the quasi-consensus is reached.
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Figure 6: The trajectories of 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 8.

5. Conclusions

When the global states of agents and global relative informa-
tion are unavailable, this paper designs a consensus protocol
which only depends on the own partial information of agents
and partial relative information with its neighbors. Under
the consensus protocol, a necessary and sufficient condition
for guaranteeing the consensus for a high-order integrator
multi-agent systems is established. Moreover, the consensus
protocol shows that the consensus can be reached when
the own states of agents are complementary to the relative
information with its neighbors; the consensus may not be
reached when there are only a few information exchanges.
Moreover, the paper also considers the quasi-consensus
problem under the protocol with the delays. It is interesting
that multi-agent systems can reach consensus without delays
and quasi-consensus with delays.

Appendix

Proof of Lemma 3. In fact, let

𝑥 = [(𝜉
(0)
)

𝑇

, (𝜉
(1)
)

𝑇

, . . . , (𝜉
(ℓ−1)

)

𝑇

]

𝑇

, (A.1)

where 𝜉 = [𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑁
]
𝑇.Then 𝑥̇ = Φ𝑥. On the other hand,

let 𝜂
𝑖
= [𝜉
(0)

𝑖
, 𝜉
(1)

𝑖
, . . . , 𝜉

(ℓ−1)

𝑖
]
𝑇 and 𝑦 = [𝜂𝑇

1
, 𝜂
𝑇

2
, . . . , 𝜂

𝑇

𝑁
]
𝑇; then

̇𝑦 = Γ𝑦. (A.2)

Noting that 𝑦 is a rearrange of 𝑥, there exists a nonsingular
matrix 𝑃 in which every row and every column has only
simple one such that 𝑦 = 𝑃𝑥, which together with (A.2)

𝑥̇ = 𝑃
−1
Γ𝑃𝑥; (A.3)

that is, Φ = 𝑃
−1
Γ𝑃. Therefore, Φ is similar to Γ. Moreover, Γ

andΦ have the same characteristic polynomial and eigenval-
ues.

Proof of Lemma 4. Let 𝑄 be a nonsingular matrix such that
𝑄
−1
𝐿𝑄 = 𝐽, where 𝐽 is the Jordanmatrix associated to 𝐿.Thus

det (𝜇𝐼
𝑁ℓ

− Φ) = det (𝜇𝐼
𝑁ℓ

− Γ)

= det [𝜇𝐼
𝑁ℓ

− (𝑄
−1
⊗ 𝐼
ℓ
) Γ (𝑄 ⊗ 𝐼

ℓ
)]

= det [𝜇𝐼
𝑁ℓ

− 𝐼
𝑁
⊗ 𝐴 + 𝛼𝐽 ⊗ 𝐵]

=

𝑁

∏

𝑖=1

det (𝜇𝐼
ℓ
− 𝐴 + 𝛼𝜆

𝑖
𝐵)

=

𝑁

∏

𝑖=1

(𝜇
ℓ
+ 𝛿
𝑖

ℓ−1
𝜇
ℓ−1

+ ⋅ ⋅ ⋅ + 𝛿
𝑖

1
𝜇 + 𝛼𝜆

𝑖
𝛾
0
) .

(A.4)

Proof of Lemma 5. It follows from (8) that there are 𝑛
0
zero

eigenvalues of Φ that correspond to each zero eigenvalue of
𝐿. In fact, for every zero eigenvalue 𝜆

𝑖
of 𝐿; that is, 𝜆

𝑖
= 0,

𝜇
ℓ
+ 𝛿
𝑖

ℓ−1
𝜇
ℓ−1

+ ⋅ ⋅ ⋅ + 𝛿
𝑖

1
𝜇 + 𝜆
𝑖
𝛾
0

= 𝜇
ℓ
+ 𝛿
𝑖

ℓ−1
𝜇
ℓ−1

+ ⋅ ⋅ ⋅

+𝛿
𝑖

𝑛
0
+1
𝜇
𝑛
0
+1
+ 𝑐
𝑛
0

𝜇
𝑛
0

= 𝜇
𝑛
0
(𝜇
ℓ−𝑛
0
+ 𝛿
ℓ−𝑛
0
−1
𝜇
ℓ−𝑛
0
−1

+ ⋅ ⋅ ⋅ + 𝛿
𝑛
0
+1
𝜇 + 𝑐
𝑛
0

) ,

(A.5)

which implies that every zero eigenvalue of 𝐿 corresponds to
𝑛
0
zero eigenvalues of Φ. It is directly to see that 𝐿 has at

least one zero eigenvalue with an associated eigenvector 1,
since 𝐿1 = 0. Therefore, Φ has at least 𝑛

0
zero eigenvalues.

Moreover, It follows from (8) again that Φ has exactly
𝑛
0
eigenvalues if and only if 𝐿 has exactly a simple zero

eigenvalues.
Next, by a similarmethod from [16], let 𝑠 be an eigenvalue

ofΦwith associated eigenvector 𝑞 = [𝑝𝑇
1
, 𝑝
𝑇

2
, . . . , 𝑝

𝑇

ℓ
]
𝑇, where

𝑝
𝑇

1
, 𝑝
𝑇

2
, . . . , 𝑝

𝑇

ℓ
are𝑁 × 1 column vectors. Therefore,

Φ𝑞 =

[

[

[

[

[

[

[

0
𝑁

𝐼
𝑁

0
𝑁

⋅ ⋅ ⋅ 0
𝑁

0
𝑁

0
𝑁

𝐼
𝑁

⋅ ⋅ ⋅ 0
𝑁

...
...

...
...

...
0
𝑁

0
𝑁

0
𝑁

⋅ ⋅ ⋅ 𝐼
𝑁

−𝛼𝛾
0
𝐿 −Δ

1
−Δ
2

⋅ ⋅ ⋅ −Δ
ℓ−1

]

]

]

]

]

]

]

×

[

[

[

[

[

[

[

𝑝
1

𝑝
2

...
𝑝
ℓ−1

𝑝
ℓ

]

]

]

]

]

]

]

= 𝑠

[

[

[

[

[

[

[

𝑝
1

𝑝
2

...
𝑝
ℓ−1

𝑝
ℓ

]

]

]

]

]

]

]

,

(A.6)

which implies that 𝑝
2
= 𝑠𝑝
1
, 𝑝
3
= 𝑠𝑝
2
, . . . , 𝑝

ℓ
= 𝑠𝑝
ℓ−1
,

−𝛼𝛾
0
𝐿𝑝
1
− 𝑐
1
𝑝
2
− 𝛼𝛾
1
𝐿𝑝
2
− ⋅ ⋅ ⋅ − 𝑐

ℓ−1
𝑝
ℓ
− 𝛼𝛾
ℓ−1
𝐿𝑝
ℓ
= 𝑠𝑝
ℓ
;
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moreover, −𝛼∑
𝑘∈𝑀
2

𝛾
𝑘
𝑠
𝑘
𝐿𝑝
1
− ∑
𝑗∈𝑀
1

𝑐
𝑗
𝑠
𝑗
𝑝
1
= 𝑠
ℓ
𝑝
1
. Let 𝜅 =

∑
𝑗∈𝑀
1

𝑐
𝑗
𝑠
𝑗
+ 𝑠
ℓ
/ − 𝛼∑

𝑘∈𝑀
2

𝛾
𝑘
𝑠
𝑘; that is, 𝜅 is an eigenvalue

of 𝐿 with associated eigenvector 𝑝
1
. If 𝐿 has a simple zero

eigenvalue, without loss of generality, suppose that 𝜅 = 0,
thenΦ has a eigenvalue 𝑠 = 0 (the algebraicmultiplicity is 𝑛

0
),

so 𝑝
2
= 𝑝
3
= ⋅ ⋅ ⋅ = 𝑝

ℓ
= 0 and 𝑞 = [𝑝

𝑇

1
, 0
𝑇

𝑁
, . . . 0
𝑇

𝑁
]
𝑇, which is

only one linearly independent eigenvector for Φ associated
with eigenvalue zero; that is, the geometric multiplicity of
zero eigenvalue ofΦ is one.

It is easy to note that

Φ

1

√𝑁

𝑒
1
⊗ 1 = 1

√𝑁

(𝐴𝑒
1
) ⊗ (𝐼
𝑁
1)

−

1

√𝑁

(𝐵𝑒
1
) ⊗ (𝐿1) = 0,

1

𝑐
𝑛
0

([𝑐
1
, . . . , 𝑐

ℓ−1
, 1] ⊗ 1𝑇)Φ

=

1

𝑐
𝑛
0

([𝑐
1
, . . . , 𝑐

ℓ−1
, 1] 𝐴) ⊗ (1𝑇𝐼

𝑁
)

−

1

𝑐
𝑛
0

([𝑐
1
, . . . , 𝑐

ℓ−1
, 1] 𝐵) ⊗ (1𝑇𝐿) = 0.

(A.7)

Therefore, we obtain

𝑤
𝑟
=

1

√𝑁

[1, 0, . . . , 0]
𝑇

ℓ×1
⊗ 1,

V
𝑙
=

1

𝑐
𝑛
0

[𝑐
1
, . . . , 𝑐

ℓ−1
, 1] ⊗ 1𝑇.

(A.8)
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