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This paper presents some global stability criteria of discrete-time neural networkswith time-varying delays. Based on a discrete-type
inequality, a new global stability condition for nonlinear difference equation is derived.We consider nonlinear discrete systemswith
time-varying delays and independence of delay time. Numerical examples are given to illustrate the effectiveness of our theoretical
results.

1. Introduction

In recent years, neural networks (NNs) have been investigated
extensively due to their broad applications in information
processing problems, associative memory, parallel computa-
tion, pattern recognition, signal processing, and optimization
problems. It is well known that delays are often the sources
of instability and oscillation in system. In practical studies,
discrete-time systems have been used for a variety of phe-
nomena in electrical networks, genetics, ecological systems,
and so forth. Therefore, the stability analysis of discrete-
time neural networks (DNNs) with delays has become an
important topic of theoretical studies in neural networks;
for example, asymptotic stability and exponential stability
of neural networks have been studied by many researchers.
In [1], the authors have studied robust stability of discrete-
time linear-parameter-dependent (LPD) neural networks
with time-varying delay. In order to derive stability criteria of
discrete-time, one common approach is the use of appropri-
ate inequalities for difference equations. Another approach is
the use of Lyapunov stability theory. In [2], the authors have
studied global exponential stability of impulsive discrete-
time neural networks with time-varying delays, based on
some inequality analysis techniques. In [3], the authors have
studied new discrete-type inequalities and global stability

of nonlinear difference equation. In [4], the authors have
studied global exponential stability of discrete-time Hopfield
neural networkswith variable by using the difference inequal-
ity. In [5], the authors have considered the problem of robust
stability analysis of generalized neural networkswithmultiple
discrete delays and multiple distributed delays by using
the Lyapunov-Krasovskii functional method and the linear
matrix inequality technique. In [6], the authors have studied
delay-dependent exponential stability criteria for discrete-
time nonlinear system with multiple time-varying delays. In
this paper, we propose to study global exponential stability of
discrete-time neural networks with time-varying delays. In
Section 2, we have introduced discrete-time neural networks
with time-varying delays and presented some preliminaries.
In Section 3, we have derived new discrete-type inequalities;
global exponential stability criteria are derived by using new
discrete-type inequalities. Finally, numerical examples are
given to illustrate the effectiveness of our theoretical results.

2. Notations, Definitions, and
Preliminaries Results

In this section, we give some notations definitions and
preliminaries results which will be used throughout this
paper.
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Let R denote the set of all real numbers; R+ the set
of positive real numbers; R+

0
the set of nonnegative real

numbers; Z the set of integers; and Z+ the set of positive
integers; Z−𝑟 = {𝑧 ∈ Z : 𝑧 ≥ −𝑟}. We consider the following
discrete-time neural networks with time-varying delays:

𝑢 (𝑛 + 1) = 𝐶𝑢 (𝑛) + 𝐴𝑓 (𝑢 (𝑛))

+

𝑟

∑

𝑖=0

𝐵
𝑖
𝑓 (𝑢 (𝑛 − 𝜏

𝑖
(𝑛))) + 𝑏,

(1)

where 𝑢(𝑛) = [𝑢
1
(𝑛), . . . , 𝑢

𝑝
(𝑛)]

𝑇

∈ R𝑝 is the neuron state
vector, 𝑏 = [𝑏

1
, . . . , 𝑏

𝑝
]

𝑇 is constant input vector, 𝜏
𝑖
(𝑛), 𝑖 =

0, 2, . . . , 𝑟 are positive integers denoting the time-varying
delays satisfying

0 ≤ 𝜏
𝑖
(𝑛) ≤ 𝜏

𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑟, (2)

where 𝜏
𝑖
≥ 0 are knownpositive integers, 𝐶 = diag(𝑐

𝑚
), (𝑐
𝑚

∈

(0, 1)), 𝐴 and 𝐵
𝑖
are the interconnection matrices,

and 𝑓(𝑥(⋅)) = [𝑓
1
(𝑥
1
(⋅)), 𝑓
2
(𝑥
2
(⋅)), . . . , 𝑓

𝑛
(𝑥
𝑛
(⋅))]

𝑇 is the
activation function where 𝑓

𝑚
(⋅), 𝑚 = 1, . . . , 𝑛 satisfy






𝑓
𝑚
(𝑥) − 𝑓

𝑚
(𝑦)






≤ 𝐿
𝑚






𝑥 − 𝑦






, ∀𝑥, 𝑦 ∈ R. (3)

The initial conditions of system (1) are of the form

𝑢
𝑚
(𝑠) = 𝜙

𝑚
(𝑠) , 𝑚 = 1, 2, . . . , 𝑛, (4)

where 𝜙(𝑠) = [𝜙
1
(𝑠), 𝜙
2
(𝑠), . . . , 𝜙

𝑛
(𝑠)]

𝑇 is an initial functions,
𝑠 ∈ {−𝜏

𝑟
, −𝜏
𝑟
+ 1, . . . , 0}, and 𝜏

𝑟
is the maximum value of 𝜏

𝑖
.

Let 𝑢∗ = [𝑢

∗

1
, 𝑢

∗

2
, . . . , 𝑢

∗

𝑛
]

𝑇 be an equilibrium point of system
(1). We shift the equilibrium point 𝑢∗ to the origin by using
the transformation 𝑥(⋅) = 𝑢(⋅) − 𝑢

∗. Then, we obtain the new
system

𝑥 (𝑛 + 1) = 𝐶𝑥 (𝑛) + 𝐴𝑔 (𝑥 (𝑛)) +

𝑟

∑

𝑖=0

𝐵
𝑖
𝑔 (𝑥 (𝑛 − 𝜏

𝑖
(𝑛))) ,

(5)

where 𝑥(𝑛) = {𝑥
1
(𝑛), 𝑥
2
(𝑛), . . . , 𝑥

𝑝
(𝑛)} is the state vector of

the transformed system, 𝑔(𝑥(⋅)) = [𝑔
1
(𝑥
1
(⋅)), . . . , 𝑔

𝑛
(𝑥
𝑛
(⋅))]

𝑇,
where 𝑔

𝑚
(𝑥
𝑚
(⋅)) = 𝑓

𝑚
(𝑥
𝑚
(⋅) + 𝑢

∗

𝑚
) − 𝑓

𝑚
(𝑢

∗

𝑚
), 𝑚 =

1, 2, . . . , 𝑛 and the transformed activation functions satisfy
the condition






𝑔
𝑚
(𝑥)






≤ 𝐿
𝑚
|𝑥| . (6)

Definition 1 (see [4]). The equilibrium point at the ori-
gin of system (5) is globally exponentially stable if for
any solution 𝑥(𝑛, 𝜙) with the initial condition 𝜙, there exist
constant 𝜖 ∈ (0, 1) and 𝐷 > 0 such that

‖𝑥 (𝑛)‖ ≤ 𝐷






𝜙






𝜖

𝑛

∀𝑛 ≤ 0, (7)

where ‖𝜙‖ = max
𝑠∈[−𝜏

𝑟
,0]
{‖𝜙(𝑠)‖}.

3. Main Result

Throughout this section, we denote 𝑥(𝑛) by 𝑥
𝑛
. In this sec-

tion, we provide global exponential stability criteria for
system (5). First, we introduce new discrete-type inequalities
which will be used to derive global exponential stability
condition.

Lemma 2. Let 𝑞
𝑖
∈ R+
0
, 𝑘
𝑖
∈ Z+, 𝑖 = 1, . . . 𝑟; 𝑝, 𝑞

𝑟
∈ R+,

where 0 ≤ 𝑘
0
< 𝑘
1
< ⋅ ⋅ ⋅ < 𝑘

𝑟
and ∑

𝑟

𝑖=0
𝑞
𝑖
(𝑘
𝑖
+ 1) < 𝑝 ≤ 1,

and let {𝑥
𝑗
}
𝑗∈Z−𝑘𝑟 be a sequence of real numbers satisfying the

inequality

Δ𝑥
𝑛
≤ −𝑝𝑥

𝑛
+

𝑟

∑

𝑖=0

𝑞
𝑖
(𝑘
𝑖
+ 1)

𝑘
𝑖

∑

𝑗=0

𝑥
𝑛−𝑗

, 𝑛 ∈ Z
0

, (8)

whereΔ𝑥
𝑛
= 𝑥(𝑛+1)−𝑥(𝑛).Then, there exists 𝜆

0
∈ (0, 1) such

that

𝑥
𝑛
≤ max {0, 𝑥

0
, 𝑥
−1
, . . . , 𝑥

−𝑘
𝑟

} 𝜆

𝑛

0
, 𝑛 ∈ Z

0

. (9)

Moreover, 𝜆
0
might be chosen as the smallest positive root of

the polynomial

𝑃 (𝜆) = 𝜆

𝑘
𝑟
+1

− (1 − 𝑝) 𝜆

𝑘
𝑟

−

𝑟

∑

𝑖=0

𝑞
𝑖

𝑘
𝑖

∑

𝑗=0

𝜆

𝑘
𝑟
−𝑗 (10)

which lies in the interval (0, 1).

Proof. Let {𝑦
𝑛
} be a solution of the difference equation

Δ𝑦
𝑛
= −𝑝𝑦

𝑛
+

𝑟

∑

𝑖=0

𝑞
𝑖
(𝑘
𝑖
+ 1)

𝑘
𝑖

∑

𝑗=0

𝑦
𝑛−𝑗

, 𝑛 ∈ Z
0

. (11)

From 𝑞
𝑖
∈ R+
0
and 0 < 𝑝 < 1, one may follow the proof of

Theorem 2.1 in [3] to show that if 𝑥
𝑛
satisfies (8) and 𝑥

𝑛
≤

𝑦
𝑛
for 𝑛 = −ℎ

𝑟
, . . . , 0, then 𝑥

𝑛
≤ 𝑦
𝑛
for all 𝑛 ∈ Z0. For

given 𝐾 > 0 and 𝜆 ∈ (0, 1), the sequence {𝑦
𝑛
} defined

by 𝑦
𝑛

= 𝐾𝜆

𝑛 is a solution of (11) if and only if 𝜆 is a
root of the polynomial (10). Since lim

𝜆→0
+𝑃(𝜆) = −𝑞

𝑟
<

0 and 𝑃(1) = 𝑝−∑

𝑟

𝑖=0
𝑞
𝑖
(𝑘
𝑖
+1) > 0, it follows from continuity

of 𝑃 that there exists a smallest real number 𝜆
0
∈ (0, 1) such

that 𝑃(𝜆
0
) = 0. Thus, for any 𝐾 ∈ K+

0
, the sequence {𝐾𝜆

𝑛

0
} is

a solution of (11). Let 𝐾
0

= max{0, 𝑥
𝑛
, 𝑥
−1
, . . . , 𝑥

−𝑘
𝑟

}.
Therefore, 𝑦

𝑛
= {𝐾
0
𝜆

𝑛

0
} is a solution of (11) and obviously,

we have 𝑥
𝑛
≤ 𝑦
𝑛
, for 𝑛 = −𝑘

𝑟
, . . . , 0. Hence, by using the first

part of the proof, we conclude that 𝑥
𝑛

≤ 𝑦
𝑛

= 𝐾
0
𝜆

𝑛

0
, 𝑛 ∈

Z0.

Now, we will provide a global exponential stability condi-
tion for system (5).

Theorem 3. The equilibrium point at the origin of system (5)
is globally exponentially stable if

𝑐max + 𝑙 ‖𝐴‖ + 𝑙

𝑟

∑

𝑖=0

(𝜏
𝑖
+ 1)






𝐵
𝑖






< 1, (12)

where 𝑙 = max
𝑚
(𝐿
𝑚
), 𝑐max = max

𝑚
(𝑐
𝑚
), and max

𝑚
(𝐿
𝑚
) is

maximum of vector.
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Proof. Let 𝑧
𝑛
= ‖𝑥
𝑛
‖. Then, from (5), the difference of system

is given by

Δ𝑧 (𝑛) =






𝑥
𝑛+1






−






𝑥
𝑛






=












𝐶𝑥
𝑛
+ 𝐴𝑔 (𝑥

𝑛
) +

𝑟

∑

𝑖=0

𝐵
𝑖
𝑔 (𝑥
𝑛−𝜏
𝑖
(𝑛)

)












−






𝑥
𝑛






≤






𝐶𝑥
𝑛






+






𝐴𝑔 (𝑥
𝑛
)






+

𝑟

∑

𝑖=0







𝐵
𝑖
𝑔 (𝑥
𝑛−𝜏
𝑖
(𝑛)

)







−






𝑥
𝑛






≤ − (1 − 𝑐max − 𝑙 ‖𝐴‖)






𝑥
𝑛






+ 𝑙

𝑟

∑

𝑖=0






𝐵
𝑖












𝑥
𝑛−𝜏
𝑖
(𝑛)







≤ − (1 − 𝑐max − 𝑙 ‖𝐴‖)






𝑥
𝑛






+ 𝑙

𝑟

∑

𝑖=0

𝜏
𝑖

∑

𝑗=0






𝐵
𝑖












𝑥
𝑛−𝑗







≤ − (1 − 𝑐max − 𝑙 ‖𝐴‖)






𝑥
𝑛






+ 𝑙

𝑟

∑

𝑖=0

(𝜏
𝑖
+ 1)






𝐵
𝑖






𝜏
𝑖

∑

𝑗=0







𝑥
𝑛−𝑗







= −𝑝𝑧
𝑛
+

𝑟

∑

𝑖=0

𝑞
𝑖
(𝑘
𝑖
+ 1)

𝜏
𝑖

∑

𝑗=0

𝑧
𝑛−𝑗

,

(13)

where

𝑝 = 1 − 𝑐max − 𝑙 ‖𝐴‖ , 𝑞
𝑖
=






𝐵
𝑖






, 𝑘
𝑖
= 𝜏
𝑖
. (14)

From Lemma 2, it follows assumptions of theorem that there
exist 𝜆

0
∈ (0, 1) such that

𝑧
𝑛
≤ max {0, 𝑧

0
, 𝑧
−1
, . . . , 𝑧

−𝜏
𝑟

} 𝜆

𝑛

0
, 𝑛 ∈ Z

0

. (15)

Thus, we obtain

𝑧
𝑛
=






𝑥
𝑛






≤ max {0, 𝑧
0
, 𝑧
−1
, . . . , 𝑧

−𝜏
𝑟

} 𝜆

𝑛

0

= max {0,






𝑥
0






,






𝑥
−1






, . . . ,







𝑥
−𝜏
𝑟







} 𝜆

𝑛

0
≤






𝜙






𝜆

𝑛

0
.

(16)

By Definition 1, we conclude that (5) is globally exponentially
stable. The proof is complete.

Remark 4. In our main result, we derived global exponential
stability criteria for discrete-time neural networks with mul-
tiple time-varying delays by using discrete-type inequality.
In [4], the global exponential stability criteria of discrete-
time Hopfield neural networks are given. Nevertheless, the
stability criteria in [4] cannot be applied to discrete-time
system with multiple time-varying delays.

4. Numerical Example

Example 1. Consider the NNs (1) with 𝑟 = 2 where

𝐶 = [

0.1 0

0 −0.15

] , 𝐴 = [

0.1 −0.15

−0.2 0.1

] ,

𝐵
0
= [

0.2 −0.1

−0.1 0.15

] , 𝐵
1
= [

−0.1 −0.15

0.1 −0.1

]

𝑏 = [−3, −1] ,

𝜏
0
(𝑛) = 1 + sin(

𝑛𝜋

2

) , 𝜏
1
(𝑛) = 2 + sin(

𝑛𝜋

2

) ,

𝑓
1
(𝑠) = tanh (−0.4𝑠) + 0.2 sin 𝑠, 𝑓

2
(𝑠) = tanh (0.2𝑠) .

(17)

Then, ‖𝐴‖
1

= 0.3, ‖𝐵
0
‖
1

= 0.3, ‖𝐵
1
‖
1

= 0.25, 𝜏
0

= 1, 𝜏
1

=

2, 𝑐max = 0.15, 𝐿
1
= 0.5, 𝐿

2
= 0.2, and 𝑙 = 0.5.

The equilibrium point of system in Example 1 is

𝑢

∗

= [𝑢

∗

1
, 𝑢

∗

2
]

𝑇

= [−3.3507, −0.7254]

𝑇

. (18)

From which it follows that

𝑐max + 0.5‖𝐴‖
1
+ 0.5 (𝜏

0
+ 1)






𝐵
0




1

+ 0.5 (𝜏
1
+ 1)






𝐵
1




1

= 0.975 < 1.

(19)

Therefore, from Theorem 3, it follows that the equilibrium
point at the origin of system (1) is globally exponentially
stable.

The trajectory of solutions of Example 1 with the initial
state [𝜙

1
(𝑠), 𝜙
2
(𝑠)]

𝑇

= [−3, 1]

𝑇 for 𝑠 ∈ [−1, 0] is shown in
Figure 1.

Example 2. Consider the NNs (1) with 𝑟 = 2 where

𝐶 = [

0.2 0

0 0.1

] , 𝐴 = [

−0.1 0.15

0.1 −0.15

] ,

𝐵
0
= [

0.15 −0.1

−0.2 0.05

] , 𝐵
1
= [

−0.15 0.1

0.1 −0.15

]

𝑏 = [2, 3] ,

𝜏
0
(𝑛) = 1 + sin(

𝑛𝜋

2

) , 𝜏
1
(𝑛) = 2 + sin(

𝑛𝜋

2

) ,

𝑓
1
(𝑠) = tanh (−0.4𝑠) + 0.2 sin (𝑠) , 𝑓

2
(𝑠) = tanh (0.2𝑠) .

(20)

Then ‖𝐴‖
∞

= 0.3, ‖𝐵
0
‖
∞

= 0.25, ‖𝐵
1
‖
∞

= 0.25, 𝜏
0

= 1,
𝜏
1

= 2, 𝑐max = 0.2, and 𝑙 = 0.5. The equilibrium point of
system in Example 2 is

𝑢

∗

= [𝑢

∗

1
, 𝑢

∗

2
]

𝑇

= [2.2435, 3.5554]

𝑇

. (21)

From which it follows that

𝑐max + 0.5‖𝐴‖
∞

+ 0.5 (𝜏
0
+ 1)






𝐵
0




∞

+ 0.5 (𝜏
1
+ 1)






𝐵
1




∞

= 0.975 < 1.

(22)
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Figure 1: The trajectory of solutions of system (1) in Example 1.
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Figure 2: The trajectory of solutions of system (1) in Example 2.

Therefore, from Theorem 3, it follows that the equilibrium
point at the origin of system (1) is globally exponentially
stable.

The trajectory of solutions of Example 2 with the initial
state [𝜙

1
(𝑠), 𝜙
2
(𝑠)]

𝑇

= [1, 2]

𝑇 for 𝑠 ∈ [−1, 0] is shown in
Figure 2.

5. Conclusion

In this paper, we obtained sufficient condition for global
exponential stability of discrete-time neural networks with
multiple time-varying delays.The stability criteria are derived
by using a discrete-type inequality. Numerical examples are
given to show the effectiveness of our theoretical results.

Acknowledgments

This research is supported by Research Promotion and
TechnologyTransferCenter (RPTTC), Faculty of Liberal Arts
and Science, Kasetsart University, Kamphaeng Saen Campus,
Thailand, and the Center of Excellence in Mathematics,
Thailand, and Commission for Higher Education, Thailand.
The authors would like to thank anonymous reviewers for
valuable comments and suggestions to improve the exposi-
tion of the paper.

References

[1] S. Udpin and P.Niamsup, “Robust stability of discrete-time LPD
neural networks with time-varying delay,” Communications in
Nonlinear Science and Numerical Simulation, vol. 14, no. 11, pp.
3914–3924, 2009.

[2] H. Xu, Y. Chen, and K. L. Teo, “Global exponential stability
of impulsive discrete-time neural networks with time-varying
delays,” Applied Mathematics and Computation, vol. 217, no. 2,
pp. 537–544, 2010.

[3] S. Udpin and P. Niamsup, “New discrete type inequalities
and global stability of nonlinear difference equations,” Applied
Mathematics Letters, vol. 22, no. 6, pp. 856–859, 2009.

[4] Q. Zhang, X. Wei, and J. Xu, “On global exponential stability
of discrete-timeHopfield neural networks with variable delays,”
Discrete Dynamics in Nature and Society, vol. 2007, Article ID
67675, 9 pages, 2007.

[5] X. Liu and N. Jiang, “Robust stability analysis of generalized
neural networks with multiple discrete delays and multiple
distributed delays,” Neurocomputing, vol. 72, no. 7–9, pp. 1789–
1796, 2009.

[6] Y.-J. Sun and G.-J. Yu, “Delay-dependent exponential stability
criteria for nonlinear time-varying discrete systems with multi-
ple time delays,” Journal of the Franklin Institute, vol. 334, no. 4,
pp. 659–666, 1997.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


