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Abstract. 
A plant-hare model subjected by the effect of impulses is studied in this paper. Sufficient conditions are obtained for the existence of at least one positive periodic solution.


1. Introduction
Classical predator-prey model has been well studied (e.g., see [1–8] and the references cited therein). To explore the impact of plant toxicity on the dynamics of plant-hare interactions, Gao and Xia [9] consider a nonautonomous plant-herbivore dynamical system with a toxin-determined functional response:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				̇
				
				𝑁
				(
				𝑡
				)
				=
				𝑟
				(
				𝑡
				)
				𝑁
				(
				𝑡
				)
				1
				−
				𝑁
				(
				𝑡
				)
			

			
				
			
			
				𝐾
				
				̇
				
				−
				𝐶
				(
				𝑁
				(
				𝑡
				)
				)
				𝑃
				(
				𝑡
				)
				,
				𝑃
				(
				𝑡
				)
				=
				𝐵
				(
				𝑡
				)
				𝐶
				(
				𝑁
				(
				𝑡
				)
				)
				𝑃
				(
				𝑡
				)
				−
				𝑑
				(
				𝑡
				)
				𝑃
				(
				𝑡
				)
				,
				𝐶
				(
				𝑁
				(
				𝑡
				)
				)
				=
				𝑓
				(
				𝑁
				(
				𝑡
				)
				)
				1
				−
				𝑓
				(
				𝑁
				(
				𝑡
				)
				)
			

			
				
			
			
				
				,
				4
				𝐺
				𝑓
				(
				𝑁
				(
				𝑡
				)
				)
				=
				𝑒
				𝛿
				𝑁
				(
				𝑡
				)
			

			
				
			
			
				,
				1
				+
				ℎ
				𝑒
				𝛿
				𝑁
				(
				𝑡
				)
			

		
	

					where 
	
		
			
				𝑁
				(
				𝑡
				)
			

		
	
 denotes the density of plant at time 
	
		
			

				𝑡
			

		
	
, 
	
		
			
				𝑃
				(
				𝑡
				)
			

		
	
 denotes the herbivore biomass at time 
	
		
			

				𝑡
			

		
	
, 
	
		
			
				𝑟
				(
				𝑡
				)
			

		
	
 is the plant intrinsic growth rate at time 
	
		
			

				𝑡
			

		
	
, 
	
		
			
				𝑑
				(
				𝑡
				)
			

		
	
 is the per capita rate of herbivore death unrelated to plant toxicity at time 
	
		
			

				𝑡
			

		
	
, 
	
		
			
				𝐵
				(
				𝑡
				)
			

		
	
 is the conversion rate at time 
	
		
			

				𝑡
			

		
	
, 
	
		
			

				𝑒
			

		
	
 is the encounter rate per unit plant, 
	
		
			

				𝛿
			

		
	
 is the fraction of food items encountered that the herbivore ingests, 
	
		
			

				𝐾
			

		
	
 is the carrying capacity of plant, 
	
		
			

				𝐺
			

		
	
 measures the toxicity level, and 
	
		
			

				ℎ
			

		
	
 is the time for handing one unit of plant. To explore the impact of environmental factors (e.g., seasonal effects of weather, food supplies, mating habits, harvesting, etc.), the assumption of periodicity of parameters is more realistic and important. To this reason, they assumed that 
	
		
			
				𝑟
				(
				𝑡
				)
			

		
	
, 
	
		
			
				𝑑
				(
				𝑡
				)
			

		
	
, and 
	
		
			
				𝐵
				(
				𝑡
				)
			

		
	
 are continuously positive periodic functions with period 
	
		
			

				𝜔
			

		
	
 and 
	
		
			

				𝑒
			

		
	
, 
	
		
			

				𝛿
			

		
	
, 
	
		
			

				𝐾
			

		
	
, 
	
		
			

				𝐺
			

		
	
, 
	
		
			

				ℎ
			

		
	
 are five positive real constants.
However, birth of many species is an annual birth pulse, for having more accurate description of the system, we need to consider using the impulsive differential equations. To see how impulses affect the differential equations, for examples, one can refer to [10–17]. Motivated by the above-mentioned works, in this paper, we consider the above system with impulses:
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				̇
				
				
				𝑁
				(
				𝑡
				)
				=
				𝑁
				(
				𝑡
				)
				𝑟
				(
				𝑡
				)
				1
				−
				𝑁
				(
				𝑡
				)
			

			
				
			
			
				𝐾
				
				−
				4
				𝐺
				𝑒
				𝛿
				𝑃
				(
				𝑡
				)
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				𝑁
				(
				𝑡
				)
				𝑃
				(
				𝑡
				)
			

			
				
			
			
				4
				𝐺
				(
				1
				+
				ℎ
				𝑒
				𝛿
				𝑁
				(
				𝑡
				)
				)
			

			

				2
			

			
				
				,
				̇
				
				
				𝑃
				(
				𝑡
				)
				=
				𝑃
				(
				𝑡
				)
				4
				𝐺
				𝑒
				𝛿
				𝐵
				(
				𝑡
				)
				𝑁
				(
				𝑡
				)
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				×
				𝐵
				(
				𝑡
				)
				𝑁
			

			

				2
			

			
				(
				𝑡
				)
				
				
				4
				𝐺
				(
				1
				+
				ℎ
				𝑒
				𝛿
				𝑁
				(
				𝑡
				)
				)
			

			

				2
			

			

				
			

			
				−
				1
			

			
				
				,
				−
				𝑑
				(
				𝑡
				)
				𝑡
				≠
				𝑡
			

			

				𝑘
			

			
				;
				
				𝑡
				Δ
				𝑁
			

			

				𝑘
			

			
				
				
				𝑡
				=
				𝑁
			

			
				+
				𝑘
			

			
				
				
				𝑡
				−
				𝑁
			

			
				−
				𝑘
			

			
				
				=
				𝑐
			

			
				1
				𝑘
			

			
				𝑁
				
				𝑡
			

			

				𝑘
			

			
				
				,
				
				𝑡
				Δ
				𝑃
			

			

				𝑘
			

			
				
				
				𝑡
				=
				𝑃
			

			
				+
				𝑘
			

			
				
				
				𝑡
				−
				𝑃
			

			
				−
				𝑘
			

			
				
				=
				𝑐
			

			
				2
				𝑘
			

			
				𝑃
				
				𝑡
			

			

				𝑘
			

			
				
				,
				𝑡
				=
				𝑡
			

			

				𝑘
			

			
				,
				𝑘
				=
				1
				,
				2
				,
				…
				,
			

		
	

					where the assumptions on 
	
		
			

				𝑟
			

		
	
, 
	
		
			

				𝑑
			

		
	
, 
	
		
			

				𝐵
			

		
	
, 
	
		
			

				𝑒
			

		
	
, 
	
		
			

				𝛿
			

		
	
, 
	
		
			

				𝐾
			

		
	
, 
	
		
			

				𝐺
			

		
	
, and 
	
		
			

				ℎ
			

		
	
 are the same as before, 
	
		
			

				𝑐
			

			
				𝑗
				𝑘
			

			
				∈
				(
				−
				1
				,
				∞
				)
				(
				𝑗
				=
				1
				,
				2
				,
				𝑘
				∈
				ℕ
				=
				1
				,
				2
				,
				…
				)
			

		
	
, 
	
		
			
				{
				𝑡
			

			

				𝑘
			

			
				}
				∈
				ℕ
			

		
	
 is a strictly increasing sequence with 
	
		
			

				𝑡
			

			

				1
			

			
				>
				0
			

		
	
, and 
	
		
			
				l
				i
				m
			

			
				𝑘
				→
				∞
			

			

				𝑡
			

			

				𝑘
			

			
				=
				∞
			

		
	
. We further assume that there exists a 
	
		
			
				𝑞
				∈
				ℕ
			

		
	
 such that 
	
		
			

				𝑐
			

			
				𝑗
				(
				𝑘
				+
				𝑞
				)
			

			
				=
				𝑐
			

			
				𝑗
				𝑘
			

			
				(
				𝑗
				=
				1
				,
				2
				)
			

		
	
 and 
	
		
			

				𝑡
			

			
				𝑘
				+
				𝑞
			

			
				=
				𝑡
			

			

				𝑘
			

			
				+
				𝜔
			

		
	
 for 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
.
Without loss of generality, we will assume 
	
		
			

				𝑡
			

			

				𝑘
			

			
				≠
				0
			

		
	
 for 
	
		
			
				𝑘
				=
				1
				,
				2
				,
				…
			

		
	
, and 
	
		
			
				[
				0
				,
				𝜔
				]
				∩
				{
				𝑡
			

			

				𝑘
			

			
				}
				=
				{
				𝑡
			

			

				1
			

			
				,
				𝑡
			

			

				2
			

			
				,
				…
				,
				𝑡
			

			

				𝑚
			

			

				}
			

		
	
; hence 
	
		
			
				𝑞
				=
				𝑚
			

		
	
.
2. Preliminaries
In this section, we cite some definitions and lemmas.
Let 
	
		
			
				𝑃
				𝐶
			

			

				𝜔
			

		
	
 denote the space of 
	
		
			

				𝜔
			

		
	
-periodic functions 
	
		
			
				𝜓
				∶
				ℝ
				→
				ℝ
			

		
	
 which are continuous for 
	
		
			
				𝑡
				≠
				𝑡
			

			

				𝑘
			

		
	
, are continuous from the left for 
	
		
			
				𝑡
				∈
				ℝ
			

		
	
, and have possible discontinuities of the first kind at points 
	
		
			
				𝑡
				=
				𝑡
			

			

				𝑘
			

		
	
; that is, the limit from the right of 
	
		
			

				𝑡
			

			

				𝑘
			

		
	
 exists but may be different from the value at 
	
		
			

				𝑡
			

			

				𝑘
			

		
	
. We also denote 
	
		
			
				𝑃
				𝐶
			

			
				1
				𝜔
			

			
				=
				{
				𝜓
				∈
				𝑃
				𝐶
			

			

				𝜔
			

			
				∶
				̇
				𝜓
				∈
				𝑃
				𝐶
			

			

				𝜔
			

			

				}
			

		
	
.
For the convenience, we list the following definitions and lemmas.
Definition 1 (see [10]). The set 
	
		
			

				𝔽
			

		
	
 
	
		
			
				⊂
				𝑃
				𝐶
			

			

				𝜔
			

		
	
 is said to be quasi-equicontinuous in 
	
		
			
				[
				0
				,
				𝜔
				]
			

		
	
 if for any 
	
		
			
				𝜖
				>
				0
			

		
	
 there exists a 
	
		
			
				𝛿
				>
				0
			

		
	
 such that if 
	
		
			
				𝑥
				∈
				𝔽
			

		
	
; 
	
		
			
				𝑘
				∈
				ℤ
			

		
	
; 
	
		
			

				𝜏
			

			

				1
			

			
				,
				𝜏
			

			

				2
			

			
				∈
				(
				𝑡
			

			
				𝑘
				−
				1
			

			
				,
				𝑡
			

			

				𝑘
			

			
				)
				∩
				[
				0
				,
				𝜔
				]
			

		
	
 and 
	
		
			
				|
				𝜏
			

			

				1
			

			
				−
				𝜏
			

			

				2
			

			
				|
				<
				𝛿
			

		
	
, then 
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑥
				
				𝜏
			

			

				1
			

			
				
				
				𝜏
				−
				𝑥
			

			

				2
			

			
				
				|
				|
				<
				𝜖
				.
			

		
	

Lemma 2 (see [10]).  The set 
	
		
			
				𝔽
				⊂
				𝑃
				𝐶
			

			

				𝜔
			

		
	
 is relatively compact if and only if (1)
	
		
			

				𝔽
			

		
	
 is bounded, that is, 
	
		
			
				‖
				𝑥
				‖
				≤
				𝑀
			

		
	
, for each 
	
		
			
				𝑥
				∈
				𝔽
			

		
	
, and some 
	
		
			
				𝑀
				>
				0
			

		
	
;(2)
	
		
			

				𝔽
			

		
	
 is quasi-equicontinuous in 
	
		
			
				[
				0
				,
				𝜔
				]
			

		
	
.
Lemma 3 (see [11]).  Assume that 
	
		
			
				𝜓
				∈
				𝑃
				𝐶
			

			
				1
				𝜔
			

		
	
, then the following inequality holds: 
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				[
				]
				𝑠
				∈
				0
				,
				𝜔
			

			
				𝜓
				(
				𝑠
				)
				−
				i
				n
				f
			

			
				[
				]
				𝑠
				∈
				0
				,
				𝜔
			

			
				𝜓
				≤
				1
				(
				𝑠
				)
			

			
				
			
			
				2
				
				
			

			
				𝜔
				0
			

			
				|
				|
				|
				|
				̇
				𝜓
				(
				𝑠
				)
				𝑑
				𝑠
				+
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			
				|
				|
				
				𝑡
				Δ
				𝜓
			

			

				𝑘
			

			
				
				|
				|
				
				.
			

		
	

						Before starting the main result, for the sake of convenience, one denotes
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				
			
			
				1
				𝑓
				=
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				𝑓
				∈
				𝑃
				𝐶
			

			

				𝜔
			

			
				,
				𝑐
			

			

				𝑗
			

			

				=
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			
				
				l
				n
				1
				+
				𝑐
			

			
				𝑗
				𝑘
			

			
				
				𝐶
				,
				𝑗
				=
				1
				,
				2
				,
			

			

				1
			

			

				=
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			
				|
				|
				
				l
				n
				1
				+
				𝑐
			

			
				1
				𝑘
			

			
				
				|
				|
				+
				𝑐
			

			

				1
			

			
				,
				𝐶
			

			

				2
			

			

				=
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			
				|
				|
				
				l
				n
				1
				+
				𝑐
			

			
				2
				𝑘
			

			
				
				|
				|
				−
				𝑐
			

			

				2
			

			

				.
			

		
	

3. Existence of Positive Periodic Solutions
In order to obtain the existence of positive periodic solutions of (2), for convenience, we will summarize in the following a few concepts and results from [18] that will be basic for this section.
Let 
	
		
			

				𝑋
			

		
	
, 
	
		
			

				𝑌
			

		
	
 be normed vector spaces, let 
	
		
			
				𝐿
				∶
				D
				o
				m
				𝐿
				⊂
				𝑋
				→
				𝑌
			

		
	
 be a linear mapping, and 
	
		
			
				𝑁
				∶
				𝑋
				→
				𝑌
			

		
	
 a continuous mapping. The mapping 
	
		
			

				𝐿
			

		
	
 is called a Fredholm mapping of index zero if 
	
		
			
				d
				i
				m
				K
				e
				r
				𝐿
				=
				c
				o
				d
				i
				m
				I
				m
				𝐿
				<
				+
				∞
			

		
	
 and 
	
		
			
				I
				m
				𝐿
			

		
	
 is closed in 
	
		
			

				𝑌
			

		
	
. If 
	
		
			

				𝐿
			

		
	
 is a Fredholm mapping of index zero, there exist continuous projectors 
	
		
			
				𝑃
				∶
				𝑋
				→
				𝑋
			

		
	
 and 
	
		
			
				𝑄
				∶
				𝑌
				→
				𝑌
			

		
	
 such that 
	
		
			
				I
				m
				𝑃
				=
				K
				e
				r
				𝐿
			

		
	
, 
	
		
			
				K
				e
				r
				𝑄
				=
				I
				m
				𝐿
				=
				I
				m
				(
				𝐼
				−
				𝑄
				)
			

		
	
. It follows that 
	
		
			
				𝐿
				∣
				d
				o
				m
				𝐿
				∩
				K
				e
				r
				𝑃
				∶
				(
				𝐼
				−
				𝑃
				)
				𝑋
				→
				I
				m
				𝐿
			

		
	
 is invertible. We denote the inverse of that map by 
	
		
			

				𝐾
			

			

				𝑝
			

		
	
. If 
	
		
			

				Ω
			

		
	
 is an open bounded subset of 
	
		
			

				𝑋
			

		
	
, then the mapping 
	
		
			

				𝑁
			

		
	
 will be called 
	
		
			

				𝐿
			

		
	
-compact on 
	
		
			
				
			
			

				Ω
			

		
	
 if 
	
		
			
				𝑄
				𝑁
				(
			

			
				
			
			
				Ω
				)
			

		
	
 is bounded and 
	
		
			

				𝐾
			

			

				𝑝
			

			
				(
				𝐼
				−
				𝑄
				)
				𝑁
				∶
			

			
				
			
			
				Ω
				→
				𝑋
			

		
	
 is compact. Since 
	
		
			
				I
				m
				𝑄
			

		
	
 is isomorphic to 
	
		
			
				K
				e
				r
				𝐿
			

		
	
, there exists an isomorphism 
	
		
			
				𝐽
				∶
				I
				m
				𝑄
				→
				K
				e
				r
				𝐿
			

		
	
.
Lemma 4 (see [18]).  Let 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
 be an open and bounded set. Let 
	
		
			

				𝐿
			

		
	
 be a Fredholm mapping of index zero and let 
	
		
			

				𝑁
			

		
	
 be 
	
		
			

				𝐿
			

		
	
-compact on 
	
		
			
				
			
			

				Ω
			

		
	
. Assume (a) for each 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				)
			

		
	
, 
	
		
			
				𝑥
				∈
				𝜕
				Ω
				∩
				D
				o
				m
				𝐿
			

		
	
, 
	
		
			
				𝐿
				𝑥
				≠
				𝜆
				𝑁
				𝑥
			

		
	
;(b) for each 
	
		
			
				𝑥
				∈
				𝜕
				Ω
				∩
				K
				e
				r
				𝐿
			

		
	
, 
	
		
			
				𝑄
				𝑁
				𝑥
				≠
				0
			

		
	
;(c)
	
		
			
				d
				e
				g
				{
				𝐽
				𝑄
				𝑁
				,
				Ω
				∩
				K
				e
				r
				𝐿
				,
				0
				}
				≠
				0
			

		
	
. Then 
	
		
			
				𝐿
				𝑥
				=
				𝑁
				𝑥
			

		
	
 has at least one solution in 
	
		
			
				
			
			
				Ω
				∩
				D
				o
				m
				𝐿
			

		
	
.
If 
	
		
			

				𝑓
			

		
	
 is a continuous 
	
		
			

				𝜔
			

		
	
-periodic function, then we set 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				
			
			
				1
				𝑓
				=
			

			
				
			
			
				𝜔
				
			

			
				𝜔
				0
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				.
			

		
	

					The following assumptions are valid throughout this paper:
	
		
			

				(
			

			
				
			
			

				𝐴
			

			

				1
			

			

				)
			

		
	

	
		
			
				(
				4
				𝐺
			

			
				
			
			
				𝑑
				ℎ
			

			

				2
			

			
				/
				(
				4
				𝐺
				ℎ
				−
				1
				)
				)
				<
			

			
				
			
			
				𝐵
				<
				2
				ℎ
				(
			

			
				
			
			
				𝑑
				−
				(
				𝑐
			

			

				2
			

			
				/
				𝜔
				)
				)
			

		
	
,
							
	
		
			

				(
			

			
				
			
			

				𝐴
			

			

				2
			

			

				)
			

		
	

	
		
			
				𝐾
				(
				1
				+
				(
				𝑐
			

			

				1
			

			

				/
			

			
				
			
			
				𝑟
				𝜔
				)
				)
				−
				𝑒
			

			

				𝐻
			

			

				1
			

			
				>
				0
			

		
	
, 
	
		
			

				𝐻
			

			

				1
			

			
				=
				m
				a
				x
				{
				|
				l
				n
				𝐾
				+
				2
			

			
				
			
			
				𝑟
				𝜔
				|
				,
				|
				l
				n
				(
				2
				(
			

			
				
			
			
				𝑑
				−
				(
				𝑐
			

			

				2
			

			
				/
				𝜔
				)
				−
				(
			

			
				
			
			
				𝐵
				/
				2
				ℎ
				)
				)
				/
				𝑒
				𝛿
			

			
				
			
			
				𝐵
				)
				−
				2
			

			
				
			
			
				𝑟
				𝜔
				|
				}
			

		
	
.
For convenience, we introduce two numbers as follows: 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑢
			

			

				+
			

			
				=
				
				4
				𝐺
				𝑒
				𝛿
			

			
				
			
			
				
				𝐵
				−
				8
				𝐺
				ℎ
				𝑒
				𝛿
			

			
				
			
			
				
				𝑐
				𝑑
				−
			

			

				2
			

			
				
				+
				√
				/
				𝜔
				
				
			

			
				
			
			

				Δ
			

			
				
			
			
				2
				
				4
				𝐺
			

			
				
			
			
				𝑑
				ℎ
			

			

				2
			

			

				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				−
				(
				4
				𝐺
				ℎ
				−
				1
				)
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
			
			
				𝐵
				
				,
				𝑢
			

			

				−
			

			
				=
				
				4
				𝐺
				𝑒
				𝛿
			

			
				
			
			
				
				𝐵
				−
				8
				𝐺
				ℎ
				𝑒
				𝛿
			

			
				
			
			
				
				𝑐
				𝑑
				−
			

			

				2
			

			
				
				−
				√
				/
				𝜔
				
				
			

			
				
			
			

				Δ
			

			
				
			
			
				2
				
				4
				𝐺
			

			
				
			
			
				𝑑
				ℎ
			

			

				2
			

			

				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				−
				(
				4
				𝐺
				ℎ
				−
				1
				)
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
			
			
				𝐵
				
				,
			

		
	

					where 
	
		
			
				Δ
				=
				(
				4
				𝐺
				𝑒
				𝛿
			

			
				
			
			
				𝐵
				−
				8
				𝐺
				ℎ
				𝑒
				𝛿
				(
			

			
				
			
			
				𝑑
				−
				(
				𝑐
			

			

				2
			

			
				/
				𝜔
				)
				)
				)
			

			

				2
			

			
				−
				1
				6
				𝐺
			

			
				
			
			
				𝑑
				[
				4
				𝐺
			

			
				
			
			
				𝑑
				ℎ
			

			

				2
			

			

				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				−
				(
				4
				𝐺
				ℎ
				−
				1
				)
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
			
			
				𝐵
				]
			

		
	
.
Theorem 5.  In addition to (
	
		
			
				
			
			

				𝐴
			

			

				1
			

		
	
), (
	
		
			
				
			
			

				𝐴
			

			

				2
			

		
	
), suppose that 
	
		
			

				(
			

			
				
			
			

				𝐴
			

			

				3
			

			

				)
			

		
	

	
		
			

				1
			

			
				
			
			
				1
				2
				ℎ
				<
				𝐺
				<
			

			
				
			
			

				ℎ
			

		
	
. 								Then system (2) has at least one positive 
	
		
			

				𝜔
			

		
	
-periodic solution.
Remark 6. If the impulsive operators disappear, then 
	
		
			

				𝑐
			

			

				1
			

			
				=
				𝑐
			

			

				2
			

			
				=
				0
			

		
	
. Then Theorem 5 reduces to the main results in Gao and Xia [9]. This implies that our result generalizes the previous one. It shows that the impulses do affect the system indeed.
Proof. Making the change of variables 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				
				𝑢
				𝑁
				(
				𝑡
				)
				=
				e
				x
				p
			

			

				1
			

			
				
				
				𝑢
				(
				𝑡
				)
				,
				𝑃
				(
				𝑡
				)
				=
				e
				x
				p
			

			

				2
			

			
				
				.
				(
				𝑡
				)
			

		
	

						Then, system (2) can be rewritten as 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				̇
				𝑢
			

			

				1
			

			
				(
				𝑡
				)
				=
				𝑟
				(
				𝑡
				)
				−
				𝑟
				(
				𝑡
				)
			

			
				
			
			
				𝐾
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				
				−
				
				𝑢
				(
				𝑡
				)
				4
				𝐺
				𝑒
				𝛿
				e
				x
				p
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑢
			

			

				2
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				
				
				𝑢
				4
				𝐺
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				
				
			

			

				2
			

			
				≡
				𝑓
			

			

				1
			

			
				(
				𝑡
				)
				,
				̇
				𝑢
			

			

				2
			

			
				
				
				𝑢
				(
				𝑡
				)
				=
				−
				𝑑
				(
				𝑡
				)
				+
				4
				𝐺
				𝑒
				𝛿
				𝐵
				(
				𝑡
				)
				e
				x
				p
			

			

				1
			

			
				
				(
				𝑡
				)
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				×
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
				𝐵
				(
				𝑡
				)
				e
				x
				p
				2
				𝑢
			

			

				1
			

			
				×
				
				
				
				𝑢
				(
				𝑡
				)
				
				
				4
				𝐺
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				
				
			

			

				2
			

			

				
			

			
				−
				1
			

			
				≡
				𝑓
			

			

				2
			

			
				(
				𝑡
				)
				,
				𝑡
				≠
				𝑡
			

			

				𝑘
			

			
				,
				Δ
				𝑢
			

			

				1
			

			
				
				𝑡
			

			

				𝑘
			

			
				
				
				=
				l
				n
				1
				+
				𝑐
			

			
				1
				𝑘
			

			
				
				,
				Δ
				𝑢
			

			

				2
			

			
				
				𝑡
			

			

				𝑘
			

			
				
				
				=
				l
				n
				1
				+
				𝑐
			

			
				2
				𝑘
			

			
				
				,
				𝑡
				=
				𝑡
			

			

				𝑘
			

			

				.
			

		
	

						Take 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				
				
				𝑢
				𝑋
				=
				𝑥
				=
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			

				
			

			

				𝑇
			

			
				∶
				𝑢
			

			

				𝑗
			

			
				∈
				𝑃
				𝐶
			

			

				𝜔
			

			
				
				,
				,
				𝑗
				=
				1
				,
				2
				,
				𝑥
				(
				𝑡
				+
				𝜔
				)
				=
				𝑥
				(
				𝑡
				)
				𝑌
				=
				𝑋
				×
				ℝ
			

			
				2
				𝑞
			

		
	

						and define
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				‖
				𝑥
				‖
			

			

				0
			

			

				=
			

			

				2
			

			

				
			

			
				𝑗
				=
				1
			

			
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝜔
			

			
				|
				|
				𝑢
			

			

				𝑗
			

			
				|
				|
				
				𝑢
				(
				𝑡
				)
				,
				𝑥
				=
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				
				∈
				𝑋
				,
				‖
				𝑦
				‖
			

			

				1
			

			
				=
				‖
				𝑥
				‖
			

			

				0
			

			

				+
			

			

				𝑞
			

			

				
			

			
				𝑗
				=
				1
			

			
				‖
				‖
				𝜉
			

			

				𝑗
			

			
				‖
				‖
				
				,
				𝑦
				=
				𝑥
				,
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑞
			

			
				
				∈
				𝑌
				.
			

		
	

						Both 
	
		
			
				(
				𝑋
				,
				‖
				⋅
				‖
				)
			

		
	
 and 
	
		
			
				(
				𝑌
				,
				‖
				⋅
				‖
			

			

				1
			

			

				)
			

		
	
 are Banach spaces. Define 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				𝐿
				
				
				𝑢
				D
				o
				m
				𝐿
				=
				{
				𝑥
				∈
				𝑋
				∶
				̇
				𝑥
				∈
				𝑋
				}
				,
				𝐿
				∶
				D
				o
				m
				𝐿
				⟶
				𝑌
				,
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			

				
			

			

				𝑇
			

			
				
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				⎛
				⎜
				⎜
				⎜
				⎝
				̇
				𝑢
			

			

				1
			

			
				̇
				𝑢
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎛
				⎜
				⎜
				⎜
				⎝
				Δ
				𝑢
			

			

				1
			

			
				
				𝑡
			

			

				𝑘
			

			
				
				Δ
				𝑢
			

			

				2
			

			
				
				𝑡
			

			

				𝑘
			

			
				
				⎞
				⎟
				⎟
				⎟
				⎠
			

			
				𝑞
				𝑘
				=
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				;
			

		
	

	
		
			
				𝑁
				∶
				𝑋
				→
				𝑌
			

		
	
,
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝑁
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑢
			

			

				1
			

			

				𝑢
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑓
			

			

				1
			

			
				𝑓
				(
				𝑡
				)
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎛
				⎜
				⎜
				⎜
				⎝
				
				(
				𝑡
				)
				l
				n
				1
				+
				𝑐
			

			
				1
				𝑘
			

			
				
				
				l
				n
				1
				+
				𝑐
			

			
				2
				𝑘
			

			
				
				⎞
				⎟
				⎟
				⎟
				⎠
			

			
				𝑞
				𝑘
				=
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				;
			

		
	

	
		
			
				𝑃
				∶
				𝑋
				→
				𝑋
			

		
	
, 
	
		
			
				𝑃
				(
				(
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			

				)
			

			

				𝑇
			

			
				)
				=
				(
			

			
				
			
			

				𝑢
			

			

				1
			

			

				,
			

			
				
			
			

				𝑢
			

			

				2
			

			

				)
			

			

				𝑇
			

		
	
; 
	
		
			
				𝑄
				∶
				𝑌
				→
				𝑌
			

		
	
,
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝑄
				⎛
				⎜
				⎜
				⎜
				⎝
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑢
			

			

				1
			

			

				𝑢
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎧
				⎪
				⎨
				⎪
				⎩
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑚
			

			

				𝑘
			

			

				𝑛
			

			

				𝑘
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				⎫
				⎪
				⎬
				⎪
				⎭
			

			
				𝑞
				𝑘
				=
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎝
				⎛
				⎜
				⎜
				⎜
				⎜
				⎝
			

			
				
			
			

				𝑢
			

			

				1
			

			
				+
				1
			

			
				
			
			

				𝜔
			

			

				𝑞
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑚
			

			

				𝑘
			

			
				
			
			

				𝑢
			

			

				2
			

			
				+
				1
			

			
				
			
			

				𝜔
			

			

				𝑞
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑛
			

			

				𝑘
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎠
				,
				⎧
				⎪
				⎨
				⎪
				⎩
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				0
				⎞
				⎟
				⎟
				⎟
				⎠
				⎫
				⎪
				⎬
				⎪
				⎭
			

			
				𝑞
				𝑘
				=
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎠
				.
			

		
	

						It is not difficult to show that 
	
		
			
				K
				e
				r
				𝐿
				=
				{
				𝑥
				∣
				𝑥
				∈
				𝑋
				,
				(
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			

				)
			

			

				𝑇
			

			
				∈
				𝑋
				∶
				(
				𝑢
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑢
			

			

				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

			
				=
				(
				𝑐
			

			

				1
			

			
				,
				𝑐
			

			

				2
			

			

				)
			

			

				𝑇
			

			
				∈
				ℝ
			

			

				2
			

			
				,
				𝑡
				∈
				ℝ
				}
				.
			

		
	

	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				=
				⎧
				⎪
				⎪
				⎨
				⎪
				⎪
				⎩
				⎡
				⎢
				⎢
				⎢
				⎣
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑢
				I
				m
				𝐿
			

			

				1
			

			

				𝑢
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎧
				⎪
				⎨
				⎪
				⎩
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑚
			

			

				𝑘
			

			

				𝑛
			

			

				𝑘
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				⎫
				⎪
				⎬
				⎪
				⎭
			

			
				𝑞
				𝑘
				=
				1
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				𝜔
				∈
				𝑌
				∶
			

			
				
			
			

				𝑢
			

			

				1
			

			

				+
			

			

				𝑞
			

			

				∑
			

			
				𝑘
				=
				1
			

			

				𝑚
			

			

				𝑘
			

			
				𝜔
				=
				0
			

			
				
			
			

				𝑢
			

			

				2
			

			

				+
			

			

				𝑞
			

			

				∑
			

			
				𝑘
				=
				1
			

			

				𝑛
			

			

				𝑘
			

			
				⎫
				⎪
				⎪
				⎬
				⎪
				⎪
				⎭
				.
				=
				0
			

		
	

						Since 
	
		
			
				I
				m
				𝐿
			

		
	
 is closed in 
	
		
			

				𝑌
			

		
	
, 
	
		
			

				𝑃
			

		
	
 and 
	
		
			

				𝑄
			

		
	
 are continuous projectors such that 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				I
				m
				𝑃
				=
				K
				e
				r
				𝐿
				,
				K
				e
				r
				𝑄
				=
				I
				m
				𝐿
				=
				I
				m
				(
				𝐼
				−
				𝑄
				)
				,
				d
				i
				m
				K
				e
				r
				𝐿
				=
				c
				o
				d
				i
				m
				I
				m
				𝐿
				=
				2
				.
			

		
	

						It follows that 
	
		
			

				𝐿
			

		
	
 is a Fredholm mapping of index zero. Furthermore, the generalized inverse (to 
	
		
			

				𝐿
			

		
	
) 
	
		
			

				𝐾
			

			

				𝑝
			

			
				∶
				I
				m
				𝐿
				→
				D
				o
				m
				𝐿
				∩
				K
				e
				r
				𝑃
			

		
	
 exists, which is given by 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝐾
			

			

				𝑝
			

			
				⎡
				⎢
				⎢
				⎢
				⎣
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑢
			

			

				1
			

			

				𝑢
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎧
				⎪
				⎨
				⎪
				⎩
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑚
			

			

				𝑘
			

			

				𝑛
			

			

				𝑘
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				⎫
				⎪
				⎬
				⎪
				⎭
			

			
				𝑞
				𝑘
				=
				1
			

			
				⎤
				⎥
				⎥
				⎥
				⎦
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				
			

			
				𝑡
				0
			

			

				𝑢
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				+
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			

				𝑚
			

			

				𝑘
			

			
				−
				1
			

			
				
			
			

				𝜔
			

			

				𝑞
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑚
			

			

				𝑘
			

			

				−
			

			
				
			
			

				
			

			
				𝑡
				0
			

			

				𝑢
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
			

			
				𝑡
				0
			

			

				𝑢
			

			

				2
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				+
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			

				𝑛
			

			

				𝑘
			

			
				−
				1
			

			
				
			
			

				𝜔
			

			

				𝑞
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑛
			

			

				𝑘
			

			

				−
			

			
				
			
			

				
			

			
				𝑡
				0
			

			

				𝑢
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				(
				𝑠
				)
				𝑑
				𝑠
			

		
	

						Then 
	
		
			
				𝑄
				𝑁
				∶
				𝑋
				→
				𝑌
			

		
	
 and 
	
		
			

				𝐾
			

			

				𝑝
			

			
				(
				𝐼
				−
				𝑄
				)
				𝑁
				∶
				𝑋
				→
				𝑋
			

		
	
 are defined by 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑢
				𝑄
				𝑁
			

			

				1
			

			

				𝑢
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				⎛
				⎜
				⎜
				⎜
				⎝
			

			
				
			
			

				𝑓
			

			

				1
			

			
				+
				𝑐
			

			

				1
			

			
				
			
			

				𝜔
			

			
				
			
			

				𝑓
			

			

				2
			

			
				+
				𝑐
			

			

				2
			

			
				
			
			
				𝜔
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				⎧
				⎪
				⎨
				⎪
				⎩
				⎛
				⎜
				⎜
				⎜
				⎝
				0
				0
				⎞
				⎟
				⎟
				⎟
				⎠
				⎫
				⎪
				⎬
				⎪
				⎭
			

			
				𝑞
				𝑘
				=
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				𝐾
			

			

				𝑝
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑢
				(
				𝐼
				−
				𝑄
				)
				𝑁
			

			

				1
			

			

				𝑢
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎝
				
			

			
				𝑡
				0
			

			

				𝑓
			

			

				1
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				+
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				
				l
				n
				1
				+
				𝑐
			

			
				1
				𝑘
			

			
				
				
			

			
				𝑡
				0
			

			

				𝑓
			

			

				2
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				+
			

			
				0
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				
				l
				n
				1
				+
				𝑐
			

			
				2
				𝑘
			

			
				
				⎞
				⎟
				⎟
				⎟
				⎟
				⎠
				+
				
				1
			

			
				
			
			
				2
				−
				𝑡
			

			
				
			
			
				𝜔
				
				⎛
				⎜
				⎜
				⎜
				⎝
				
			

			
				𝜔
				0
			

			

				𝑓
			

			

				1
			

			
				(
				𝑡
				)
				𝑑
				𝑡
				+
				𝑐
			

			

				1
			

			

				
			

			
				𝜔
				0
			

			

				𝑓
			

			

				2
			

			
				(
				𝑡
				)
				𝑑
				𝑡
				+
				𝑐
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				−
				1
			

			
				
			
			
				𝜔
				⎛
				⎜
				⎜
				⎜
				⎝
				
			

			
				𝜔
				0
			

			

				
			

			
				𝑡
				0
			

			

				𝑓
			

			

				1
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				𝑑
				𝑡
				+
				𝑐
			

			

				1
			

			

				
			

			
				𝜔
				0
			

			

				
			

			
				𝑡
				0
			

			

				𝑓
			

			

				2
			

			
				(
				𝑠
				)
				𝑑
				𝑠
				𝑑
				𝑡
				+
				𝑐
			

			

				2
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				.
			

		
	

						Clearly, 
	
		
			
				𝑄
				𝑁
			

		
	
 and 
	
		
			

				𝐾
			

			

				𝑝
			

			
				(
				𝐼
				−
				𝑄
				)
				𝑁
			

		
	
 are continuous. By using the Arzela-Ascoli theorem (see [10]), it is not difficult to prove that 
	
		
			
				
			
			

				𝐾
			

			

				𝑝
			

			
				(
				𝐼
				−
				𝑄
				)
				𝑁
				(
			

			
				
			
			
				Ω
				)
			

		
	
 is compact for any open bounded set 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
. Moreover, 
	
		
			
				𝑄
				𝑁
				(
			

			
				
			
			
				Ω
				)
			

		
	
 is bounded. Therefore, 
	
		
			

				𝑁
			

		
	
 is 
	
		
			

				𝐿
			

		
	
-compact on 
	
		
			
				
			
			

				Ω
			

		
	
 with any open bounded set 
	
		
			
				Ω
				⊂
				𝑋
			

		
	
.Now, we reach the position to search for an appropriate open, bounded subset 
	
		
			

				Ω
			

		
	
 for the application of the continuation theorem.Corresponding to the operator equation 
	
		
			
				𝐿
				𝑥
				=
				𝜆
				𝑁
				𝑥
			

		
	
, 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				)
			

		
	
, we have
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				̇
				𝑢
			

			

				1
			

			
				
				(
				𝑡
				)
				=
				𝜆
				𝑟
				(
				𝑡
				)
				−
				𝑟
				(
				𝑡
				)
			

			
				
			
			
				𝐾
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				
				−
				
				
				
				𝑢
				(
				𝑡
				)
				4
				𝐺
				𝑒
				𝛿
				e
				x
				p
			

			

				2
			

			
				
				+
				(
				𝑡
				)
				(
				4
				𝐺
				ℎ
				−
				1
				)
				×
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑢
			

			

				2
			

			
				×
				
				
				
				𝑢
				(
				𝑡
				)
				
				
				4
				𝐺
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				
				
			

			

				2
			

			

				
			

			
				−
				1
			

			
				,
				
				
				̇
				𝑢
			

			

				2
			

			
				
				+
				
				
				
				𝑢
				(
				𝑡
				)
				=
				𝜆
				−
				𝑑
				(
				𝑡
				)
				4
				𝐺
				𝑒
				𝛿
				𝐵
				(
				𝑡
				)
				e
				x
				p
			

			

				1
			

			
				
				+
				(
				𝑡
				)
				(
				4
				𝐺
				ℎ
				−
				1
				)
				×
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
				𝐵
				(
				𝑡
				)
				e
				x
				p
				2
				𝑢
			

			

				1
			

			
				×
				
				
				
				𝑢
				(
				𝑡
				)
				
				
				4
				𝐺
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				
				
			

			

				2
			

			

				
			

			
				−
				1
			

			
				,
				
				
				𝑡
				≠
				𝑡
			

			

				𝑘
			

			
				,
				Δ
				𝑢
			

			

				1
			

			
				
				𝑡
			

			

				𝑘
			

			
				
				
				=
				𝜆
				l
				n
				1
				+
				𝑐
			

			
				1
				𝑘
			

			
				
				,
				Δ
				𝑢
			

			

				2
			

			
				
				𝑡
			

			

				𝑘
			

			
				
				
				=
				𝜆
				l
				n
				1
				+
				𝑐
			

			
				2
				𝑘
			

			
				
				,
				𝑡
				=
				𝑡
			

			

				𝑘
			

			

				.
			

		
	

						Suppose 
	
		
			
				𝑥
				=
				(
				𝑢
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑢
			

			

				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

			
				∈
				𝑋
			

		
	
 is a solution of (19) for a certain 
	
		
			
				𝜆
				∈
				(
				0
				,
				1
				)
			

		
	
. Integrating the first equation of (19) over the interval 
	
		
			
				[
				0
				,
				𝜔
				]
			

		
	
, we obtain 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				𝑟
				(
				𝑡
				)
			

			
				
			
			
				𝐾
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				
				+
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
			

			
				
				
				
				𝑢
				4
				𝐺
				𝑒
				𝛿
				e
				x
				p
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				×
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑢
			

			

				2
			

			
				×
				
				
				
				𝑢
				(
				𝑡
				)
				
				
				4
				𝐺
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				
				
			

			

				2
			

			

				
			

			
				−
				1
			

			
				
				=
				𝑑
				𝑡
			

			
				
			
			
				𝑟
				𝜔
				+
				𝑐
			

			

				1
			

			

				.
			

		
	

						Similarly, integrating the second equation of (19) over the interval 
	
		
			
				[
				0
				,
				𝜔
				]
			

		
	
, we obtain 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				
				
				
				𝑢
				4
				𝐺
				𝑒
				𝛿
				𝐵
				(
				𝑡
				)
				e
				x
				p
			

			

				1
			

			
				
				(
				𝑡
				)
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				×
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
				𝐵
				(
				𝑡
				)
				e
				x
				p
				2
				𝑢
			

			

				1
			

			
				×
				
				
				
				𝑢
				(
				𝑡
				)
				
				
				4
				𝐺
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				
				
			

			

				2
			

			

				
			

			
				−
				1
			

			
				
				=
				𝑑
				𝑡
			

			
				
			
			
				𝑑
				𝜔
				−
				𝑐
			

			

				2
			

			

				.
			

		
	

						It follows from the first equation of (19) and (20) and 
	
		
			

				(
			

			
				
			
			

				𝐴
			

			

				2
			

			

				)
			

		
	
 that 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				|
				|
				̇
				𝑢
			

			

				1
			

			
				|
				|
				
				(
				𝑡
				)
				𝑑
				𝑡
				=
				𝜆
			

			
				𝜔
				0
			

			
				|
				|
				|
				|
				
				𝑟
				(
				𝑡
				)
				−
				𝑟
				(
				𝑡
				)
			

			
				
			
			
				𝐾
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				
				−
				
				
				
				𝑢
				(
				𝑡
				)
				4
				𝐺
				𝑒
				𝛿
				e
				x
				p
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				×
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑢
			

			

				2
			

			
				×
				
				
				
				𝑢
				(
				𝑡
				)
				
				
				4
				𝐺
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				
				
			

			

				2
			

			

				
			

			
				−
				1
			

			
				|
				|
				|
				|
				<
				
				
				
				𝑑
				𝑡
			

			
				𝜔
				0
			

			
				
				𝑟
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				𝜔
				0
			

			
				𝑟
				(
				𝑡
				)
			

			
				
			
			
				𝐾
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				
				+
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
			

			
				
				
				
				𝑢
				4
				𝐺
				𝑒
				𝛿
				e
				x
				p
			

			

				2
			

			
				
				(
				𝑡
				)
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				×
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑢
			

			

				2
			

			
				(
				×
				
				
				
				𝑢
				𝑡
				)
				
				
				4
				𝐺
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				
				
			

			

				2
			

			

				
			

			
				−
				1
			

			
				
				=
				
				𝑑
				𝑡
			

			
				𝜔
				0
			

			
				𝑟
				(
				𝑡
				)
				𝑑
				𝑡
				+
			

			
				
			
			
				𝑟
				𝜔
				+
				𝑐
			

			

				1
			

			
				=
				2
			

			
				
			
			
				𝑟
				𝜔
				+
				𝑐
			

			

				1
			

			

				.
			

		
	

						That is, 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				|
				|
				̇
				𝑢
			

			

				1
			

			
				|
				|
				(
				𝑡
				)
				𝑑
				𝑡
				<
				2
			

			
				
			
			
				𝑟
				𝜔
				+
				𝑐
			

			

				1
			

			

				.
			

		
	

						Similarly, it follows from the second equation of (19) and (21) and 
	
		
			

				(
			

			
				
			
			

				𝐴
			

			

				2
			

			

				)
			

		
	
 that 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				
			

			
				𝜔
				0
			

			
				|
				|
				̇
				𝑢
			

			

				2
			

			
				|
				|
				(
				𝑡
				)
				𝑑
				𝑡
				<
				2
			

			
				
			
			
				𝑑
				𝜔
				−
				𝑐
			

			

				2
			

			

				.
			

		
	

						Since 
	
		
			
				(
				𝑢
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑢
			

			

				2
			

			
				(
				𝑡
				)
				)
			

			

				𝑇
			

			
				∈
				𝑋
			

		
	
, there exists 
	
		
			

				𝜉
			

			

				𝑖
			

			
				,
				𝜂
			

			

				𝑖
			

			
				∈
				[
				0
				,
				𝜔
				]
			

		
	
 such that 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑖
			

			
				
				𝜉
			

			

				𝑖
			

			
				
				=
				i
				n
				f
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝜔
			

			

				𝑢
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝑢
			

			

				𝑖
			

			
				
				𝜂
			

			

				𝑖
			

			
				
				=
				s
				u
				p
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝜔
			

			

				𝑢
			

			

				𝑖
			

			
				(
				𝑡
				)
				,
				𝑖
				=
				1
				,
				2
				.
			

		
	
From (20), we see that 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				
			
			
				𝑟
				𝜔
				+
				𝑐
			

			

				1
			

			
				≥
				
			

			
				𝜔
				0
			

			
				𝑟
				(
				𝑡
				)
			

			
				
			
			
				𝐾
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				,
			

		
	

						which implies 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				
			
			
				𝑐
				𝑟
				+
			

			

				1
			

			
				
			
			
				𝜔
				≥
			

			
				
			
			

				𝑟
			

			
				
			
			
				𝐾
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				
				𝜉
			

			

				1
			

			
				.
				
				
			

		
	

						So 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑢
			

			

				1
			

			
				
				𝜉
			

			

				1
			

			
				
				
				𝑐
				≤
				l
				n
				𝐾
				1
				+
			

			

				1
			

			
				
			
			
				
			
			
				
				𝑟
				𝜔
				∶
				=
				Δ
			

			
				1
				1
			

			

				.
			

		
	

						This, combined with (23), gives 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝑢
			

			

				1
			

			
				(
				𝑡
				)
				≤
				𝑢
			

			

				1
			

			
				
				𝜉
			

			

				1
			

			
				
				+
				
			

			
				𝜔
				0
			

			
				|
				|
				̇
				𝑢
			

			

				1
			

			
				|
				|
				(
				𝑡
				)
				𝑑
				𝑡
				<
				Δ
			

			
				1
				1
			

			
				+
				2
			

			
				
			
			
				𝑟
				𝜔
				∶
				=
				𝐻
			

			
				1
				1
			

			

				.
			

		
	

						Similarly, it follows from (21) that 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				
			
			
				𝑑
				𝜔
				−
				𝑐
			

			

				2
			

			
				≤
				
			

			
				𝜔
				0
			

			
				
				𝑢
				4
				𝐺
				𝑒
				𝛿
				𝐵
				(
				𝑡
				)
				e
				x
				p
			

			

				1
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				
				𝑢
				8
				𝐺
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				
				+
				
				(
				𝑡
				)
				𝑑
				𝑡
			

			
				𝜔
				0
			

			
				4
				𝐺
				ℎ
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
				𝐵
				(
				𝑡
				)
				e
				x
				p
				2
				𝑢
			

			

				1
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				
				𝑢
				8
				𝐺
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				,
			

		
	

						which implies 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				
			
			
				𝑐
				𝑑
				−
			

			

				2
			

			
				
			
			
				𝜔
				≤
			

			
				
			
			

				𝐵
			

			
				
			
			
				+
				2
				ℎ
				𝑒
				𝛿
			

			
				
			
			

				𝐵
			

			
				
			
			
				2
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				
				𝜂
			

			

				1
			

			
				.
				
				
			

		
	

						It follows from 
	
		
			

				(
			

			
				
			
			

				𝐴
			

			

				1
			

			

				)
			

		
	
 that 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝑢
			

			

				1
			

			
				
				𝜂
			

			

				1
			

			
				
				
				≥
				l
				n
				2
				2
			

			
				
			
			
				
				𝑑
				−
			

			
				
			
			
				
				−
				
				𝑐
				𝐵
				/
				2
				ℎ
			

			

				2
			

			
				
				
				/
				𝜔
			

			
				
			
			
				𝑒
				𝛿
			

			
				
			
			
				𝐵
				∶
				=
				Δ
			

			
				1
				2
			

			

				.
			

		
	

						This, combined with (23), gives 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝑢
			

			

				1
			

			
				(
				𝑡
				)
				≥
				𝑢
			

			

				1
			

			
				
				𝜂
			

			

				1
			

			
				
				−
				
			

			
				𝜔
				0
			

			
				|
				|
				̇
				𝑢
			

			

				1
			

			
				|
				|
				(
				𝑡
				)
				𝑑
				𝑡
				>
				Δ
			

			
				1
				2
			

			
				−
				2
			

			
				
			
			
				𝑟
				𝜔
				∶
				=
				𝐻
			

			
				1
				2
			

			

				.
			

		
	

						It follows from (29) and (33) that 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				m
				a
				x
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝜔
			

			

				𝑢
			

			

				1
			

			
				
				|
				|
				𝐻
				(
				𝑡
				)
				<
				m
				a
				x
			

			
				1
				1
			

			
				|
				|
				,
				|
				|
				𝐻
			

			
				1
				2
			

			
				|
				|
				
				∶
				=
				𝐻
			

			

				1
			

			

				.
			

		
	
On the other hand, it follows from (21) and (34) that 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				
			
			
				𝑟
				𝜔
				+
				𝑐
			

			

				1
			

			

				≤
			

			
				
			
			
				𝑟
				𝜔
			

			
				
			
			
				𝐾
				
				𝐻
				e
				x
				p
			

			

				1
			

			
				
				+
				
			

			
				𝜔
				0
			

			
				
				𝑢
				4
				𝐺
				𝑒
				𝛿
				e
				x
				p
			

			

				2
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				+
				
				4
				𝐺
				𝑑
				𝑡
			

			
				𝜔
				0
			

			
				4
				𝐺
				ℎ
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑢
			

			

				2
			

			
				
				(
				𝑡
				)
			

			
				
			
			
				
				𝑢
				8
				𝐺
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				
				(
				𝑡
				)
				𝑑
				𝑡
				,
			

		
	

						which implies 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				
			
			
				𝑐
				𝑟
				+
			

			

				1
			

			
				
			
			
				𝜔
				≤
			

			
				
			
			

				𝑟
			

			
				
			
			
				𝐾
				
				𝐻
				e
				x
				p
			

			

				1
			

			
				
				+
				3
			

			
				
			
			
				2
				
				𝑢
				𝑒
				𝛿
				e
				x
				p
			

			

				2
			

			
				
				𝜂
			

			

				2
			

			
				.
				
				
			

		
	

						It follows from (
	
		
			
				
			
			

				𝐴
			

			

				2
			

		
	
) that 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝑢
			

			

				2
			

			
				
				𝜂
			

			

				2
			

			
				
				2
				≥
				l
				n
			

			
				
			
			
				𝑟
				
				
				𝑐
				1
				+
			

			

				1
			

			

				/
			

			
				
			
			
				
				−
				
				𝑒
				𝑟
				𝜔
			

			

				𝐻
			

			

				1
			

			
				/
				𝐾
				
				
			

			
				
			
			
				3
				𝑒
				𝛿
				∶
				=
				Δ
			

			
				2
				2
			

			

				.
			

		
	

						This, combined with (25), gives 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝑢
			

			

				2
			

			
				(
				𝑡
				)
				≥
				𝑢
			

			

				2
			

			
				
				𝜂
			

			

				2
			

			
				
				−
				
			

			
				𝜔
				0
			

			
				|
				|
				̇
				𝑢
			

			

				2
			

			
				|
				|
				(
				𝑡
				)
				𝑑
				𝑡
				>
				Δ
			

			
				2
				2
			

			
				−
				2
			

			
				
			
			
				𝑑
				𝜔
				∶
				=
				𝐻
			

			
				2
				2
			

			

				.
			

		
	
Similarly, it follows from (21) and (34) that 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				
			
			
				𝑟
				𝜔
				+
				𝑐
			

			

				1
			

			
				≥
				
			

			
				𝜔
				0
			

			
				
				𝑢
				4
				𝐺
				𝑒
				𝛿
				e
				x
				p
			

			

				2
			

			
				
				𝜉
			

			

				2
			

			
				
				
			

			
				
			
			
				
				
				𝐻
				4
				𝐺
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				
				
			

			

				2
			

			
				𝑑
				𝑡
				,
			

		
	

						which implies 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				
			
			
				𝑐
				𝑟
				+
			

			

				1
			

			
				
			
			
				𝜔
				≥
				
				𝑢
				𝑒
				𝛿
				e
				x
				p
			

			

				2
			

			
				
				𝜉
			

			

				2
			

			
				
				
			

			
				
			
			
				
				
				𝐻
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				
				
			

			

				2
			

			

				.
			

		
	

						So 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝑢
			

			

				2
			

			
				
				𝜉
			

			

				2
			

			
				
				≤
				l
				n
			

			
				
			
			
				𝑟
				
				
				𝑐
				1
				+
			

			

				1
			

			

				/
			

			
				
			
			
				
				𝐻
				𝑟
				𝜔
				
				
				
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				
				
			

			

				2
			

			
				
			
			
				𝑒
				𝛿
				∶
				=
				Δ
			

			
				2
				1
			

			

				.
			

		
	

						This, combined with (25), gives 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				𝑢
			

			

				2
			

			
				(
				𝑡
				)
				≤
				𝑢
			

			

				2
			

			
				
				𝜉
			

			

				2
			

			
				
				+
				
			

			
				𝜔
				0
			

			
				|
				|
				̇
				𝑢
			

			

				2
			

			
				|
				|
				(
				𝑡
				)
				𝑑
				𝑡
				<
				Δ
			

			
				2
				1
			

			
				+
				2
			

			
				
			
			
				𝑑
				𝜔
				∶
				=
				𝐻
			

			
				2
				1
			

			

				.
			

		
	

						It follows from (38) and (42) that 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				m
				a
				x
			

			
				[
				]
				𝑡
				∈
				0
				,
				𝜔
			

			

				𝑢
			

			

				2
			

			
				
				|
				|
				𝐻
				(
				𝑡
				)
				<
				m
				a
				x
			

			
				2
				1
			

			
				|
				|
				,
				|
				|
				𝐻
			

			
				2
				2
			

			
				|
				|
				
				∶
				=
				𝐻
			

			

				2
			

			

				.
			

		
	

						Now, let us consider 
	
		
			
				𝑄
				𝑁
				𝑥
			

		
	
 with 
	
		
			
				𝑥
				=
				(
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			

				)
			

			

				𝑇
			

			
				∈
				ℝ
			

			

				2
			

		
	
. Note that 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				
				𝑢
				𝑄
				𝑁
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				
				=
				
			

			
				
			
			
				𝑟
				−
			

			
				
			
			

				𝑟
			

			
				
			
			
				𝐾
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				
				−
				
				𝑢
				4
				𝐺
				𝑒
				𝛿
				e
				x
				p
			

			

				2
			

			
				
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
				𝑢
				e
				x
				p
			

			

				1
			

			
				+
				𝑢
			

			

				2
			

			

				
			

			
				
			
			
				
				
				𝑢
				4
				𝐺
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				
				
			

			

				2
			

			
				+
				𝑐
			

			

				1
			

			
				
			
			
				𝜔
				,
				−
			

			
				
			
			
				𝑑
				+
				4
				𝐺
				𝑒
				𝛿
			

			
				
			
			
				
				𝑢
				𝐵
				e
				x
				p
			

			

				1
			

			
				
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			
				
			
			
				
				𝐵
				e
				x
				p
				2
				𝑢
			

			

				1
			

			

				
			

			
				
			
			
				
				
				𝑢
				4
				𝐺
				1
				+
				ℎ
				𝑒
				𝛿
				e
				x
				p
			

			

				1
			

			
				
				
			

			

				2
			

			
				+
				𝑐
			

			

				2
			

			
				
			
			
				𝜔
				
				.
			

		
	

						It follows from 
	
		
			

				(
			

			
				
			
			

				𝐴
			

			

				1
			

			

				)
			

		
	
, 
	
		
			

				(
			

			
				
			
			

				𝐴
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			

				(
			

			
				
			
			

				𝐴
			

			

				3
			

			

				)
			

		
	
 that 
	
		
			

				𝑢
			

			

				+
			

			
				<
				0
			

		
	
, which implies that the equation 
	
		
			
				𝑄
				𝑁
				(
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				)
				=
				0
			

		
	
 has only one solution 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				∼
			

			
				𝑢
				=
				
				l
				n
				𝑢
			

			

				−
			

			
				
				,
				l
				n
				4
				𝐺
			

			
				
			
			
				
				𝑟
				−
			

			
				
			
			
				
				𝑢
				𝑟
				/
				𝐾
			

			

				−
			

			
				
				
				1
				+
				ℎ
				𝑒
				𝛿
				𝑢
			

			

				−
			

			

				
			

			

				2
			

			
				
			
			
				4
				𝐺
				𝑒
				𝛿
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			

				𝑢
			

			

				−
			

			
				
				.
			

		
	

						Choose 
	
		
			
				𝐶
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				
				𝐶
				>
				l
				n
				4
				𝐺
			

			
				
			
			
				
				𝑟
				−
			

			
				
			
			
				
				𝑢
				𝑟
				/
				𝐾
			

			

				−
			

			
				
				
				1
				+
				ℎ
				𝑒
				𝛿
				𝑢
			

			

				−
			

			

				
			

			

				2
			

			
				
			
			
				4
				𝐺
				𝑒
				𝛿
				+
				(
				4
				𝐺
				ℎ
				−
				1
				)
				𝑒
			

			

				2
			

			

				𝛿
			

			

				2
			

			

				𝑢
			

			

				−
			

			
				|
				|
				|
				|
				|
				.
			

		
	

						Set 
	
		
			
				𝐻
				=
				‖
				(
				𝐻
			

			

				1
			

			
				,
				𝐻
			

			

				2
			

			

				)
			

			

				𝑇
			

			
				‖
				+
				𝐶
			

		
	
; then 
	
		
			
				‖
				𝑥
				‖
				<
				𝐻
			

		
	
. Let 
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				
				
				𝑢
				Ω
				=
				𝑥
				(
				𝑡
				)
				=
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑢
			

			

				2
			

			
				
				(
				𝑡
				)
			

			

				𝑇
			

			
				
				.
				∈
				𝑋
				∶
				‖
				𝑥
				(
				𝑡
				)
				‖
				<
				𝐻
			

		
	

						It is clear that 
	
		
			

				Ω
			

		
	
 verifies the requirement (a) in Lemma 4. When 
	
		
			
				𝑥
				∈
				K
				e
				r
				𝐿
				∩
				𝜕
				Ω
			

		
	
, 
	
		
			

				𝑥
			

		
	
 is a constant with 
	
		
			
				‖
				𝑥
				‖
				=
				𝐻
			

		
	
. Then 
	
		
			
				𝑄
				𝑁
				𝑥
				≠
				0
			

		
	
 for 
	
		
			
				𝑥
				∈
				K
				e
				r
				𝐿
				∩
				𝜕
				Ω
			

		
	
. Simple computation shows that 
	
		
			
				d
				e
				g
				{
				𝐽
				𝑄
				𝑁
				,
				Ω
				∩
				K
				e
				r
				𝐿
				,
				0
				}
				≠
				0
			

		
	
. Here, 
	
		
			

				𝐽
			

		
	
 is taken as the identity mapping since 
	
		
			
				I
				m
				𝑄
				=
				K
				e
				r
				𝐿
			

		
	
.
By now, we have proved that 
	
		
			

				Ω
			

		
	
 verifies all the requirements in Lemma 4. Hence, (2) has at least one 
	
		
			

				𝜔
			

		
	
-periodic solution in 
	
		
			
				
			
			

				Ω
			

		
	
.
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