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Average conditions are obtained for the permanence of a discrete bounded systemwithHolling type II functional response𝑢(𝑛+1) =
𝑢(𝑛)exp{𝑎(𝑛)−𝑏(𝑛)𝑢(𝑛)−𝑐(𝑛)V(𝑛)/(𝑢(𝑛)+𝑚(𝑛)V(𝑛))}, V(𝑛+1) = V(𝑛)exp{−𝑑(𝑛)+𝑒(𝑛)𝑢(𝑛)/(𝑢(𝑛)+𝑚(𝑛)V(𝑛))}.Themethod involves
the application of estimates of uniform upper and lower bounds of solutions. When these results are applied to some special delay
population models with multiple delays, some new results are obtained and some known results are generalized.

1. Introduction

In this paper, we will study the permanence of the following
discrete system:

𝑢 (𝑛 + 1)

= 𝑢 (𝑛) exp{𝑎 (𝑛) − 𝑏 (𝑛) 𝑢 (𝑛) − 𝑐 (𝑛) V (𝑛)

𝑢 (𝑛) + 𝑚 (𝑛) V (𝑛)
} ,

V (𝑛 + 1) = V (𝑛) exp{−𝑑 (𝑛) + 𝑒 (𝑛) 𝑢 (𝑛)

𝑢 (𝑛) + 𝑚 (𝑛) V (𝑛)
} ,

(1)

where the sequences 𝑎(𝑛), 𝑏(𝑛), 𝑐(𝑛), 𝑑(𝑛), 𝑒(𝑛), 𝑚(𝑛) are all
assumed to be bounded and 𝑏(𝑛), 𝑐(𝑛), 𝑒(𝑛), 𝑚(𝑛) are all
positive for 𝑛 ∈ Z.

If all the coefficients of the previous system (1) are
periodic sequences with period𝜔, in [1], the authors obtained
the following.

Theorem 1 (see [1]). Assume that

𝑎 > (

𝑐

𝑚

), 𝑒 > 𝑑, (2)

hold; then the periodic system (1) is permanent.

In [2], by a standard comparison argument, they proved
the following.

Theorem 2. Assume that

𝑎
𝐿
>

𝑐
𝑀

𝑚
𝐿
, 𝑒

𝐿
> 𝑑
𝑀
, (3)

hold; then the bounded system (1) is permanent.

In the previous two theorems, we used the denotation as
follows. For a bounded sequence 𝑔(𝑛), we define

𝑔
𝑀
= sup {𝑔 (𝑘) | 𝑘 ∈ Z} ,

𝑔
𝐿
= inf {𝑔 (𝑘) | 𝑘 ∈ Z} .

(4)

And for a given periodic sequence with period 𝜔, its average
value is defined as

𝑓 =

1

𝜔

𝜔−1

∑

𝑖=0

𝑓 (𝑖) . (5)

Throughout this paper, we always assume that 𝑏𝐿 >

0, 𝑐𝐿 > 0, 𝑒𝐿 > 0, 𝑚𝐿 > 0.
If all the coefficients of system (1) are periodic sequences

with period 𝜔, then it is a special form of the bounded
coefficients of system (1), but from Theorem 2, we cannot
obtain Theorem 1; that is to say, there is a gap between
Theorems 1 and 2. In this paper, we attempt to fill in this gap.
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In order to illustrate our main results, similar to the cor-
responding definitions of the bounded continuous function
in [3], we first introduce some notations.

For a bounded sequence 𝑓 : Z → R, we define the lower
average of 𝑓 by

𝐴
𝐿
(𝑓) = lim

𝑟→∞
inf
𝑡−𝑠≥𝑟

1

𝑡 − 𝑠

𝑡

∑

𝑘=𝑠

𝑓 (𝑘) . (6)

Some remarks:

(a) For a bounded sequence 𝑓, define the upper average
𝐴
𝑀
(𝑓) of 𝑓 by replacing inf with sup in (6).

(b) If 𝑓 is 𝜔-periodic, then

𝐴
𝐿
(𝑓) = 𝐴

𝑀
(𝑓) = 𝑓. (7)

(c) The following inequalities hold true:

𝑓
𝐿
≤ 𝐴
𝐿
(𝑓) ≤ 𝐴

𝑀
(𝑓) ≤ 𝑓

𝑀
. (8)

(d) For any 𝛼, 𝛽 ∈ 𝑅, the lower average satisfies

𝐴
𝐿
(𝛼𝑓 + 𝛽𝑔) = 𝛼𝐴

𝐿
(𝑓) + 𝛽𝐴

𝐿
(𝑔) . (9)

Proof. We only prove that (b) hold; (c) and (d) can be proved
similarly as that in [3]. Setting 𝑡 − 𝑠 = 𝑛𝜔 + 𝛼

𝑛
, where 𝛼

𝑛
∈

[0, 𝜔 − 1], in the following, we assume that 𝑛 is sufficiently
large; then

1

𝑡 − 𝑠

𝑡

∑

𝑘=𝑠

𝑓 (𝑘) =

1

𝑛𝜔 + 𝛼
𝑛

𝑠+𝑛𝜔−1

∑

𝑘=𝑠

𝑓 (𝑘) +

1

𝑛𝜔 + 𝛼
𝑛

𝑡

∑

𝑘=𝑠+𝑛𝜔

𝑓 (𝑘)

=

𝑛

𝑛𝜔 + 𝛼
𝑛

𝜔−1

∑

𝑘=0

𝑓 (𝑘) +

(𝛼
𝑛
+ 1) 𝑓

𝑀

𝑛𝜔 + 𝛼
𝑛

,

(10)

from the previous equality, we have

lim
𝑛→∞

1

𝑡 − 𝑠

𝑡

∑

𝑘=𝑠

𝑓 (𝑘) =

1

𝜔

𝜔−1

∑

𝑘=0

𝑓 (𝑘) ; (11)

therefore

𝐴
𝐿
(𝑓) = 𝐴

𝑀
(𝑓) =

1

𝜔

𝜔−1

∑

𝑘=0

𝑓 (𝑘) = 𝑓, (12)

which completes the proof.

During the study of the permanence for the bounded sys-
tem, in view of the property (b), one can usually use the lower
average or upper average instead of the sup and inf values.
And we call the condition obtained by using the method of
lower average or upper average as “average conditions.” For
the permanence results with “average conditions,” one can
refer to [4–7], and so forth.

For the permanence of system (1), we have the following.

Theorem 3. Assume that

𝐴
𝐿
(𝑎 (𝑛) −

𝑐 (𝑛)

𝑚 (𝑛)

) > 0, 𝐴
𝐿 (
𝑒 (𝑛) − 𝑑 (𝑛)) > 0,

𝐴
𝐿 (
𝑑) > 0;

(13)

then the bounded system (1) is permanent.

Obviously, Theorem 3 includes both Theorems 1 and 2.
Therefore, this theorem is a bridge that combines the bound-
ed system and the periodic system.

2. Preliminaries

In order to prove Theorem 3, we need some lemmas below.
The first lemma could be found in [8].

Lemma 4 (see [8, Corollary 2.5]). Let 𝑢(𝑛) be a positive
solution of the following inequality:

𝑢 (𝑛 + 1) ≤ 𝑢 (𝑛) exp {𝑎1 (𝑛) − 𝑏1 (𝑛) 𝑢 (𝑛)} , 𝑛 ∈ Z,

𝑢 (0) > 0,

(14)

if 𝑏𝐿
1
> 0 and 𝑎𝑀

1
> 0; then

lim sup
𝑛→∞

𝑢 (𝑛) ≤ min{
𝑎
𝑀

1

𝑏
𝐿

1

exp {𝑎𝑀
1
} ,

1

𝑏
𝐿

1

exp {𝑎𝑀
1
− 1}} .

(15)

We should point out that when 𝑏𝐿
1
= 0, the conclusion of

the previous lemma is not true. That is, 𝑏𝐿
1
> 0 is a necessary

condition. We give an example to illustrate it.

Example 5. Consider the following inequality:

𝑢 (𝑛 + 1) ≤ 𝑢 (𝑛) exp {1
2

+

1

𝑛

−

1

𝑛

𝑢 (𝑛)} , 𝑛 ∈ Z,

𝑢 (0) > 0.

(16)

Obviously, 𝑢(𝑛) = 𝑛 is a solution of it, but lim sup
𝑛→∞

𝑢(𝑛) =

+∞.

Lemma 6. Let 𝑢(𝑛) be a solution of the following inequality:

𝑢 (𝑛 + 1) ≥ 𝑢 (𝑛) exp {𝑎2 (𝑛) − 𝑏2 (𝑛) 𝑢 (𝑛)} , 𝑛 ∈ Z,

𝑢 (0) > 0,

(17)

and bounded above; if 𝑏𝐿
2
> 0 and

𝐴
𝐿
(𝑎
2
) > 0, (18)

then there exists some positive constant 𝐿 such that

lim inf
𝑛→∞

𝑢 (𝑛) ≥ 𝐿. (19)

To prove this lemma, we give two claims in what follows.
First, by using mathematical induction, we can easily obtain
the following.



Discrete Dynamics in Nature and Society 3

Claim 1. If 𝑢(𝑛) is a solution of (17), then

𝑢 (𝑛) > 0 for any 𝑛 ∈ Z. (20)

In what follows, we use contradiction to prove the lemma.

Claim 2. Assume that 𝑢(𝑘) is a solution of (17) and bounded
above by a positive constant 𝑀; if (19) does not hold, then
there exist positive integer sequences {𝑠

𝑛
} and {𝑡

𝑛
} such that

0 ≤ 𝑠
𝑛
< 𝑡
𝑛
, 𝑡
𝑛
− 𝑠
𝑛
≥ 𝑛 + 1, 𝑢 (𝑠

𝑛
) ≥

𝑢 (0)

𝑛

,

𝑢 (𝑘) ≤

𝑢 (0)

𝑛

for 𝑠
𝑛
< 𝑘 ≤ 𝑡

𝑛
.

(21)

Proof of the claim. Notice that

𝑎
2 (
𝑛) − 𝑏2 (

𝑛) 𝑢 (𝑛) ≥ 𝑎
𝐿

2
− 𝑏
𝑀

2
𝑀 ≥ −𝛾 forany 𝑛 ∈ Z,

(22)

where 𝛾 > 0 is a constant.
If (19) does not hold, then from Claim 1,

lim inf
𝑛→∞

𝑢(𝑛) = 0, thus, for any positive integer 𝑛 ≥ 1,
there exist 𝑡

𝑛
> 0 such that

𝑢 (𝑡
𝑛
) <

𝑢 (0)

𝑛

exp {−𝑛𝛾} . (23)

In addition, there exists a number 𝑠
𝑛
such that 0 ≤ 𝑠

𝑛
< 𝑡
𝑛
,

𝑢(𝑠
𝑛
) ≥ 𝑢(0)/𝑛 and 𝑢(𝑘) ≤ 𝑢(0)/𝑛 for 𝑠

𝑛
< 𝑘 ≤ 𝑡

𝑛
. In the

following, we only need to prove that 𝑡
𝑛
− 𝑠
𝑛
≥ 𝑛 + 1. From

the first equation of (17), we have

𝑢 (0)

𝑛

≤ 𝑢 (𝑠
𝑛
) ≤ 𝑢 (𝑡

𝑛
) exp

{

{

{

−

𝑡
𝑛
−1

∑

𝑘=𝑠
𝑛

(𝑎
2 (
𝑘) − 𝑏2 (

𝑘) 𝑢 (𝑘))

}

}

}

≤ 𝑢 (𝑡
𝑛
) exp {𝛾 (𝑡

𝑛
− 𝑠
𝑛
− 1)}

≤

𝑢 (0)

𝑛

exp {−𝑛𝛾} exp {𝛾 (𝑡
𝑛
− 𝑠
𝑛
− 1)} ,

(24)

which implies that 𝑡
𝑛
− 𝑠
𝑛
≥ 𝑛 + 1. This completes the proof

of Claim 2.

Proof of Lemma 6. From the first equation of (17), we have

𝑎
2 (
𝑘) ≤ ln 𝑢 (𝑘 + 1)

𝑢 (𝑘)

+ 𝑏
2 (
𝑘) 𝑢 (𝑘) , (25)

by Claim 2, we obtain that if (19) does not hold, then for any
𝑛 ≥ 1, we have

𝑡
𝑛
−1

∑

𝑘=𝑠
𝑛

𝑎
2 (
𝑘) ≤

𝑡
𝑛
−1

∑

𝑘=𝑠
𝑛

ln 𝑢 (𝑘 + 1)
𝑢 (𝑘)

+

𝑡
𝑛
−1

∑

𝑘=𝑠
𝑛

𝑏
2 (
𝑘) 𝑢 (𝑘) , (26)

which implies that

1

𝑡
𝑛
− 𝑠
𝑛
− 1

𝑡
𝑛
−1

∑

𝑘=𝑠
𝑛

𝑎
2 (
𝑘)

≤

1

𝑡
𝑛
− 𝑠
𝑛
− 1

ln
𝑢 (𝑡
𝑛
)

𝑢 (𝑠
𝑛
)

+

𝑏
2
(𝑠
𝑛
) 𝑢 (𝑠
𝑛
)

𝑡
𝑛
− 𝑠
𝑛
− 1

+

𝑡
𝑛
− 𝑠
𝑛
− 2

𝑡
𝑛
− 𝑠
𝑛
− 1

𝑢 (0) 𝑏
𝑀

2

𝑛

<

−𝑛𝛾

𝑡
𝑛
− 𝑠
𝑛
− 1

+

𝑏
2
(𝑠
𝑛
) 𝑢 (𝑠
𝑛
)

𝑡
𝑛
− 𝑠
𝑛
− 1

+

𝑡
𝑛
− 𝑠
𝑛
− 2

𝑡
𝑛
− 𝑠
𝑛
− 1

𝑢 (0) 𝑏
𝑀

2

𝑛

.

(27)

Notice that

lim
𝑛→∞

𝑏
2
(𝑠
𝑛
) 𝑢 (𝑠
𝑛
)

𝑡
𝑛
− 𝑠
𝑛
− 1

= 0,

lim
𝑛→∞

𝑡
𝑛
− 𝑠
𝑛
− 2

𝑡
𝑛
− 𝑠
𝑛
− 1

𝑢 (0) 𝑏
𝑀

2

𝑛

= 0;

(28)

thus, by (27), we have

lim
𝑛→∞

1

𝑡
𝑛
− 𝑠
𝑛
− 1

𝑡
𝑛
−1

∑

𝑘=𝑠
𝑛

𝑎
2 (
𝑘) ≤ 0. (29)

This is in contradiction to (18); the proof is complete.

From Lemmas 4 and 6, we have the following.

Theorem 7. Let 𝑢(𝑛) be a solution of the following inequality:

𝑢 (𝑛) exp {𝑎2 (𝑛) − 𝑏2 (𝑛) 𝑢 (𝑛)}

≤ 𝑢 (𝑛 + 1) ≤ 𝑢 (𝑛) exp {𝑎1 (𝑛) − 𝑏1 (𝑛) 𝑢 (𝑛)} ,

𝑛 ∈ Z, 𝑢 (0) > 0;

(30)

if

𝑏
𝐿

1
> 0, 𝑏

𝐿

2
> 0, 𝐴

𝐿
(𝑎
2
) > 0, (31)

then there exist some positive constants 𝐿 and𝑀 such that

𝐿 ≤ lim inf
𝑡→∞

𝑢 (𝑡) ≤ lim sup
𝑡→∞

𝑢 (𝑡) ≤ 𝑀. (32)

FromTheorem 7, we can easily obtain the following.

Corollary 8. Let 𝑢(𝑛) be a solution of the following inequality:

𝑢 (𝑛) exp {𝑎2 (𝑛) − 𝑏2 (𝑛) 𝑢 (𝑛 − 𝑘)}

≤ 𝑢 (𝑛 + 1) ≤ 𝑢 (𝑛) exp {𝑎1 (𝑛) − 𝑏1 (𝑛) 𝑢 (𝑛 − 𝑘)} ,
(33)

for any 𝑛 ∈ Z, 𝑢(𝑖) > 0, −𝑘 + 1 ≤ 𝑖 ≤ 0. If

𝑏
𝐿

1
> 0, 𝑏

𝐿

2
> 0, 𝐴

𝐿
(𝑎
2
) > 0; (34)

then the conclusion of Theorem 7 also holds true, where 𝑘 is a
positive integer.
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3. Permanence

In this section, we give some applications ofTheorem 7. First
we use it to proveTheorem 3.

Proof of Theorem 3. From the first equation of (1), we have

𝑢 (𝑛) exp{𝑎 (𝑛) − 𝑐 (𝑛)

𝑚 (𝑛)

− 𝑏 (𝑛) 𝑢 (𝑛)}

≤ 𝑢 (𝑛 + 1) ≤ 𝑢 (𝑛) exp {𝑎 (𝑛) − 𝑏 (𝑛) 𝑢 (𝑛)} ;
(35)

byTheorem 7 and the condition (13), we can obtain that there
must exist some positive constants 𝐿

1
and𝑀

1
such that

𝐿
1
≤ lim inf

𝑛→∞
𝑢 (𝑛) ≤ lim sup

𝑛→∞

𝑢 (𝑛) ≤ 𝑀1
, (36)

for any solution (𝑢(𝑛), V(𝑛)) of (1) with positive initial condi-
tions 𝑢(0) > 0 and V(0) > 0.

From the second equation of (1), we have

V (𝑛 + 1) = V (𝑛) exp{𝑒 (𝑛) − 𝑑 (𝑛) − 𝑒 (𝑛)𝑚 (𝑛) V (𝑛)

𝑢 (𝑛) + 𝑚 (𝑛) V (𝑛)
}

≥ V (𝑡) [𝑒 (𝑛) − 𝑑 (𝑛) −
𝑒 (𝑛)𝑚 (𝑛) V (𝑛)

𝐿
1

] ;

(37)

by Theorem 7 and condition (13), we can obtain that there
exists a positive constant 𝐿

2
such that

lim inf
𝑛→∞

V (𝑛) ≥ 𝐿2. (38)

Set 𝑦(𝑛) = 1/V(𝑛); then from the second equation of (1),
we can obtain

𝑦 (𝑛 + 1) = 𝑦 (𝑛) exp{𝑑 (𝑛) − 𝑒 (𝑛) 𝑢 (𝑛)

𝑢 (𝑛) 𝑦 (𝑛) + 𝑚 (𝑛)

𝑦 (𝑛)}

≥ 𝑦 (𝑛) exp{𝑑 (𝑛) −
𝑒 (𝑛)𝑀1

𝑚(𝑛)

𝑦 (𝑛)} ,

(39)

for sufficiently large 𝑡; by Theorem 7 and (13), we have

lim sup
𝑛→∞

V (𝑛) ≤ 𝑀2. (40)

By (36), (38), and (40), we complete the proof.

Through some similar analysis as in [9], we have the
following.

Corollary 9. Assume that any positive solution of the periodic
equation 𝑢(𝑛+1) = 𝑓(𝑛, 𝑢(𝑛)) (𝑓(𝑛+𝜔, 𝑢) = 𝑓(𝑛, 𝜔), ∀𝑛 ∈ Z)

satisfies

𝑢 (𝑛) exp {𝑎2 (𝑛) − 𝑏2 (𝑛) 𝑢 (𝑛)}

≤ 𝑢 (𝑛 + 1) ≤ 𝑢 (𝑛) exp {𝑎1 (𝑛) − 𝑏1 (𝑛) 𝑢 (𝑛)} ,

𝑛 ∈ Z, 𝑢 (0) > 0,

(41)

where 𝑎
𝑖
(𝑛), 𝑏
𝑖
(𝑛) (𝑖 = 1, 2) are all 𝜔-periodic sequences; if

𝑏
𝐿

1
> 0, 𝑏

𝐿

2
> 0, 𝑎

2
> 0, (42)

then the periodic equation 𝑢(𝑛 + 1) = 𝑓(𝑛, 𝑢(𝑛)) has at least
one 𝜔-periodic positive solution.

We should point out that the previous corollary can
be generalized to the 𝑛-dimensional situation. As a direct
application of the previous corollary, we have the following.

Theorem 10. Assume that

𝑎 > (

𝑐

𝑚

), 𝑒 > 𝑑 > 0, (43)

hold; then the periodic system (1) (the coefficients of the system
(1) are all periodic sequences with a common period 𝜔) has at
least one 𝜔-periodic positive solution.

This theorem generalizedTheorem 3.1 in [10].
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