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We derive several sufficient conditions for monotonicity of eventually positive solutions on a class of second order perturbed
nonlinear difference equation. Furthermore, we obtain a few nonexistence criteria for eventually positive monotone solutions of
this equation. Examples are provided to illustrate our main results.

1. Introduction

The theory of difference equations and their applications
have received intensive attention. In the last few years, new
research achievements kept emerging (see [1–7]). Among
them, in [3], Saker considered the second order nonlinear
delay difference equation

Δ (𝑝
𝑛
Δ𝑥
𝑛
) + 𝑞
𝑛
𝑓 (𝑥
𝑛−𝜎
) = 0, 𝑛 ⩾ 0. (1)

Saker used the Riccati transformation technique to obtain
several sufficient conditions which guarantee that every
solution of (1) oscillates or converges to zero. In [4], Rath et
al. considered the more general second order equations

Δ (𝑟
𝑛
Δ (𝑦
𝑛
− 𝑝
𝑛
𝑦
𝑛−𝑚

)) + 𝑞
𝑛
𝐺 (𝑦
𝑛−𝑘
) = 0, 𝑛 ⩾ 0,

Δ (𝑟
𝑛
Δ (𝑦
𝑛
− 𝑝
𝑛
𝑦
𝑛−𝑚

)) + 𝑞
𝑛
𝐺 (𝑦
𝑛−𝑘
) = 𝑓
𝑛
, 𝑛 ⩾ 0.

(2)

They found necessary conditions for the solutions of the
above equations to be oscillatory or tend to zero. Following
this trend, this paper is concerned with the second order
perturbed nonlinear difference equation

Δ (𝑎
𝑛
Δ𝑥
𝑛
) + 𝑃 (𝑛, 𝑥

𝑛
, 𝑥
𝑛+1
) = 𝑄 (𝑛, 𝑥

𝑛
, Δ𝑥
𝑛
) , 𝑛 ⩾ 0,

(3)

where {𝑎
𝑛
} is a positive sequence, 𝑃,𝑄 : 𝑁 × 𝑅

2

→ 𝑅 are
two continuous functions, and Δ is the forward difference
operator defined as Δ𝑥

𝑛
= 𝑥
𝑛+1

− 𝑥
𝑛
.

In [8], Li and Cheng considered the special case of (3)

Δ (𝑝
𝑛−1
Δ𝑥
𝑛−1
) + 𝑞
𝑛
𝑓 (𝑥
𝑛
) = 0, 𝑛 ⩾ 0. (4)

They got the sufficient conditions for asymptotically mono-
tone solutions of (4). Enlightened by [8, 9], in this paper, we
derive several sufficient conditions for monotonicity of even-
tually positive solutions on (3) and obtain a few nonexistence
criteria for eventually positivemonotone solutions of (3).Our
results improve and generalize results in [8]. We also provide
examples to illustrate our main results.

For convenience, these essential conditions used in main
results are listed as follows:

(𝐻
1
) there exists a continuous function 𝑓 : 𝑅 → 𝑅 such
that 𝑥𝑓(𝑥) > 0 for all 𝑥 ̸= 0;

(𝐻
2
) 𝑓 is a derivable function and 𝑓(𝑥) ⩾ 0 for 𝑥 ̸= 0;

(𝐻
3
) there exist two sequences {𝑝

𝑛
} and {𝑞

𝑛
}, such that

𝑃(𝑛, 𝑥
𝑛
, 𝑥
𝑛+1
)/𝑓(𝑥

𝑛+1
) ⩾ 𝑝

𝑛
and 𝑄(𝑛, 𝑥

𝑛
, Δ𝑥
𝑛
)/

𝑓(𝑥
𝑛+1
) ⩽ 𝑞
𝑛
for 𝑥
𝑛
̸= 0;

(𝐻
4
) ∑
∞

𝑛=𝑛0

1/𝑎
𝑛
= +∞, 𝑛

0
is a positive integral number,

where 𝑎
𝑛
, 𝑃(𝑛, 𝑥

𝑛
, 𝑥
𝑛+1
) and 𝑄(𝑛, 𝑥

𝑛
, Δ𝑥
𝑛+1
) are all in (3).
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2. Main Results

We first state a result which relates a positive sequence and
a positive nondecreasing function. Its proof can be found in
[8].

Lemma 1 (see [8]). Let 𝑓(𝑥) be a positive nondecreasing
function defined for 𝑥 > 0. Let {𝑥

𝑘
} be a real sequence such

that 𝑥
𝑘
> 0 for 𝑖 ⩽ 𝑘 ⩽ 𝑗 + 1. Then

𝑗

∑

𝑘=𝑖

Δ𝑥
𝑘

𝑓 (𝑥
𝑘+1
)
⩽ ∫

𝑥𝑗+1

𝑥𝑖

𝑑𝑢

𝑓 (𝑢)
⩽

𝑗

∑

𝑘=𝑖

Δ𝑥
𝑘

𝑓 (𝑥
𝑘
)
. (5)

Theorem 2. Suppose that conditions (𝐻
1
)–(𝐻
4
) hold, 𝑝

𝑛
and

𝑞
𝑛
satisfy the following conditions:

(𝐻
5
) ∑
∞

𝑠=𝑛0

(𝑝
𝑠
− 𝑞
𝑠
) < +∞;

(𝐻
6
) lim inf

𝑛→∞
∑
𝑛

𝑠=𝑛0

(𝑝
𝑠
− 𝑞
𝑠
) ⩾ 0

for all 𝑛
0
. Then eventually positive solutions of (3) are eventu-

ally monotone increasing.

Proof. Suppose that {𝑥
𝑛
} is a positive solution of (3), say 𝑥

𝑛
>

0 for 𝑛 > 𝑁 > 𝑛
0
. If conclusion cannot hold, without any loss

of generality, assume Δ𝑥
𝑁
⩽ 0, in view of (3) and conditions,

we have

Δ(
𝑎
𝑛
Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
) =

Δ (𝑎
𝑛
Δ𝑥
𝑛
)

𝑓 (𝑥
𝑛+1
)
−
𝑎
𝑛
(Δ𝑥
𝑛
)
2

𝑓


(𝑥
𝑛
+ 𝜃Δ𝑥

𝑛
)

𝑓 (𝑥
𝑛
) 𝑓 (𝑥

𝑛+1
)

⩽ 𝑞
𝑛
− 𝑝
𝑛

(0 < 𝜃 < 1) ,

(6)

by summing (6) from𝑁 to 𝑛 − 1, then

𝑎
𝑛
Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
⩽
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
−

𝑛−1

∑

𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) . (7)

Making use of condition (𝐻
6
), we know Δ𝑥

𝑛
< 0 for 𝑛 ⩾ 𝑁.

Summing (3) and using (𝐻
3
), we have

𝑎
𝑛
Δ𝑥
𝑛
⩽ 𝑎
𝑁
Δ𝑥
𝑁
−

𝑛−1

∑

𝑠=𝑁

𝑓 (𝑥
𝑠+1
) (𝑝
𝑠
− 𝑞
𝑠
)

= 𝑎
𝑁
Δ𝑥
𝑁
− 𝑓 (𝑥

𝑛+1
)

𝑛−1

∑

𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
)

+

𝑛−1

∑

𝑠=𝑁

Δ𝑓 (𝑥
𝑠
)(

𝑠−1

∑

𝑡=𝑁

(𝑝
𝑡
− 𝑞
𝑡
))

⩽ 𝑎
𝑁
Δ𝑥
𝑁
.

(8)

By summing (8), we then see that

𝑥
𝑛+1

⩽ 𝑥
𝑁
+ 𝑎
𝑁
Δ𝑥
𝑁

𝑛

∑

𝑠=𝑁

1

𝑎
𝑠

→ −∞ (as 𝑛 → ∞) ,

(9)

which contradicts the fact 𝑥
𝑛
> 0. The proof is complete.

Example 3. Consider the difference equation

Δ(
Δ𝑥
𝑛

𝑛2
) + 𝑥
𝑛+1
(𝑟 (𝑛, 𝑥

𝑛
) +

1

𝑛2 (𝑛 + 1)
−

1

(𝑛 + 1)
3
)

= 𝑥
𝑛+1
𝑟 (𝑛, 𝑥

𝑛
) , 𝑛 ⩾ 0,

(10)

where 𝑟(𝑛, 𝑥
𝑛
) is any function of 𝑛 and𝑥

𝑛
. By taking𝑓(𝑥) = 𝑥,

we have
𝑃 (𝑛, 𝑥

𝑛
, 𝑥
𝑛+1
)

𝑓 (𝑥
𝑛+1
)

= 𝑟 (𝑛, 𝑥
𝑛
) +

1

𝑛2 (𝑛 + 1)
−

1

(𝑛 + 1)
3
= 𝑝
𝑛
,

𝑄 (𝑛, 𝑥
𝑛
, Δ𝑥
𝑛
)

𝑓 (𝑥
𝑛+1
)

= 𝑟 (𝑛, 𝑥
𝑛
) = 𝑞
𝑛
.

(11)

So conditions of Theorem 2 hold. By Theorem 2, (10) has a
positive monotone increasing solution {𝑥

𝑛
} = {𝑛}.

Theorem 4. If conditions (𝐻
1
)–(𝐻
4
) hold, there exist𝑀 > 0

and 𝑗 > 𝑛
0
for 𝑛
0
⩾ 𝑀 such that

lim sup
𝑛→∞

𝑛

∑

𝑘=𝑗

1

𝑎
𝑘

𝑘−1

∑

𝑠=𝑛0

(𝑝
𝑠
− 𝑞
𝑠
) > 0. (12)

Then eventually positive solutions {𝑥
𝑛
} of (3) are eventually

monotone increasing or lim inf
𝑛→∞

𝑥
𝑛
= 0.

Proof. Suppose {𝑥
𝑛
} is a positive solution of (3), there exists

𝑁 > 𝑛
0
such that 𝑥

𝑛
> 0 for 𝑛 > 𝑁. Let Δ𝑥

𝑁
⩽ 0, and

lim sup
𝑛→∞

𝑛

∑

𝑘=𝑗

1

𝑎
𝑘

𝑘−1

∑

𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) > 0, 𝑗 > 𝑁. (13)

If lim inf
𝑛→∞

𝑥
𝑛
̸= 0, then there exist 𝑇 ⩾ 𝑁 and a number

𝛼 > 0 such that 𝑥
𝑛
> 𝛼 > 0 for 𝑛 ⩾ 𝑇; in view of (7), we get

Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
⩽
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
⋅
1

𝑎
𝑛

−
1

𝑎
𝑛

𝑛−1

∑

𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) . (14)

Summing (14) and making use of Lemma 1, we know

∫

𝛼

𝑥𝑗

𝑑𝑢

𝑓 (𝑢)
⩽ ∫

𝑥𝑛+1

𝑥𝑗

𝑑𝑢

𝑓 (𝑢)

⩽
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)

𝑛

∑

𝑘=𝑗

1

𝑎
𝑘

−

𝑛

∑

𝑘=𝑗

1

𝑎
𝑘

𝑘−1

∑

𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) .

(15)

By (𝐻
4
), the right side of (15) tends to −∞ as 𝑛 → ∞,

whereas the left side is finite. This contradiction completes
our proof.

Example 5. Consider the difference equation

Δ(
Δ𝑥
𝑛

√𝑛
) +

𝑥
𝑛+1

√𝑛
=
√𝑛 + 2

𝑛 + 1
𝑥
𝑛+1
, 𝑛 ⩾ 0. (16)

By taking 𝑓(𝑥) = 𝑥, we have 𝑃(𝑛, 𝑥
𝑛
, 𝑥
𝑛+1
)/𝑓(𝑥

𝑛+1
) =

1/√𝑛 = 𝑝
𝑛
, 𝑄(𝑛, 𝑥

𝑛
, Δ𝑥
𝑛
)/𝑓(𝑥

𝑛+1
) = √𝑛 + 2/𝑛 + 1 = 𝑞

𝑛
.

So conditions of Theorem 4 hold. By Theorem 4, (16) has a
positive monotone increasing solution {𝑥

𝑛
} = {√𝑛}.
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Theorem 6. If conditions (𝐻
1
)–(𝐻
3
) hold, and

lim inf
𝑛→∞

1

𝑎
𝑛

𝑛−1

∑

𝑠=𝑛0

(𝑝
𝑠
− 𝑞
𝑠
) > 0 (17)

holds for all 𝑛
0
. Then eventually positive solutions {𝑥

𝑛
} of (3)

are eventually monotone increasing or eventually monotone
decreasing and lim

𝑛→∞
𝑥
𝑛
= 0.

Proof. Suppose {𝑥
𝑛
} is a positive solution of (3), there exists

𝑁 > 𝑛
0
such that 𝑥

𝑛
> 0 for 𝑛 > 𝑁. Let Δ𝑥

𝑁
⩽ 0 and

lim inf
𝑛→∞

1/𝑎
𝑛
∑
𝑛−1

𝑠=𝑁
(𝑝
𝑠
− 𝑞
𝑠
) > 0, then there exists 𝛽 > 0

such that

1

𝑎
𝑛

𝑛−1

∑

𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩾ 𝛽 > 0, 𝑛 ⩾ 𝑁. (18)

From (7), we have

Δ𝑥
𝑛
⩽ −𝑓 (𝑥

𝑛
) ⋅

1

𝑎
𝑛

𝑛−1

∑

𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩽ −𝛽𝑓 (𝑥

𝑛
) < 0, 𝑛 > 𝑁.

(19)

If lim
𝑛→∞

𝑥
𝑛
̸= 0, then there exists 𝑐 > 0 such that 𝑥

𝑛
⩾ 𝑐 > 0.

There is no harm in assumption 𝑥
𝑛
⩾ 𝑐 for 𝑛 ⩾ 𝑁. Summing

(19), we obtain

𝑐 ⩽ 𝑥
𝑛+1

⩽ 𝑥
𝑁
− (𝑛 + 1 − 𝑁) 𝛽𝑓 (𝑐) → −∞ (𝑛 → ∞) ,

(20)

which is a contrary. The proof is complete.

Example 7. Consider the difference equation

Δ (𝑛
2

Δ𝑥
𝑛
) + 𝑥
𝑛+1
(𝑟 (𝑛, 𝑥

𝑛
) +

1

𝑛 + 2
) = 𝑥

𝑛+1
𝑟 (𝑛, 𝑥

𝑛
) ,

(21)

where 𝑟(𝑛, 𝑥
𝑛
) is any function of 𝑛 and𝑥

𝑛
. By taking𝑓(𝑥) = 𝑥,

we have

𝑃 (𝑛, 𝑥
𝑛
, 𝑥
𝑛+1
)

𝑓 (𝑥
𝑛+1
)

= 𝑟 (𝑛, 𝑥
𝑛
) +

1

𝑛 + 2
= 𝑝
𝑛
,

𝑄 (𝑛, 𝑥
𝑛
, Δ𝑥
𝑛
)

𝑓 (𝑥
𝑛+1
)

= 𝑟 (𝑛, 𝑥
𝑛
) = 𝑞
𝑛
.

(22)

So conditions of Theorem 6 hold. By Theorem 6, (21) has a
monotone decreasing positive solution {𝑥

𝑛
} = {1/𝑛}.

Theorem 8. If conditions (𝐻
1
)–(𝐻
3
) hold and

(𝐻
7
) lim sup

𝑛→∞
∑
𝑛

𝑠=𝑘
1/𝑎
𝑠
∑
𝑠−1

𝑡=𝑛0

(𝑝
𝑡
− 𝑞
𝑡
) = +∞;

(𝐻
8
) for all 𝜀 > 0, ∫𝜀

0

𝑑𝑢/𝑓(𝑢) < +∞.

Then eventually positive solutions of (3) are eventually mono-
tone increasing.

Proof. Suppose 𝑥
𝑛
> 0 for 𝑛 > 𝑁 > 𝑛

0
, {𝑥
𝑛
} is a solution

of (3), and lim sup
𝑛→∞

∑
𝑛

𝑠=𝑘
1/𝑎
𝑠
∑
𝑠−1

𝑡=𝑁
(𝑝
𝑡
− 𝑞
𝑡
) = ∞. If the

result does not hold, without any loss of generality, assume
Δ𝑥
𝑁
⩽ 0. In view of (7), we see that

Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
⩽
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
⋅
1

𝑎
𝑛

−
1

𝑎
𝑛

𝑛−1

∑

𝑡=𝑁

(𝑝
𝑡
− 𝑞
𝑡
)

⩽ −
1

𝑎
𝑛

𝑛−1

∑

𝑡=𝑁

(𝑝
𝑡
− 𝑞
𝑡
) .

(23)

Summing (23) and using Lemma 1, we know

∫

𝑥𝑛+1

𝑥𝑘

𝑑𝑢

𝑓 (𝑢)
⩽

𝑛

∑

𝑠=𝑘

Δ𝑥
𝑠

𝑓 (𝑥
𝑠
)
⩽ −

𝑛

∑

𝑠=𝑘

1

𝑎
𝑠

𝑠−1

∑

𝑡=𝑁

(𝑝
𝑡
− 𝑞
𝑡
) . (24)

This is a contradiction. The proof is complete.

Remark 9. In Theorems 2 and 4, condition (𝐻
4
) is essential;

that is, the series with positive terms ∑∞
𝑛=𝑛0

1/𝑎
𝑛
is divergent,

but it is not required inTheorems 6 and 8.

Remark 10. The eventually positive solutions in Theorems 4
and 8 are increasing it is not necessarily so in Theorem 6.

Next, we will derive several nonexistence criteria for
eventually positive monotone solutions of (3).

Theorem 11. If conditions (𝐻
1
)–(𝐻
3
) hold and

lim sup
𝑛→∞

𝑛

∑

𝑘=1

(𝑝
𝑘
− 𝑞
𝑘
) = +∞. (25)

Then, (3) cannot have any eventually positive monotone
increasing solutions.

Proof of Theorem 11 is obvious. If 𝑥
𝑛
> 0 is an eventually

positive increasing solution, by means of conditions, (7) is a
contrary.

Theorem 12. If conditions (𝐻
1
)–(𝐻
3
) hold, and there is a

nonnegative and nondegenerate sequence {𝜑
𝑛
} such that

lim sup
𝑛→∞

∑
𝑛

𝑘=𝑛0

𝜑
𝑘+1
/𝑎
𝑘
∑
𝑘−1

𝑠=𝑛0

(𝑝
𝑠
− 𝑞
𝑠
)

∑
𝑛

𝑘=𝑛0

𝜑
𝑘+1
/𝑎
𝑘

= ∞ (26)

holds for all 𝑛
0
. Then, (3) cannot have any eventually positive

nondecreasing solutions.

Proof. Suppose that {𝑥
𝑛
} is a positive solution of (3), there

exists 𝑁 > 𝑛
0
such that 𝑥

𝑛
> 0 and Δ𝑥

𝑛
⩾ 0 for 𝑛 > 𝑁.

Multiplying (7) by 𝜑
𝑛+1
/𝑎
𝑛
, we have

𝜑
𝑛+1
Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
+
𝜑
𝑛+1

𝑎
𝑛

𝑛−1

∑

𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩽

𝜑
𝑛+1

𝑎
𝑛

⋅
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
. (27)

So we obtain
𝑛

∑

𝑘=𝑁

𝜑
𝑘+1

𝑎
𝑘

𝑘−1

∑

𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩽

𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)

𝑛

∑

𝑘=𝑁

𝜑
𝑘+1

𝑎
𝑘

. (28)

This is contrary to our condition. The proof is complete.
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Theorem 13. If (𝐻
1
) and (𝐻

3
) hold, {𝑎

𝑛
} is a nondecreasing

sequence, 𝑓(𝑥) is a nondecreasing function, and there is a
nonnegative sequence {𝜑

𝑛
}, where {Δ𝜑

𝑛
} is bounded, and

(𝐻
9
) lim
𝑛→∞

∑
𝑛−1

𝑠=𝑛0

𝜑
𝑠+1
(𝑝
𝑠
− 𝑞
𝑠
)/𝑎
𝑠+1

= +∞ for all 𝑛
0
;

(𝐻
10
) 0 < ∫

+∞

𝜀

𝑑𝑢/𝑓(𝑢) < +∞, 𝜀 > 0.

Then, (3) cannot have any eventually positive monotone
increasing solutions.

Proof. Suppose that {𝑥
𝑛
} is a solution of (3), and there exists

𝑁 > 𝑛
0
such that 𝑥

𝑛
> 0 and Δ𝑥

𝑛
> 0 for 𝑛 > 𝑁. Multiplying

(3) by 𝜑
𝑛+1
/𝑎
𝑛+1
𝑓(𝑥
𝑛+1
) and summing from𝑁 to 𝑛 − 1 again,

we have
𝑛−1

∑

𝑠=𝑁

𝜑
𝑠+1

𝑎
𝑠+1
𝑓 (𝑥
𝑠+1
)
Δ (𝑎
𝑠
Δ𝑥
𝑠
) ⩽

𝑛−1

∑

𝑠=𝑁

𝜑
𝑠+1

𝑎
𝑠+1

(𝑞
𝑠
− 𝑝
𝑠
) . (29)

Namely,

𝜑
𝑛
Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
−
𝜑
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
−

𝑛−1

∑

𝑠=𝑁

𝑎
𝑠
Δ𝑥
𝑠
Δ(

𝜑
𝑠

𝑎
𝑠
𝑓 (𝑥
𝑠
)
)

⩽

𝑛−1

∑

𝑠=𝑁

𝜑
𝑠+1

𝑎
𝑠+1

(𝑞
𝑠
− 𝑝
𝑠
) .

(30)

As {𝑎
𝑛
} is a nondecreasing sequence, we get

Δ(
𝜑
𝑠

𝑎
𝑠
𝑓 (𝑥
𝑠
)
) =

𝜑
𝑠+1

𝑎
𝑠+1
𝑓 (𝑥
𝑠+1
)
−

𝜑
𝑠

𝑎
𝑠
𝑓 (𝑥
𝑠
)
⩽

Δ𝜑
𝑠

𝑎
𝑠+1
𝑓 (𝑥
𝑠+1
)
.

(31)

Thus

𝑎
𝑠
Δ𝑥
𝑠
⋅ Δ(

𝜑
𝑠

𝑎
𝑠
𝑓 (𝑥
𝑠
)
) ⩽

Δ𝑥
𝑠
Δ𝜑
𝑠

𝑓 (𝑥
𝑠+1
)
. (32)

From (30), we obtain

𝜑
𝑛
Δ𝑥
𝑛

𝑓 (𝑥
𝑛
)
−
𝜑
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁
)
+

𝑛−1

∑

𝑠=𝑁

𝜑
𝑠+1

𝑎
𝑠+1

(𝑝
𝑠
− 𝑞
𝑠
) ⩽

𝑛−1

∑

𝑠=𝑁

Δ𝑥
𝑠
Δ𝜑
𝑠

𝑓 (𝑥
𝑠+1
)
,

(33)

using Lemma 1 and conditions, we have
𝑛−1

∑

𝑠=𝑁

Δ𝑥
𝑠
Δ𝜑
𝑠

𝑓 (𝑥
𝑠+1
)
⩽ 𝑀

𝑛−1

∑

𝑠=𝑁

Δ𝑥
𝑠

𝑓 (𝑥
𝑠+1
)
⩽ 𝑀∫

+∞

𝑥𝑁

𝑑𝑢

𝑓 (𝑢)
, 𝑀 > 0.

(34)

By letting 𝑛 → ∞, we see that the left-hand side of (33) is
bounded, this is contrary to our condition (𝐻

9
). The proof is

complete.

By means of proof of Theorem 13, we get

Corollary 14. If (𝐻
1
), (𝐻
3
), and (𝐻

9
) hold, {𝑎

𝑛
} is a non-

decreasing sequence, 𝑓(𝑥) is a nondecreasing function, and
there is a nonnegative sequence {𝜑

𝑛
}, {Δ𝜑

𝑛
} is bounded, and

0 < ∫
𝜀

0

𝑑𝑢/𝑓(𝑢) < +∞ for 𝜀 > 0. Then, (3) cannot have any
eventually positive nondecreasing bounded solutions.

Corollary 15. Suppose (𝐻
1
), (𝐻
3
), and (𝐻

9
) hold, {𝑎

𝑛
} is

a nondecreasing sequence, 𝑓(𝑥) is a nondecreasing function,
and there is a nonnegative nonincreasing sequence {𝜑

𝑛
}. Then,

(3) cannot have any eventually positive monotone increasing
solutions.

Theorem 16. Suppose (𝐻
1
), (𝐻
3
), and (𝐻

5
) hold, 𝑓(𝑥) is a

nondecreasing function, and

(𝐻
11
) lim sup

𝑛→∞
∑
𝑛

𝑘=𝑛0

1/𝑎
𝑘
∑
∞

𝑠=𝑘
(𝑝
𝑠
−𝑞
𝑠
) = +∞ for all 𝑛

0
;

(𝐻
12
) 0 < ∫

+∞

𝜀

𝑑𝑢/𝑓(𝑢) < +∞, 𝜀 > 0.

Then, (3) cannot have any eventually positive nondecreasing
solutions.

Proof. Assume to the contrary that there exists 𝑁 > 𝑛
0
such

that 𝑥
𝑛
> 0 and Δ𝑥

𝑛
> 0 for 𝑛 > 𝑁. {𝑥

𝑛
} is a solution of (3).

By means of (3) and (𝐻
3
), we get

Δ (𝑎
𝑛
Δ𝑥
𝑛
)

𝑓 (𝑥
𝑛+1
)
⩽ (𝑞
𝑛
− 𝑝
𝑛
) , (35)

by summing (35) from𝑁 to 𝑛 − 1, thus

𝑎
𝑛
Δ𝑥
𝑛

𝑓 (𝑥
𝑛+1
)
−
𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁+1

)
−

𝑛−1

∑

𝑠=𝑁

𝑎
𝑠+1
Δ𝑥
𝑠+1
Δ(

1

𝑓 (𝑥
𝑠+1
)
)

⩽

𝑛−1

∑

𝑠=𝑁

(𝑞
𝑠
− 𝑝
𝑠
) .

(36)

As 𝑓(𝑥) is a nondecreasing function, we know
Δ𝑥
𝑠+1
Δ(1/𝑓(𝑥

𝑠+1
)) ⩽ 0, so
∞

∑

𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩽

𝑎
𝑁
Δ𝑥
𝑁

𝑓 (𝑥
𝑁+1

)
. (37)

In view of Lemma 1, we see that
𝑛

∑

𝑁=𝑇

1

𝑎
𝑁

∞

∑

𝑠=𝑁

(𝑝
𝑠
− 𝑞
𝑠
) ⩽

𝑛

∑

𝑁=𝑇

Δ𝑥
𝑁

𝑓 (𝑥
𝑁+1

)
⩽ ∫

𝑥𝑛+1

𝑥𝑇

𝑑𝑢

𝑓 (𝑢)
. (38)

This contradiction establishes our assertion.

Bymeans of proof ofTheorem 16, we obtain the following.

Corollary 17. Suppose (𝐻
1
), (𝐻
3
), (𝐻
5
), and (𝐻

11
) hold,

𝑓(𝑥) is a nondecreasing function. Then (3) cannot have any
eventually positive nondecreasing bounded solutions.
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