
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2013, Article ID 657465, 12 pages
http://dx.doi.org/10.1155/2013/657465

Research Article
Modeling and Optimization of Stochastic Joint Replenishment
and Delivery Scheduling Problem with Uncertain Costs

Lin Wang,1 Hui Qu,1 Yanhui Li,2 and Jing He1

1 School of Management, Huazhong University of Science and Technology, Wuhan 430074, China
2 School of Information Management, Central China University, Wuhan 430079, China

Correspondence should be addressed to Yanhui Li; yhlee@mail.ccnu.edu.cn

Received 26 March 2013; Accepted 16 July 2013

Academic Editor: Mustapha Ait Rami

Copyright © 2013 Lin Wang et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The stochastic joint replenishment and delivery scheduling (JRD) problem is a key issue in supply chainmanagement and is amajor
concern for companies. So far, all of the work on stochastic JRDs is under explicit environment. However, the decisionmakers often
have to face vague operational conditions.We develop a practical JRDmodel with stochastic demand under fuzzy backlogging cost,
fuzzy minor ordering cost, and fuzzy inventory holding cost. The problem is to determine procedures for inventory management
and vehicle routing simultaneously so that the warehouse may satisfy demand at a minimum long-run average cost. Subsequently,
the fuzzy total cost is defuzzified by the gradedmean integration representation and centroid approaches to rank fuzzy numbers. To
find optimal coordinated decisions, a modified adaptive differential evolution algorithm (MADE) is utilized to find the minimum
long-run average total cost. Results of numerical examples indicate that the proposed JRD model can be used to simulate fuzzy
environment efficiently, and the MADE outperforms genetic algorithm with a lower total cost and higher convergence rate. The
proposed methods can be applied to many industries and can help obtaining optimal decisions under uncertain environment.

1. Introduction

The joint replenishment problem (JRP) has been heavily
researched since the early work of Shu [1]. The JRP means to
group items into the same order from a supplier to achieve the
purpose of sharing the main preparation costs and saving the
procurement costs (Goyal [2]). The existing research of JRPs
can be classified into two categories: (1) the classic JRPs under
constant demand, (2) JRPs under stochastic or dynamic
demand. Corresponding review is available in Khouja and
Goyal [3] and Robinson et al. [4].

Supply chain management has received much attention
and global sourcing has been widespread in recent years.
Since cost savings can be achieved by using joint replenish-
ment policy, managers have realized that jointly considering
JRP and delivery scheduling (JRD) can obtain a scale effect
of replenishment and transportation simultaneously, thus
further reducing total cost (Qu et al. [5], Wang et al. [6]).
Unfortunately, the literature of JRD is limited and most

of scholars studied JRDs with deterministic demand. Sind-
huchao et al. [7] developed the inventory and transportation
policy for the central warehouse and decentralized suppliers.
They considered the transportation capacity and transporta-
tion frequency constraints. Chan et al. [8] discussed delivery
scheduling after the JRP has been solved and, respectively,
designed four different objectives. Cha et al. [9] developed
a joint replenishment and transportation model in a one-
warehouse, n-retailer system based on improved well-known
heuristic named RAND and Genetic Algorithm (GA). They
also extended their model with constraints and showed the
flexibility of GA. Moon et al. [10] proposed two algorithms
to determine the joint replenishment and delivery policies
from the perspective of a third party warehouse. Unlike the
studies above that consider deterministic demand, Qu et al.
[5] discussed amultiitem JRDwithmodified periodic-review
policy under stochastic demand. They considered nonlinear
transportation cost and proposed an efficient heuristic algo-
rithm to solve the problem. However, all the existing JRD
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models mentioned above assume explicit vital factors, which
is too harsh in practice.

In reality, managers often have to make decisions under
imprecise operational conditions (Zeng et al. [11]). Uncertain-
ties have been restrained in a variety of ways and fuzzy set
theory has a long history for managing inventories. Chen and
Chang [12] proposed a fuzzy economic production quantity
model with defective productions that cannot be repaired.
Wang et al. [13] studied continuous review inventory models
inwhich a fraction of demand is backordered and the remain-
ing fraction is lost during the stock-out period under fuzzy
demands.Dey andChakraborty [14] discussed a single period
inventory model under the mixed fuzzy random environ-
ment and provided a methodology to handle the model. On
the other hand, defuzzification has been a favorite approach
in many inventory studies for its simplicity. Defuzzification
can easily transfer fuzziness to be explicit without complex
analysis (Lin [15]). So, we will also utilize two defuzzification
approaches to handle the fuzziness. However, to the best of
our knowledge, only a few papers discussed JRD under fuzzy
environment (Wang et al. [16]). However, they assume that
demand rates are known and constant. It is too ideal and
results in the relatively low practical value of the proposed
model.

Moreover, it is very difficult to find optimal solutions for
the defuzzified model effectively. The JRP has been proven
to be an NP-hard problem (Arkin et al., [17]). While optimal
solutions are very hard to be obtained, many acceptable solu-
tions are designed in practice. Current approaches for solving
JRPs include an iterative algorithm (Goyal [18]), power-of-
two (PoT) policy (Lee and Yao [19]), RAND algorithm (Kaspi
and Rosenblatt [20]), evolutionary algorithm (Olsen [21]),
branch-and-bound (Robinson and Gao [22]), and simulated
annealing metaheuristic (Robinson et al. [23]). For the JRD
model, there are more decision variables which will influence
each other. Unfortunately, defuzzification also increases the
complexity of the problem further. It is more difficult to
solve the fuzzy JRD model in generally acceptable time
and CPU memory requirements. Several heuristics may give
acceptable solutions when the scale of optimization is small.
However, it is not easy to find a proper heuristic with a robust
performance.

On the other hand, metaheuristics have grown quickly in
order to attain better solutions. Among these algorithms, the
evolutionary algorithms (EAs) and especially genetic algo-
rithm (GA) have been proved to be effective algorithms for
the JRD. For example, Cha et al. [9] designed two heuristics
and a hybrid GA. Results showed the GA outperformed
the best solution of each problem in their experiment (the
maximum error found is 0.3660% and the average error
found is only 0.0268%). However, the GA displays inherent
difficulties in performing local search for some numerical
applications and the optimal solution cannot be obtained. So,
it is necessary to find a novel algorithm to deal with the fuzzy
JRD more effectively.

The aim of this paper is to model and optimize the practi-
cal JRD policy with stochastic demands under uncertainty.
This topic is interesting because of the widely adoption of
the JRD policy in many industries and the operability and

rationality of the method to handle uncertain costs. This
study makes the work of Qu et al. [5] and Wang et al. [6]
becomemore practical by considering the fuzziness of minor
ordering cost, holding cost, and backlogging cost. This study
also extends the work of Wang et al. [16] which studied
fuzzy JRD under determined environment.The introduction
of stochastic demands in the JRD results in rather complex
mathematical properties of the proposal model. So, a new
approach should be designed to solve this NP-hard problem
better. Therefore, we propose a simple and effective modified
adaptive differential evolution algorithm (MADE) for the
fuzzy JRD model firstly. Results of an example show that an
MADE performs better than GA which is also regarded as
an effective algorithm for this problem. Then, the MADE is
utilized to solve the fuzzy JRD and the results of fuzzy JRD
are compared with the JRD. Numerical examples show that
the ranges of fuzzy parameters will influence the decision of
this problem.

The rest of this paper is organized as follows. In Section 2,
we propose a fuzzy JRD model and give the results by two
defuzzification approaches. Section 3 proposes an MADE to
solve the defuzzified JRD model. Section 4 presents numer-
ical studies and analysis. Section 5 contains the conclusion
and provides directions for future research. Preliminaries are
presented in the appendix.

2. Fuzzy JRD Model and Analysis

2.1. Stochastic JRD Model with Periodic Review Policy
under Crisp

2.1.1. Problem Description and Notations. We consider the
similar situation of a central warehouse (where all stocks are
kept) and several geographically dispersed suppliers asserted
by Qu et al. [5] and Wang et al. [6]. The central warehouse
replenishes its stock by dispatching vehicles to collect the
goods from vendors, on routes which begin at the warehouse
and end there. When all goods are jointly ordered, one
main difficulty faced by the central warehouse is to decide
the delivery scheduling in each basic replenishment cycle
so that the long-run distribution cost is as low as possible.
Blumenfeld et al. [24] described a similar supply network
used by General Motors (GMs). Similar issues are also
frequently faced by an integrated wholesaler/retailer in the
supply of grocery products. The notions used are as follows:

𝑖: the index of items (𝑖 = 1, 2, . . . , 𝑛);
𝑝: the index of suppliers (𝑝 = 1, 2, . . . , 𝑃);
𝐷
𝑖
: annual demand of item 𝐼;

𝑆: major ordering cost associated with each order;
𝑠
𝑖
: minor ordering cost of item 𝐼;

ℎ
𝑖
: annual inventory holding cost of item 𝐼;

𝐿
𝑖
: the lead time of item 𝑖;

𝑅
𝑖
: the maximal inventory level of item 𝑖 in its

replenishment interval;
𝑧
𝑖
: the tercile of the item 𝑖 on standard normal

distribution (decision variable);
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𝛿
𝑖
: the variance of demand fluctuations per unit time

of item 𝑖;
𝑊: the basic interval after all items replenished
jointly, means the lowest common multiple of
(𝑘1, 𝑘2, . . . , 𝑘

𝑛
);

𝜏
𝑖
: the shortage cost of item 𝑖;

𝑐: the unit distance cost of distribution;
𝐹
𝑝
: the stopover cost in supplier 𝑝;

𝑗: the index of replenishment period (𝑗 = 1, 2, . . . ,𝑊);
𝑑(𝑗): the shortest distribution path in the 𝑗th replen-
ishment period;
TC: the total annual cost;
𝑇: the basic replenishment cycle per year (decision
variable);
𝑘
𝑖
: the order interval of the item 𝑖 (decision variable).

Sometimes, the stock-out factor 𝑧
𝑖
is predetermined by

decisionmaker.However, in order to obtain the optimal value
of 𝑧

𝑖
or service level, Eynan and Kropp [25] regarded 𝑧

𝑖
as

a decision variable, which is the same with the study of Qu
et al. [5]. In this study, we also regard 𝑧

𝑖
as a decision variable.

2.1.2. Formulation of JRD. The total cost consists of the fol-
lowing parts: (1) the inventory cost, which includes ordering,
holding, and backlog cost; (2) the transportation cost, which
includes dispatching and stopover and routing costs. The
details of different costs will be discussed as follows.

(1) Inventory Cost. The ordering cost consists of the major
ordering cost which is independent of the number of different
items in the order and theminor ordering costwhich depends
on the number of different items in the order. Hence, the
annual ordering cost is

𝐶
𝑂

=
𝑆

𝑇
+

𝑛

∑

𝑖=1

𝑠
𝑖

𝑘
𝑖
𝑇

. (1)

We suppose the demand of each item follows the normal
distribution and the lead time is 𝐿

𝑖
. As described by Eynan

and Kropp [25] and Qu et al. [5], when decision variables 𝑘
𝑖

and 𝑇 are determined, the demand of item 𝑖 will be normally
distributed in each replenishment interval (𝑘

𝑖
𝑇 + 𝐿

𝑖
), and

the expectation 𝐸 is equal to 𝐷
𝑖
(𝑘
𝑖
𝑇 + 𝐿

𝑖
); the variance

Var is equal to 𝛿
𝑖
(𝑘
𝑖
𝑇 + 𝐿

𝑖
). Take into the lead time, the

maximum inventory 𝑅
𝑖
in each replenishment interval of

item 𝑖 includes the expected demand during the time and the
safety stock expressed as a multiple of the standard deviation
of demand forecast errors during period (𝑘

𝑖
𝑇 + 𝐿

𝑖
), that is

to say 𝑅
𝑖
= 𝐷

𝑖
(𝑘
𝑖
𝑇 + 𝐿

𝑖
) + 𝑧

𝑖
√𝛿

𝑖
(𝑘
𝑖
𝑇 + 𝐿

𝑖
). The average net

inventory level of item 𝑖 during the interval is approximately
𝑅
𝑖
− 𝐷

𝑖
(𝐿
𝑖
+ 𝑘

𝑖
𝑇/2) = (1/2)𝐷

𝑖
𝑘
𝑖
𝑇 + 𝑧

𝑖
√𝛿

𝑖
(𝐿 + 𝑘

𝑖
𝑇); thus, the

average inventory holding cost for periodic policy is

𝐶
𝐻

=

𝑛

∑

𝑖=1

ℎ
𝑖
(
1

2
𝐷
𝑖
𝑘
𝑖
𝑇 + 𝑧

𝑖
√𝛿

𝑖
(𝑘
𝑖
𝑇 + 𝐿

𝑖
)) . (2)

A stockout occurs following an order placed at time 𝑡

if the cumulative demand 𝑥
𝑖
(between 𝑡 and 𝑡 + 𝐿

𝑖
+ 𝑘

𝑖
𝑇)

exceeds 𝑅
𝑖
. Then, there will be a penalty cost 𝜏

𝑖
for each unit

backlogged. If demand has a density function 𝑓 (𝑥
𝑖
, 𝐿

𝑖
+𝑘

𝑖
𝑇)

over the interval of length 𝐿
𝑖
+𝑘

𝑖
𝑇, themean backlogging cost

in the long run is

𝐶
𝑆
=

𝑛

∑

𝑖=1

(
𝜏
𝑖

𝑘
𝑖
𝑇

)(∫

∞

𝑅𝑖

(𝑥
𝑖
− 𝑅

𝑖
) 𝑓 (𝑥

𝑖
, 𝑘
𝑖
𝑇 + 𝐿

𝑖
) 𝑑𝑥

𝑖
) . (3)

(2) Transportation Cost. Define 𝑊 as the lowest common
multiple of 𝑘

𝑖
. All items will repeat the same replenishment

and distribution policy in every other regeneration cycle
𝑊𝑇. So we only need to consider the replenishment and
distribution policy in a regeneration cycle 𝑊𝑇.

For each replenishment period 𝑗, the transportation cost
includes the costs of stopover (at those plants visited) plus
the travelling costs. Over a regeneration cycle, the average
transportation cost is

𝐶
𝑇

=

∑
𝑊

𝑗=1
(∑

𝑃

𝑝=1
𝑥
𝑗𝑝

𝐹
𝑝

+ 𝑐𝑑 (𝑗))

𝑊𝑇
, (4)

where

𝑥
𝑗𝑝

=

{{

{{

{

1, if the items are kept in the supplier 𝑝

in the 𝑗th replenishment period
0, otherwise.

(5)

(3) The Objective.Then, the objective is to minimize the total
long-run expected cost (TC);

Min𝑇𝐶 = 𝐶
𝑂

+ 𝐶
𝐻

+ 𝐶
𝑆
+ 𝐶

𝑇

=
𝑆

𝑇
+

𝑛

∑

𝑖=1

𝑠
𝑖

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

ℎ
𝑖
(
1

2
𝐷
𝑖
𝑘
𝑖
𝑇 + 𝑧

𝑖
√𝛿

𝑖
(𝑘
𝑖
𝑇 + 𝐿

𝑖
))

+

𝑛

∑

𝑖=1

𝜏
𝑖

𝑘
𝑖
𝑇

(∫

∞

𝑅𝑖

(𝑥
𝑖
− 𝑅

𝑖
) 𝑓 (𝑥

𝑖
, 𝑘
𝑖
𝑇 + 𝐿

𝑖
) 𝑑𝑥

𝑖
)

+

∑
𝑊

𝑗=1
(∑

𝑃

𝑝=1
𝑥
𝑗𝑝

𝐹
𝑝

+ 𝑐𝑑 (𝑗))

𝑊𝑇
,

(6)

where

𝑅
𝑖
= 𝐷

𝑖
(𝑘
𝑖
𝑇 + 𝐿

𝑖
) + 𝑧

𝑖
√𝛿

𝑖
(𝑘
𝑖
𝑇 + 𝐿

𝑖
),

𝑓 (𝑥
𝑖
, 𝑘
𝑖
𝑇 + 𝐿

𝑖
) =

1

√2𝜋 ⋅ 𝛿
𝑖
(𝑘
𝑖
𝑇 + 𝐿

𝑖
)

⋅ 𝑒
−[𝑥𝑖−𝐷𝑖(𝑘𝑖𝑇+𝐿 𝑖)]

2
/2𝛿𝑖(𝑘𝑖𝑇+𝐿 𝑖).

(7)
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2.2. Fuzzy JRD Involving Fuzzy Minor Ordering Cost, Holding
Cost, and Backlogging Cost

2.2.1. Formulation. As reported in Vujošević et al. [26], an
interesting real problem is when human originated data like
holding cost and ordering cost are not precisely known but
subjectively estimated or linguistically expressed because of
the lack of the accurate history data. Suppose that the minor
ordering cost 𝑠

𝑖
and holding cost ℎ

𝑖
are not precisely known.

For example, let the linguistic estimates of 𝑠
𝑖
and ℎ

𝑖
be as

follows.
“The minor ordering cost is about 8 dollars per order, but

not less than 6 dollars per order nor more than 15 dollars per
order.”

“The holding cost is between 15% and 20% of the average
inventory value, but not less than 12% nor more than 25%.”

These imprecise definements in linguistics are always
described by fuzzy numbers. So, fuzzy variables are also
utilized to handle the JRD problem under uncertainty. Two
popular kinds of fuzzy numbers characterized by triangular
and trapezoidal membership functions (MFs) are presented
in the appendix. They were widely used to solve uncertainty
problem because of their intuitive appeal and their perceived
computational efficacy (Pramanik and Biswas [27]; Giachetti
and Young [28]). In addition, trapezoidal fuzzy numbers can
be obtained by extending triangular fuzzy numbers (TFNs).
That is to say, TFNs can be considered as a particular kind
of trapezoidal fuzzy numbers (Vujošević et al. [26]; Giachetti
and Young [28]). Thus, we treat the minor ordering cost 𝑠

𝑖
,

holding cost ℎ
𝑖
, and backlogging cost 𝜏

𝑖
as trapezoidal fuzzy

numbers in this study; that is,

𝑠
𝑖
= [𝑠

𝑖1
, 𝑠
𝑖2
, 𝑠
𝑖3
, 𝑠
𝑖4
] ,

ℎ̃
𝑖
= [ℎ

𝑖1
, ℎ
𝑖2
, ℎ
𝑖3
, ℎ
𝑖4
] ,

𝜏
𝑖
= [𝜏

𝑖1
, 𝜏
𝑖2
, 𝜏
𝑖3
, 𝜏
𝑖4
] .

(8)

According to Definition A.4 in the appendix, the MFs of
𝑠
𝑖
, ℎ̃

𝑖
, and 𝜏

𝑖
are as follows:

𝜇
𝑠𝑖
(𝑥) =

{{{{{{{

{{{{{{{

{

𝑥 − 𝑠
𝑖1

𝑠
𝑖2

− 𝑠
𝑖1

, 𝑠
𝑖1

< 𝑥 ≤ 𝑠
𝑖2

1, 𝑠
𝑖2

< 𝑥 ≤ 𝑠
𝑖3

𝑠
𝑖4

− 𝑥

𝑠
𝑖4

− 𝑠
𝑖3

, 𝑠
𝑖3

< 𝑥 ≤ 𝑠
𝑖4

0, 𝑥 ≤ 𝑠
𝑖1
or 𝑥 > 𝑠

𝑖4

𝜇
ℎ̃𝑖

(𝑥) =

{{{{{{{{

{{{{{{{{

{

𝑥 − ℎ
𝑖1

ℎ
𝑖2

− ℎ
𝑖1

, ℎ
𝑖1

< 𝑥 ≤ ℎ
𝑖2

1, ℎ
𝑖2

< 𝑥 ≤ ℎ
𝑖3

ℎ
𝑖4

− 𝑥

ℎ
𝑖4

− ℎ
𝑖3

, ℎ
𝑖3

< 𝑥 ≤ ℎ
𝑖4

0, 𝑥 ≤ ℎ
𝑖1
or 𝑥 > ℎ

𝑖4

𝜇
𝜏𝑖

(𝑥) =

{{{{{{{

{{{{{{{

{

𝑥 − 𝜏
𝑖1

𝜏
𝑖2

− 𝜏
𝑖1

, 𝜏
𝑖1

< 𝑥 ≤ 𝜏
𝑖2

1, 𝜏
𝑖2

< 𝑥 ≤ 𝜏
𝑖3

𝜏
𝑖4

− 𝑥

𝜏
𝑖4

− 𝜏
𝑖3

, 𝜏
𝑖3

< 𝑥 ≤ 𝜏
𝑖4

0, 𝑥 ≤ 𝜏
𝑖1
or 𝑥 > 𝜏

𝑖4
.

(9)

Take each TFN into (6) to get the fuzzy number of TC.
For the simplify, we denote that

𝐴
𝑖
= (

1

2
𝐷
𝑖
𝑘
𝑖
𝑇 + 𝑧

𝑖
√𝛿

𝑖
(𝑘
𝑖
𝑇 + 𝐿

𝑖
) ) ;

𝐵
𝑖
=

1

𝑘
𝑖
𝑇

∫

∞

𝑅𝑖

(𝑥
𝑖
− 𝑅

𝑖
) 𝑓 (𝑥

𝑖
, 𝑘
𝑖
𝑇 + 𝐿

𝑖
) 𝑑𝑥

𝑖
;

𝐶 =
𝑆

𝑇
+

∑
𝑊

𝑗=1
(∑

𝑃

𝑝=1
𝑥
𝑗𝑝

𝐹
𝑝

+ 𝑐𝑑 (𝑗))

𝑊𝑇
.

(10)

Hence,

𝑇𝐶 = 𝐶 +

𝑛

∑

𝑖=1

𝑠
𝑖

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

ℎ̃
𝑖
⋅ 𝐴

𝑖
+

𝑛

∑

𝑖=1

𝜏
𝑖
⋅ 𝐵

𝑖

= [𝐶 +

𝑛

∑

𝑖=1

𝑠
𝑖1

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

ℎ
𝑖1

⋅ 𝐴
𝑖
+

𝑛

∑

𝑖=1

𝜏
𝑖1

⋅ 𝐵
𝑖
,

𝐶 +

𝑛

∑

𝑖=1

𝑠
𝑖2

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

ℎ
𝑖2

⋅ 𝐴
𝑖
+

𝑛

∑

𝑖=1

𝜏
𝑖2

⋅ 𝐵
𝑖
,

𝐶 +

𝑛

∑

𝑖=1

𝑠
𝑖3

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

ℎ
𝑖3

⋅ 𝐴
𝑖
+

𝑛

∑

𝑖=1

𝜏
𝑖3

⋅ 𝐵
𝑖
,

𝐶 +

𝑛

∑

𝑖=1

𝑠
𝑖4

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

ℎ
𝑖4

⋅ 𝐴
𝑖
+

𝑛

∑

𝑖=1

𝜏
𝑖4

⋅ 𝐵
𝑖
]

= [𝑇𝐶
1
, 𝑇𝐶

2
, 𝑇𝐶

3
, 𝑇𝐶

4
] .

(11)

2.2.2. Defuzzified TC. Defuzzification has been a favorite
approach in many inventory studies for its simplicity.
Defuzzification can easily transfer fuzziness to be explicit
without complex analysis. In this study, two approaches will
be utilized to defuzzify the fuzzy total cost.

(1) Graded Mean Integration Representation (GMIR)
Approach. Chen and Hsieh [29] introduced the GMIR
method based on the integral value of the graded mean
h-level of the generalized fuzzy number for defuzzifying
a generalized fuzzy number. This method is reasonable
because it adopts a grade as the important degree of each
point of the support set of a fuzzy number for representing
the fuzzy number (G. C. Mahata and P. Mahata [30]). So, we
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also use the GMIR approach to defuzzify the fuzzy number.
If 𝐴 = [𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
], then the defuzzified function of 𝐴 is

𝑃 (𝐴) =

∫
1

0
ℎ [(1/2) (𝑎

1
+ 𝑎

4
+ (𝑎

2
− 𝑎

1
− 𝑎

4
+ 𝑎

3
) ℎ)] 𝑑ℎ

∫
1

0
ℎ𝑑ℎ

=
1

6
(𝑎
1
+ 2𝑎

2
+ 2𝑎

3
+ 𝑎

4
) ,

(12)

where ℎ is an arbitrary value in the interval of the member-
ship function. According to (12) and (11), we can obtain the
defuzzified total cost

𝑃 (𝑇𝐶) =
1

6
[𝑇𝐶

1
+ 2𝑇𝐶

2
+ 2𝑇𝐶

3
+ 𝑇𝐶

4
] . (13)

So, the simplified objective is

Min𝑃 (𝑇𝐶) =
1

6
[6𝐶 +

𝑛

∑

𝑖=1

𝑠
𝑖1

+ 2𝑠
𝑖2

+ 2𝑠
𝑖3

+ 𝑠
𝑖4

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

(ℎ
𝑖1

+ 2ℎ
𝑖2

+ 2ℎ
𝑖3

+ ℎ
𝑖4
) ⋅ 𝐴

𝑖

+

𝑛

∑

𝑖=1

(𝜏
𝑖1

+ 2𝜏
𝑖2

+ 2𝜏
𝑖3

+ 𝜏
𝑖4
) ⋅ 𝐵

𝑖
] .

(14)

(2) Centroid. Centroid is a widely used approach for ranking
fuzzy numbers by distance method based on calculating the
centroid point, where distance means from original point to
the centroid point (Wang et al. [31]). If 𝐴 = [𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
],

then the defuzzified function of 𝐴 is

𝐶 (𝐴) =
1

3
[𝑎
1
+ 𝑎

2
+ 𝑎

3
+ 𝑎

4

−
𝑎
4
𝑎
3
− 𝑎

1
𝑎
2

(𝑎
4
+ 𝑎

3
) − (𝑎

1
+ 𝑎

2
)
] .

(15)

Hence, the simplified objective is expressed as

Min𝐶 (𝑇𝐶) =
1

3
[𝑇𝐶

1
+ 𝑇𝐶

2
+ 𝑇𝐶

3
+ 𝑇𝐶

4

−
𝑇𝐶

4
𝑇𝐶

3
− 𝑇𝐶

1
𝑇𝐶

2

(𝑇𝐶
4
+ 𝑇𝐶

3
) − (𝑇𝐶

1
+ 𝑇𝐶

2
)
] .

(16)

3. MADE Algorithm for Fuzzy JRD Model

3.1. Rationales of Using Differential Evolution. Differential
evolution algorithm (DE) was proposed by Storn and Price
[32] for complex continuous nonlinear, nondifferentiable,
and multimodal optimization problem. This technique com-
bines simple arithmetic operators with the classical events of
crossover, mutation, and selection to evolve from a randomly
generated starting population to a final solution. Due to its
simple structure, easy implementation, quick convergence,

and robustness, DE has been turned out to be one of the best
evolution algorithms in a variety of fields (Wang et al. [33];
Wee et al. [34]; Zheng and Yamashiro [35]).

However, the mutation factor 𝐹 in a typical DE is a
constant, which is actually difficult to determine. The main
role of 𝐹 is to perturb the individual in order to avoid being
trapped in a local optimum. So, if 𝐹 is too small, the degree
of population diversity cannot reach a certain value and it is
easy to be premature. Vice versa, if 𝐹 is too large, the chance
to find optimal solution will decrease, and the effectiveness
of the algorithm will be very low in large decision space.
More description about the value of 𝐹 effects on evolution
algorithm can be found in Storn and Price [32] and Salman
et al. [36]. In this study, we use a modified adaptive DE
to improve the quality of solutions of the defuzzified JRD.
According to our rule, in the early stage of search, 𝐹 is large
enough to keep the population diversity and avoid premature.
Then, 𝐹 is decreased gradually, and in the latter stage 𝐹

is small enough to remain the excellent individual and to
increase the chance to converge to the optimal solution.

3.2. MADE-Based Procedures for Fuzzy JRD. The model
aforementioned in Section 2.2.2 can be decomposed into
a JRP and a transportation problem. We use MADE to
determine the optimal combination of 𝑘

𝑖
, 𝑧
𝑖
, and 𝑇, and then

we can obtain a satisfied solution of the annual total cost.The
detailed steps are as follows:

Step 1. Representation and initialization. Let𝑁
𝑃
represent the

population size of a target population, and let 𝑥
𝑡,𝐺

denote the
𝑡th target individual at iteration 𝐺.

Because 𝑘
𝑖
is an integer, we set the lower bound 𝑘

LB
𝑖

= 1,
which are clearly the lower bounds of item 𝑖. For the upper
bound 𝑘

UB
𝑖
, we use values of 100 to ensure that the optimal

solution will not escape according to the related experience
of Cha et al. [9]. According to the properties of the standard
normal distribution, we have 𝑃(𝑋 ≤ 𝑧

𝑖
) = 1 − 𝑃(𝑋 > 𝑧

𝑖
) =

0.995 when 𝑧
𝑖
= 2.575. So, the range of 𝑧

𝑖
is set as [𝑍LB,𝑍UB]

= [0, 4] which will cover more than 99.99% of the demand.
According to the related experience of Khouja and Goyal

[3] and Qu et al. [5], 𝑇 is ranged from 0 to 1. It is a fact that
the annual demand of each item 𝐷

𝑖
is larger than 600 in the

following examples; so it is reasonable to assume that at least
one item will be replenished per year when 𝑘

𝑖
is not less than

1. That is to say, 𝑇 should be less than 1.
By combining 𝑘

𝑖
, 𝑧

𝑖
, and 𝑇, we can obtain the 𝑡th

individual:

𝑥
𝑡,𝐺

= [𝑘
𝑖
, 𝑧
𝑖
, 𝑇] = (𝑘

1
, 𝑘
2
, 𝑘
3
, 𝑘
4
, 𝑧
1
, 𝑧
2
, 𝑧
3
, 𝑧
4
, 𝑇) . (17)

Then, create the initial population randomly.

Step 2. If the maximum number of iterations is reached, the
algorithm will be stopped and output the optimal solution;
otherwise, go to the next step.
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Step 3 (mutation). For each target individual 𝑥
𝑡,𝐺

(𝑖 =

1, 2, . . . , 𝑁
𝑃
), a mutant individual V

𝑡,𝐺+1
is generated accord-

ing to

V
𝑡,𝐺+1

= 𝑥
𝑟1,𝐺

+ 𝐹 ⋅ (𝑥
𝑟2,𝐺

− 𝑥
𝑟3,𝐺

) , 𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑡. (18)

With randomly chosen integer indexes 𝑟
1
, 𝑟
2
, 𝑟
3

∈

{1, 2, . . . , 𝑁
𝑃
}. Note that indexes have to be different from

each other and from the running index. 𝐹 is called the
mutation factor which controls the amplification of the
differential variations (𝑥

𝑟2
,
𝐺
, 𝑥
𝑟3

,
𝐺
) and 𝐹 can be obtained by

𝐹 = 𝐹min + (𝐹max − 𝐹min) ⋅ 𝑒
1−(Gen𝑀/(Gen𝑀−𝐺+1))

, (19)

where 𝐹min is the minimum of 𝐹, and 𝐹max is the maximum
of 𝐹. The way to confirm these parameters will be discussed
in Section 4.1.

Step 4 (crossover). The crossover operator implements a
discrete recombination of the trial individual V

𝑡,𝐺+1
and

the parent individual 𝑥
𝑡,𝐺

to produce offspring 𝑢
𝑡,𝐺+1

. The
crossover is implemented as follows:

𝑢
𝑡𝑙,𝐺+1

= {
V
𝑡𝑙,𝐺+1

if (rand (𝑙) ≤ CR) or 𝑙 = rnb (𝑡)

𝑥
𝑡𝑙,𝐺

otherwise

𝑙 = 1, 2, . . . , 𝐷,

(20)

where 𝑥
𝑡𝑙
,
𝐺
refers to the 𝑙th element of the individual 𝑥

𝑡,𝐺
.

𝑢
𝑡𝑙,𝐺+1

and V
𝑡𝑙,𝐺+1

are similarly defined. rand(𝑙) is the 𝑙th evalu-
ation of a uniform random number generator between [0, 1].
rnb (𝑡) is a randomly chosen index from 1, 2, . . . , 𝐷 which
ensures that 𝑢

𝑡,𝐺+1
gets at least one parameter from V

𝑡,𝐺+1
.

Otherwise, no new parent individual would be produced
and the population would not alter. CR is the crossover rate
between [0, 1] which must be determined by the user.

Step 5 (selection). The evaluation function of an offspring
is one-to-one competition in the MADE. It means that the
resulting trial individual will only replace the original if it has
a lower objective function value. Otherwise, the parent will
remain in the next generation. The rule is as follows:

𝑥
𝑡,𝐺+1

= {
𝑢
𝑡,𝐺+1

, if 𝑔 (𝑢
𝑡,𝐺+1

) ≥ 𝑔 (𝑥
𝑡,𝐺

)

𝑥
𝑡,𝐺

, if 𝑔 (𝑢
𝑡,𝐺+1

) < 𝑔 (𝑥
𝑡,𝐺

) ,
(21)

where 𝑔(𝑥) means (14) for the GMIR approach or (16) for
the centroid approach. This is the same for all variants of
the MADE. Then, the best individual of the next generation
will be at least as fit as the best individual of the current
generation.

Then, the procedure will return to Step 2 after setting𝐺 =

𝐺 + 1.

Step 6. Output the optimal total cost TC∗ and the cor-
responding replenishment cycle 𝑇

∗, the order interval
(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
), and the tercile (𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
).

The steps can be described by the flow chart as shown in
Figure 1.

Start

Output the results

Stop

MADE operations
No

Yes

G = G + 1

Selection: using (21) to choose
better individual to next generation

Crossover: the trail individual can
be produced by (20)

Mutation: the mutant individual can
be generated by (18)

Initialization: (ki, zi, T)

Given parameters:

G > GenM?

Np, Fmin , Fmax , CR, GenM

Figure 1: Flow chart of the MADE.

3.3. An Example of the Implementation of Operations of
MADE. In this section, a simple example of four-product
and three-supplier problem is presented in order to better
understand the implementation of MADE.

(1) Representation. The sequences of each individual 𝑡, that
is, 𝑥

𝑡,𝐺
= [𝑘

𝑖
, 𝑧
𝑖
, 𝑇], can be represented as

2 4 5 3 1.98 2.05 1.59 1.83 0.109.

(2) Mutation (when 𝐹 = 0.6). For the 𝑡th target vector,
randomly generate 3 numbers 𝑟

1
, 𝑟

2
, and 𝑟

3
, which are

different from each other and different from 𝑖.
Sequences of 𝑥

𝑟1
,
𝐺

3 1 1 2 2.09 1.49 1.08 2.39 0.098.

Sequences of 𝑥
𝑟2

,
𝐺

4 2 3 3 2.56 1.79 2.41 1.38 0.376.

Sequences of 𝑥
𝑟3

,
𝐺

2 1 3 2 0.68 1.09 1.89 1.76 0.289.

The mutant vector V
𝑡,𝐺+1

is created by (18):

4.2 1.6 1 2.6 3.22 1.91 1.39 2.16 0.1502.
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Table 1: The basic data under deterministic situation.

Item 1 Item 2 Item 3 Item 4
𝑠
𝑖

25 14 20 30
𝐷
𝑖

600 900 1200 1000
𝛿
𝑖

800 600 700 500
𝐿
𝑖

0.02 0.02 0.02 0.02
ℎ
𝑖

5.6 21 42 15
𝜏
𝑖

28 35 40 30

Table 2: The items supplied by suppliers.

Supplier 1 Supplier 2 Supplier 3
Item 1 1 0 0
Item 2 0 1 0
Item 3 0 0 1
Item 4 0 0 1
𝐹
𝑝

40 50 60

Table 3: The distance between the warehouse and suppliers.

Warehouse Supplier 1 Supplier 2 Supplier 3
Warehouse 0 11 9 7
Supplier 1 11 0 5 8
Supplier 2 9 5 0 10
Supplier 3 7 8 10 0

(3) Crossover (when 𝐶𝑅 = 0.3). For each dimension, the
randomly generated number rand (𝑗) is

0.25 0.76 0.18 0.39 0.29 0.48 0.21 0.39 0.47.

And rnb (𝑡) = 6 for this target vector. Therefore, the trial
vector 𝑢

𝑡,𝐺+1
is

4.2 4 1 3 3.22 1.91 1.39 1.83 0.109.

Since “4.2” is not an integer, we round it to the nearest
integer; that is, it will be changed to “4.” Meanwhile, “3.22”
exceeds the range of variety; it is substituted by a number
randomly generated from [0, 3]. After that, the sequences of
adjusted 𝑢

𝑡,𝐺+1
are:

4 4 1 3 1.87 1.91 1.39 1.83 0.109.

(4) Selection. Since 𝑔(𝑢
𝑡,𝐺+1

) = 25110, 𝑔(𝑥
𝑡,𝐺

) = 14103,
according to (21), the offspring which will remain to the next
generation is:

4 4 1 3 1.87 1.91 1.39 1.83 0.109

4. Numerical Examples and Analysis

In Section 4.1, we will test the performance of MADE with
results of GA which was tested to be one of the effective
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Figure 2: Convergence curve of MADE and GA.

algorithms by a stochastic JRD.Then, theMADEwill be used
to handle the fuzzy JRD.

4.1. An Example of Stochastic JRD

(1) Basic Data. The data of the example is the same as Qu
et al. [5].We suppose that the central warehouse is in charge of
the replenishment of 4 items and the inventory management.
There are 3 suppliers and the third supplier produces the third
and fourth items. The major ordering cost 𝑆 is 100, the unit
distance cost 𝑐 is 0.5, and other data are shown in Tables 1, 2,
and 3, respectively.

(2) Parameters Setting and Results. Storn and Price [32] sug-
gested that 𝐹 = 0.5, CR = 0.1 is usually a good initial choice
and 𝑁

𝑃
is appropriate for ten times the dimensionality of

the problem. Some scholars also provided useful suggestions.
According to the recommendation of Neri and Tirronen [37]
and Liu and Lampinen [38], we set the relevant parameters
of the MADE as follows: 𝑁

𝑃
= 100, 𝐹min = 0.2, 𝐹max = 1.2,

CR = 0.1, and Gen 𝑀 = 150. Table 4 shows the result of
Qu et al. [5] in comparison to our result solved by MADE
and GA. We programmed the approach of [5], MADE, and
GA with the language of Matlab 6.5. Comparison of the CPU
time in a computer (memory: 4G; CPU: Intel Core i5-2450M
2.50 GHz) by running the example 50 times is also shown in
Table 4.

Both GA and MADE are intelligence EAs. For a per-
spicuous and direct understanding, we give two convergence
curves as shown in Figure 2.

Results listed in Table 4 indicate that the total cost gained
byMADE is the smallest and the total cost gotten byGA is the
worst.We can also conclude the following: (1) the holding cost
of item 1 is 5.6 which is the lowest among all items so that the
solved optimal value of 𝑘 is 2 and the replenishment cycle is
the longest; (2) the demand, inventory cost, and shortage cost
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Table 4: Results comparison of three approaches.

𝑘
𝑖

𝑧
𝑖

𝑇 TC, min Convergence rate CPU time (seconds)
Approach of [5] 3, 1, 1, 1 1.7035, 1.7125, 1.4060, 1.7907 0.0759 9021.2 / /
MADE 2, 1, 1, 1 1.8537, 1.6576, 1.3765, 1.7441 0.0811 9005.9 100% 4.3734
GA 2, 1, 1, 1 2.2442, 2.1071, 1.9193, 2.2863 0.0775 9213.2 66% 4.4655

of item 3 are the highest among all items so that we should
replenish it in every replenishment cycle.

Obviously, MADE is better than GA and the algorithm of
Qu et al. [5]. So, the MADE will be used to solve the fuzzy
JRD.

4.2. Three Scenarios of Fuzzy JRDModel and Analysis. In this
section, we will design three different scenarios to compare
the results of JRD and fuzzy JRD.

4.2.1. Scenarios 1. We set the range of the fuzzy set to [d
1
X,

d
2
X, d

3
X, d

4
X] = [0.7 X, 0.95 X, 1.05 X, 1.1 X], where X is the

value under certainty. The related data is listed in Table 5.
The major ordering cost 𝑆 was set to 100, 300, 500, and

700, respectively. The results computed by the MADE under
uncertainty and determinacy are shown in Table 6. Here,
the average CPU time by running each example 20 times
in the abovementioned computer is also reported in Table 6.
Statistical test of TC is not provided because MADE is quite
effective to find the best TC every time for this problem
(maximum error is less than 0.002% and is regarded as an
optimal solution). In the following Scenarios 2 and 3, theCPU
time is obtained by the same method and the statistic of TC
is also not given for the same reason.

Table 6 shows the following: (1) results of TC under
determinacy are larger than TC under uncertainty; (2) 𝑧

𝑖

and 𝑇 obtained under uncertainty are larger than the corre-
sponding values under determinacy; (3) the best results of TC
using GMIR are larger than the corresponding values using
centroid; (4) results of 𝑧

𝑖
and𝑇 obtained by centroid are larger

than GMIR; (5) the CPU times of JRD and fuzzy JRD with
GMIR are very close, but the CPU times of fuzzy JRD with
centroid are much larger because of the relatively complex
computation process.

4.2.2. Scenarios 2 (Symmetrical Fuzzy MFs). Set the range of
the fuzzy set [d

1
X, d

2
X, d

3
X, d

4
X] = [0.9 X, 0.95 X, 1.05 X, 1.1

X]. Table 7 shows the data of the ordering cost 𝑠
𝑖
, holding cost

ℎ̃
𝑖
, and shortage cost 𝜏

𝑖
under uncertainty.

When 𝑆 was set to 100, 300, 500, and 700, respectively,
the results computed by the MADE under uncertainty and
determinacy are shown in Table 8.

Results shown in Table 8 indicate that the results of the
best TC and 𝑇 under uncertainty and determinacy are the
same for this situation. However, in reality, we are always not
able to acquire the accurate value of the parameters orwe only
can acquire it with very high cost. So, we can use fuzzy theory
to solve it reasonably.

4.2.3. Scenarios 3. We extend the range of the fuzzy set to
[d
1
X, d

2
X, d

3
X, d

4
X] = [0.9 X, 0.95 X, 1.05 X, 1.3X] and the

related data is shown in Table 9.
We set the major ordering cost 𝑆 to 100, 300, 500, and

700, respectively, and solve the problem in the same way.
Table 10 shows the comparison of results under uncertainty
and determinacy after extension.

Table 10 indicates that the results of the best TC under
uncertainty are larger than the corresponding results of
determinacy situation. In comparison with results of𝑇 under
determinacy, the basic replenishment cycle is smaller.

From Tables 6, 8, and 10, we can reasonably come to the
following conclusions:

(1) the ranges of fuzzy parameters will inevitably influ-
ence the decision of the JRD. So, it is important
to utilize every useful information and to correct
judgment to confirm the ranges of fuzzy numbers
scientifically and reasonably;

(2) MADE is quite effective for this fuzzy JRD problem
because it can find the best minimum long-run
average total cost with 100% convergence rate. The
CPU time is also accepted for decision makers.

5. Conclusion and Future Research

This paper is an interdisciplinary research of the fuzzy
inventory model and intelligent optimization algorithm. A
fuzzy JRD model for the one-warehouse, n-supplier system
is studied while assuming warehouse’s minor ordering cost,
warehouse’s inventory holding cost, and warehouse’s storage
cost to be fuzzy numbers and a newDE is proposed.Themain
contributions are as follows:

(1) Due to the nonavailability of sufficient and precise
input data, accurate predicted values of the minor
ordering cost, inventory holding cost, and backlog-
ging cost cannot be obtained easily; while fuzzy
numbers can efficiently model the imprecise values.
Obviously, it is more reasonable to handle imprecise
values using the fuzzy theory in the JRD model. It is
the first time to introduce fuzziness into the stochastic
JRD, which will widen the application field of fuzzy
theory and will make the JRD becomemore practical.

(2) Since the stochastic JRDpolicy is widely used inmany
industries, such as manufacturing, wholesale, main-
tenance, repair, and operating (MRO) supplies, the
proposed fuzzy JRD models with two defuzzification
methods can also be applied in these industries.
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Table 5: The basic data after extension.

Item 𝑠
𝑖

ℎ̃
𝑖

𝜏
𝑖

1 [17.5, 23.75, 26.25, 27.5] [3.92, 5.32, 5.88, 6.16] [19.6, 26.6, 29.4, 30.8]
2 [9.8, 13.3, 14.7, 15.4] [14.7, 19.95, 22.05, 23.1] [24.5, 33.25, 36.75, 38.5]
3 [14, 19, 21, 22] [29.4, 39.9, 44.1, 46.2] [28, 38, 42, 44]
4 [21, 28.5, 31.5, 33] [10.5, 14.25, 15.75, 16.5] [21, 28.5, 31.5, 33]

Table 6: Results comparison under different situations (scenarios 1).

𝑆 Situation 𝑘
𝑖

𝑧
𝑖

𝑇 TC, min CPU time (seconds)

100
Certainty (2, 1, 1, 1) (1.8459, 1.6578, 1.3710, 1.7442) 0.0811 9005.90 4.3686

Uncertainty, GMIR (2, 1, 1, 1) (1.8399, 1.6514, 1.3637, 1.7379) 0.0822 8805.18 4.4798
Uncertainty, centroid (2, 1, 1, 1) (1.8349, 1.6459, 1.3575, 1.7327) 0.0832 8643.61 20.1834

300
Certainty (2, 1, 1, 1) (1.7319, 1.5343, 1.2301, 1.6252) 0.1041 11165.68 4.3143

Uncertainty, GMIR (2, 1, 1, 1) (1.7249, 1.5268, 1.2214, 1.6179) 0.1057 10934.50 4.4220
Uncertainty, centroid (2, 1, 1, 1) (1.7191, 1.5205, 1.2142, 1.6118) 0.1070 10747.98 20.258

500
Certainty (2, 1, 1, 1) (1.6525, 1.4478, 1.1302, 1.5421) 0.1231 12926.66 4.2566

Uncertainty, GMIR (2, 1, 1, 1) (1.6449, 1.4396, 1.1206, 1.5342) 0.1250 12668.79 4.3772
Uncertainty, centroid (2, 1, 1, 1) (1.6387, 1.4328, 1.1127, 1.5277) 0.1266 12460.48 19.8587

700
Certainty (1, 1, 1, 1) (1.8962, 1.3601, 1.0276, 1.4581) 0.1448 14415.60 4.1407

Uncertainty, GMIR (1, 1, 1, 1) (1.8893, 1.3514, 1.0174, 1.4497) 0.1471 14132.48 4.2276
Uncertainty, centroid (1, 1, 1, 1) (1.8836, 1.3442, 1.0089, 1.4428) 0.1491 13903.65 19.9156

Table 7: The basic data under uncertainty.

Item 𝑠
𝑖

ℎ̃
𝑖

𝜏
𝑖

1 [22.5, 23.75, 26.25, 27.5] [5.04, 5.32, 5.88, 6.16] [25.2, 26.6, 29.4, 30.8]
2 [12.6, 13.3, 14.7, 15.4] [18.9, 19.95, 22.05, 23.1] [31.5, 33.25, 36.75, 38.5]
3 [18, 19, 21, 22] [37.8, 39.9, 44.1, 46.2] [36, 38, 42, 44]
4 [27, 28.5, 31.5, 33] [13.5, 14.25, 15.75, 16.5] [27, 28.5, 31.5, 33]

Table 8: Results comparison under different situations (scenarios 2).

𝑆 Situation 𝑘
𝑖

𝑧
𝑖

𝑇 TC, min CPU time (seconds)

100
Certainty (2, 1, 1, 1) (1.8459, 1.6578, 1.3710, 1.7442) 0.0811 9005.90 4.4341

Uncertainty, GMIR (2, 1, 1, 1) (1.8459, 1.6578, 1.3710, 1.7442) 0.0811 9005.90 4.6048
Uncertainty, centroid (2, 1, 1, 1) (1.8459, 1.6578, 1.3710, 1.7442) 0.0811 9005.90 21.0726

300
Certainty (2, 1, 1, 1) (1.7319, 1.5343, 1.2301, 1.6252) 0.1041 11165.68 4.3173

Uncertainty, GMIR (2, 1, 1, 1) (1.7319, 1.5343, 1.2301, 1.6252) 0.1041 11165.68 4.4136
Uncertainty, centroid (2, 1, 1, 1) (1.7319, 1.5343, 1.2301, 1.6252) 0.1041 11165.68 20.3023

500
Certainty (2, 1, 1, 1) (1.6525, 1.4478, 1.1302, 1.5421) 0.1231 12926.66 4.2955

Uncertainty, GMIR (2, 1, 1, 1) (1.6525, 1.4478, 1.1302, 1.5421) 0.1231 12926.66 4.37988
Uncertainty, centroid (2, 1, 1, 1) (1.6525, 1.4478, 1.1302, 1.5421) 0.1231 12926.66 19.8634

700
Certainty (2, 1, 1, 1) (1.8962, 1.3601, 1.0276, 1.4581) 0.1448 14415.60 4.1261

Uncertainty, GMIR (2, 1, 1, 1) (1.8962, 1.3601, 1.0276, 1.4581) 0.1448 14415.60 4.2493
Uncertainty, centroid (2, 1, 1, 1) (1.8962, 1.3601, 1.0276, 1.4581) 0.1448 14415.60 19.8194

Table 9: The basic data after extension.

item 𝑠
𝑖

ℎ̃
𝑖

𝜏
𝑖

1 [22.5, 23.75, 26.25, 32.5] [5.04, 5.32, 5.88, 7.28] [25.2, 26.6, 29.4, 36.4]
2 [12.6, 13.3, 14.7, 18.2] [18.9, 19.95, 22.05, 27.3] [31.5, 33.25, 36.75, 45.5]
3 [18, 19, 21, 26] [37.8, 39.9, 44.1, 54.6] [36, 38, 42, 52]
4 [27, 28.5, 31.5, 39] [13.5, 14.25, 15.75, 19.5] [27, 28.5, 31.5, 39]
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Table 10: Results comparison under different situations after extension (scenarios 3).

𝑆 Situation 𝑘
𝑖

𝑧
𝑖

𝑇 TC, min CPU time (seconds)

100
Certainty (2, 1, 1, 1) (1.8459, 1.6578, 1.3710, 1.7442) 0.0811 9005.90 4.3782

Uncertainty, GMIR (2, 1, 1, 1) (1.8516, 1.664, 1.378, 1.7501) 0.0801 9205.31 4.5183
Uncertainty, centroid (2, 1, 1, 1) (1.856, 1.6687, 1.3833, 1.7547) 0.0793 9363.95 20.6277

300
Certainty (2, 1, 1, 1) (1.7319, 1.5343, 1.2301, 1.6252) 0.1041 11165.68 4.2908

Uncertainty, GMIR (2, 1, 1, 1) (1.7386, 1.5416, 1.2385, 1.6322) 0.1026 11394.79 4.4135
Uncertainty, centroid (2, 1, 1, 1) (1.7437, 1.5472, 1.2449, 1.6376) 0.1015 11576.66 20.0418

500
Certainty (2, 1, 1, 1) (1.6525, 1.4478, 1.1302, 1.5421) 0.1231 12926.66 4.2934

Uncertainty, GMIR (2, 1, 1, 1) (1.6597, 1.4558, 1.1393, 1.5497) 0.1212 13181.85 4.3672
Uncertainty, centroid (2, 1, 1, 1) (1.665, 1.4616, 1.1461, 1.5553) 0.1199 13384.18 20.1400

700
Certainty (1, 1, 1, 1) (1.8962, 1.3601, 1.0276, 1.4581) 0.1448 14415.60 4.1279

Uncertainty, GMIR (1, 1, 1, 1) (1.9029, 1.3685, 1.0374, 1.466) 0.1426 14695.63 4.2845
Uncertainty, centroid (1, 1, 1, 1) (1.908, 1.3749, 1.045, 1.4722) 0.1410 14917.54 19.8705

(3) The proposed simple and effective MADE-based
approach can find the optimal cycle time and safety
factor of each item for the defuzzified JRD effectively.
Moreover, the convergence rate of MADE outper-
forms another popular GA-based approach. There-
fore, managers can always know the corresponding
minimum total cost under fuzzy environment, just
like the case of precise data. This study expands the
application field of the DE.

In the future, a dependent-chance programming model
or a chance-constrained programming model can be
designed for the JRD model of the one-warehouse, n-retailer
system in fuzzy environment. The DE still can provide good
solutions to these problems.

Appendix

In order to solve the fuzzy JRD model, we need to use the
following definitions and properties.

Definition A.1. A fuzzy set 𝑎 on 𝑅 = (−∞, +∞) is called a
fuzzy point if its MF is

𝜇
𝑎 (𝑥) = {

1, 𝑥 = 𝑎

0, 𝑥 ̸= 𝑎,
(.22)

where point 𝑎 is called its support.
Let the family of all fuzzy points be 𝐹

𝑝
= {𝑎 | ∀𝑎 ∈ 𝑅}.

The real number 𝑎 ∈ 𝑅 and the fuzzy point 𝑎 ∈ 𝐹
𝑝
are in

one-to-one and onto mapping.

Definition A.2. A fuzzy set [𝑎
𝑥
, 𝑏
𝑥
] on 𝑅, 0 ≤ 𝑎 ≤ 1, 𝑎 < 𝑏, is

called a level 𝛼 fuzzy interval if its MF is

𝜇
[𝑎𝑥 ,𝑏𝑥]

(𝑥) = {
𝛼, 𝑎 ≤ 𝑥 ≤ 𝑏

0, otherwise.
(.23)

Definition A.3. A fuzzy set 𝐴 = [𝑎, 𝑏, 𝑐] on 𝑅, 𝑎 < 𝑏 < 𝑐, is
called a triangular fuzzy number if its MF is

𝜇
𝐴

(𝑥) =

{{{{{{

{{{{{{

{

𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 < 𝑥 ≤ 𝑐

0, 𝑥 ≤ 𝑎, or 𝑥 > 𝑐.

(.24)

When 𝑎 = 𝑏 = 𝑐, we have fuzzy point (𝑐, 𝑐, 𝑐) = 𝑐.

Definition A.4. A fuzzy set 𝐴 = [𝑎, 𝑏, 𝑐, 𝑑] on 𝑅, 𝑎 < 𝑏 < 𝑐 <

𝑑, is called a trapezoidal fuzzy number if its MF is

𝜇
𝐴

(𝑥) =

{{{{{{

{{{{{{

{

𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 ≤ 𝑏

1, 𝑏 < 𝑥 ≤ 𝑐

𝑑 − 𝑥

𝑑 − 𝑐
, 𝑐 < 𝑥 ≤ 𝑑

0, 𝑥 ≤ 𝑎 or 𝑥 > 𝑑.

(.25)
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