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We study the relationship betweenDC3 pairs and the set of discontinuities in distribution function.We also check relations between
DC3 pairs for a continuous map and its higher iterates.

1. Introduction

In 1994, Schweizer and Smı́tal extended the definition of Li-
Yorke pair for intervalmaps [1].Themainmotivationwas that
chaotic dynamics, as introduced by Li and Yorke in [2], may
be present in an interval map with zero topological entropy,
while the adjusted definition can appear only in an interval
map with positive topological entropy. The case of interval
maps is very special, since in this context there is no difference
between maps with DC1 pairs (the strongest possibility of
distributional chaos) and DC3 pairs (the weakest possibility).

Let us first give the concepts that originated from [1] (but
using modern terminology), since they are the main topics of
the present paper.

Suppose that (𝑋, 𝑓) is a dynamical system, that is, a
continuous map 𝑓 : 𝑋 → 𝑋 acting on a compact metric
space (𝑋, 𝑑) (basic definitions related to dynamical systems,
such as orbit and 𝜔-limit set, can be found in any standard
book on dynamical systems, e.g., [3]). For any positive integer
𝑛, points 𝑥, 𝑦 ∈ 𝑋, and real number 𝑡 > 0, let

𝜉𝑓 (𝑥, 𝑦, 𝑛, 𝑡) := # {𝑖; 𝑑 (𝑓
𝑖
(𝑥) , 𝑓

𝑖
(𝑦)) < 𝑡, 0 ≤ 𝑖 ≤ 𝑛 − 1} ,

Φ𝑥𝑦 (𝑡, 𝑓) := lim inf
𝑛→∞

1

𝑛
𝜉𝑓 (𝑥, 𝑦, 𝑛, 𝑡) ,

Φ
∗
𝑥𝑦 (𝑡, 𝑓) := lim sup

𝑛→∞

1

𝑛
𝜉𝑓 (𝑥, 𝑦, 𝑛, 𝑡) ,

(1)

where as usual #𝐴 denotes the cardinality of a set 𝐴. If the
map 𝑓 is clear from the context, we simply write Φ𝑥𝑦(𝑡) and
Φ∗𝑥𝑦(𝑡).

Definition 1. If a pair of points 𝑥, 𝑦 ∈ 𝑋 fulfills one of the
following conditions:

(DC1) Φ∗𝑥𝑦(𝑡) = 1 for all 𝑡 > 0 andΦ𝑥𝑦(𝑠) = 0 for some 𝑠 > 0,

(DC2) Φ∗𝑥𝑦(𝑡) = 1 for all 𝑡 > 0 andΦ𝑥𝑦(𝑠) < 1 for some 𝑠 > 0,

(DC3) Φ∗𝑥𝑦(𝑡) > Φ𝑥𝑦(𝑡) for all 𝑡 ∈ 𝐽, where 𝐽 is some
nondegenerate interval,

then we say that (𝑥, 𝑦) is a DC1, DC2, or DC3 pair, respec-
tively.

In recent years many authors were interested in systems
with DC pairs. While there are numerous results on proper-
ties ofDC1 andDC2pairs, notmany are known about systems
with only DC3 pairs. The reason is that if a DC3 pair can be
detected, then there usually also existDC2pairs in the system.

By the definition we immediately have that DC1 implies
DC2 and DC2 implies DC3, and it is also known that none
of the reverse implications holds (e.g., see [4]). It can also
be proved that DC1 or DC2 implies chaos in the sense of Li
and Yorke, but DC3 does not [5]. Furthermore, recent result
of Downarowicz shows that positive topological entropy is
a sufficient condition for large set of DC2 pairs (so-called
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scrambled set of type 2) in the system [6]. In [7, 8] the
author shows that strong mixing properties, for example,
specification property or topological exactness, are sufficient
for scrambled sets of type 1. In [5] there is an example
of distal map with DC3 pairs; hence, DC3 does not imply
positive topological entropy or Li-Yorke pairs.Moreover,DC1
need not imply positive topological entropy, even in minimal
systems (e.g., see [9]).

In this paper, we investigate the relationship betweenDC3
pairs and the set of discontinuities in distribution function.
This will highlight many problems which can arise when one
looks for numerical evidence of distributional chaos.

2. Distributional Chaos of Type 3

In this section we will focus on properties of distribution
functions Φ𝑥𝑦 and Φ∗𝑥𝑦, which may cause many problems
during numerical investigation of the dynamics.

2.1. Discontinuity Points. The essential ingredient of all the
three definitions of DC pairs is “sufficiently large” difference
in values of functions Φ𝑥𝑦 and Φ∗𝑥𝑦. Accordingly, an impor-
tant question is howmuch values ofΦ𝑥𝑦 andΦ∗𝑥𝑦 can differ if
𝑥, 𝑦 is not a DC3 pair. The following observation provides an
upper bound.

Proposition 2 (see Lemma 1 of [10]). The following conditions
are equivalent:

(1) (𝑥, 𝑦)is not a DC3 pair;
(2) the set

𝑈𝑥𝑦 = {𝑡; Φ𝑥𝑦 (𝑡) ̸=Φ
∗
𝑥𝑦 (𝑡)} (2)

is at most countable.

Proof. Implication (2)⇒ (1) is trivial.
Conversely, assume that (𝑥, 𝑦) is not DC3 pair. Let𝐷1,𝐷2

be the set of discontinuity points ofΦ𝑥𝑦 andΦ
∗
𝑥𝑦, respectively.

If 𝑠 ∉ 𝐷1 ∪𝐷2, thenΦ𝑥𝑦(𝑠) = Φ∗𝑥𝑦(𝑠), because otherwise they
would be different on an open interval containing 𝑠. Since
both functions Φ𝑥𝑦, Φ

∗
𝑥𝑦 are nondecreasing, they can have at

most countably many discontinuity points, which ends the
proof.

As we see, thatΦ𝑥𝑦(𝑡) ̸=Φ∗𝑥𝑦(𝑡) for some values of param-
eter 𝑡 need not be enough for the occurrence of DC3 pair. If
we try to predict distributional chaos numerically, then the
parameter value we consider may be a discontinuity point of
function Φ𝑥𝑦(𝑡) or Φ

∗
𝑥𝑦(𝑡), and the pair is not DC3. Then we

may think that the system has DC3 pairs while it does not.
Therefore, to ensure ourselves that considered pair is DC3, we
can pick another parameter value and repeat simulation. But
again it can be another discontinuity point, and so on. From
one point of view the set of such discontinuity points is small
(it has Lebesgue measure zero), so in perfect situation the
chance of picking up such a point is zero. However, if the set
of discontinuity points may coincide with, say, (𝑎, 𝑏) ∩ Q for

some 𝑎 < 𝑏, then all the points in (𝑎, 𝑏) that can be considered
for computer simulation are wrong. So the first question is
whether there really is a risk of such situation.

For any set𝐴, we denote its characteristic function by 𝜒𝐴.

Theorem 3. For any 𝑡 ∈ (0, 1) there is a map 𝑓 ∈ 𝐶([0, 1])

withoutDC3 pairs and two points𝑥, 𝑦 ∈ [0, 1] such thatΦ𝑥𝑦 =
𝜒(𝑡,+∞) and Φ∗𝑥𝑦 = 𝜒[𝑡,+∞).

Proof. Fix any increasing sequence 𝑛𝑖 > 0 such that
lim𝑖→∞(𝑛𝑖/𝑛𝑖+1) = 0. Let {𝛿𝑗} be a decreasing sequence such
that 0 < 𝛿𝑗 < min{1 − 𝑡, 𝑡} for all 𝑗 ≥ 0. Now let 𝑥𝑗 = 𝛿𝑗 and
𝑦𝑗 = 𝑡 + 𝛿𝑗 − 𝛾𝑗 where

𝛾𝑗 = {
𝛿𝑗 − 𝛿𝑗+1, if 𝑗 ∈ [𝑛2𝑘−1, 𝑛2𝑘) for some 𝑘 ≥ 1,

0, otherwise.
(3)

Let 𝑓 be the connect-the-dots map defined by the following
points; that is, 𝑓 is linear on countably many intervals with
values at the endpoints of these intervals given by

𝑓 (0) = 0, 𝑓 (𝑡) = 𝑡, 𝑓 (1) = 1,

𝑓 (𝑥𝑛) = 𝑥𝑛+1, 𝑓 (𝑦𝑛) = 𝑦𝑛+1, ∀𝑛 = 1, 2, . . . .
(4)

Then we see that for any 𝑥 ∈ [0, 1] its 𝜔-limit set is the
singleton consisting of one of the points 0, 𝑡, 1. Similarly we
can verify that Ω(𝑓) = {0, 𝑡, 1} and so 𝑓 has zero topological
entropy. Then it has no DC3 pair by [1].

Consider the pair (𝑥, 𝑦) = (𝑥0, 𝑦0).Then |𝑓𝑛(𝑥)−𝑓𝑛(𝑦)| =
𝑦𝑛 − 𝑥𝑛 = 𝑡 − 𝛾𝑛.

We can see that

𝜉𝑓 (𝑥, 𝑦, 𝑛, 𝑡) = # {𝑖; 𝛾𝑖 > 0, 0 ≤ 𝑖 ≤ 𝑛 − 1} . (5)

Therefore we can easily verify that

1

𝑛2𝑘
𝜉𝑓 (𝑥, 𝑦, 𝑛2𝑘, 𝑡) ≥

𝑛2𝑘 − 𝑛2𝑘−1

𝑛2𝑘
󳨀→ 1,

1

𝑛2𝑘+1
𝜉𝑓 (𝑥, 𝑦, 𝑛2𝑘+1, 𝑡) ≤

𝑛2𝑘

𝑛2𝑘+1
󳨀→ 0.

(6)

Thus Φ∗𝑥𝑦(𝑡) = 1 and Φ𝑥𝑦(𝑡) = 0. On the other hand, for any
𝛿 > 0 we have that 𝑡 − 𝛿 ≤ |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| ≤ 𝑡, provided that
𝑛 is sufficiently large. This givesΦ∗𝑥𝑦(𝑠) = Φ𝑥𝑦(𝑠) = 0 for 𝑠 < 𝑡

and Φ∗𝑥𝑦(𝑠) = Φ𝑥𝑦(𝑠) = 1 for 𝑠 > 𝑡.

We can extend the construction in Theorem 3 to the
following.

Theorem 4. For any finite sequence 0 ≤ 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑘 < 1,
there is a map 𝑓 ∈ 𝐶([0, 1]) without DC3 pairs and points
𝑥, 𝑦 ∈ [0, 1] such that Φ𝑥𝑦(𝑡𝑖) < Φ∗𝑥𝑦(𝑡𝑖) for 𝑖 = 1, . . . , 𝑘 and
Φ𝑥𝑦(𝑠) = Φ∗𝑥𝑦(𝑠) for all other parameter values 𝑠.

Proof. We only sketch the idea of this construction, leaving
exact calculations to the reader.

First, extend the sequence 𝑡𝑖 to have 2𝑙 elements for
some 𝑙 > 0. Let 𝑓 be a piecewise linear map of type 2𝑙 in
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the Sharkovsky ordering (see [3]). Then we know that this
map has topological entropy zero (thus has no DC3 pair)
and a cycle consisting of exactly 2𝑙 elements contained in the
interval (0, 1). We may assume that 0, 1 are fixed points of
𝑓. We can also transform the interval [0, 1] by a piecewise
linear homeomorphism in such a way that points of our cycle
coincide with the sequence 𝑡1 < ⋅ ⋅ ⋅ < 𝑡2𝑙 . In other words,
without loss of generality we may assume that 𝑡1, . . . , 𝑡2𝑙 form
a cycle for𝑓 (topological entropy ismaintained by topological
conjugacy). Observe that the set

𝑄 = {𝑥 ∈ [0, 1] ; 𝑓
𝑘
(𝑥) = 𝑡𝑖 for some

𝑘 ≥ 0 and 1 ≤ 𝑖 ≤ 𝑘}

(7)

is at most countable, since 𝑓 is piecewise linear. We can
also embed intervals of sufficiently small diameters around
points in𝑄 (so that the total sum of these diameters is finite),
similarly as it is done in the case of the standard Donjoy
extension for circle rotation [3]. Each of these intervals is
transformed from one onto another with the order defined
by 𝑓 on 𝑄. Entropy remains unchanged (homeomorphism
on the interval has topological entropy zero) and, hence,
there is no DC3 pair for our modified map. But now we
have a periodic sequence of intervals for 𝑓 which were
embedded in place of periodic orbit 𝑡1, . . . , 𝑡2𝑙 , and we may
also assume that points 𝑡𝑖 are in the interiors of these intervals
(if not, we use piecewise linear homeomorphism once again).
Without loss of generality we may assume that a small
neighborhood of 0 has an invariant neighborhood on which
𝑓 is a homeomorphism.

Now it is enough to repeat the trick used in Theorem 3
in each of the intervals defined by points 𝑡𝑖 and the neighbor-
hood of 0 to produce discontinuities of the functionsΦ∗𝑥𝑦 and
Φ𝑥𝑦, where 𝑥 is a point attracted by the cycle 𝑡1, . . . , 𝑡2𝑙 and 𝑦

by the fixed point 0. Obviously, we must prevent fluctuations
of distance on intervals embedded around points 𝑡𝑠+1, . . . , 𝑡2𝑙
to have exactly 𝑠 points of discontinuity ofΦ∗𝑥𝑦 and Φ𝑥𝑦.

It seems that the ideas of Theorem 4 can be extended
even further. If instead of cycle we take an adding machine
acting on the Cantor set properly embedded in (0, 1) and
next arrange intervals along a dense orbit (exactly the same
way as in Donjoy example [3]), then there is a hope that a
pair with a countable set of discontinuities is constructed. In
other words, it seems possible that the following question has
a positive answer.

Question 1. Is there a map 𝑓 : [0, 1] → [0, 1] with zero
topological entropy which has a pair (𝑥, 𝑦) such that 𝑈𝑥𝑦 is
countable?

While no answer to the question raised earlier is provided,
the following theorem shows that 𝑈𝑥𝑦 can be countable for a
pair which is not DC3.

Theorem 5. There is a map and a pair (𝑥, 𝑦) such that (𝑥, 𝑦)
is not DC3 but 𝑈𝑥𝑦 is infinite.

Proof. Put Y = [−1, 1]
N and endow it with the natural metric

𝑑(𝑥, 𝑦) = ∑
∞
𝑖=1 |𝑥𝑖 − 𝑦𝑖|/2

𝑖. It is well known that the shift map
𝜎 : Y → Y given by 𝜎(𝑥)𝑖 = 𝑥𝑖+1, 𝑖 = 1, 2, . . ., is continuous.

We are going to construct two special sequences 𝑥, 𝑦 ∈ Y .
For 𝑟 ∈ [−1, 1] and 𝑘 ≥ 1 denote by ⟨𝑟⟩

𝑘 the constant
sequence 𝑟, 𝑟, . . . , 𝑟 consisting of exactly 𝑘 elements and
by ⟨𝑟⟩

∞ the infinite constant sequence 𝑟, 𝑟, . . .. If 𝑢, 𝑤 are
sequences, then 𝑢𝑤 denotes the concatenation of these two
sequences, ⟨𝑢⟩𝑘 denotes the 𝑘-times concatenation of 𝑢 with
itself, and |𝑢| denotes the length of 𝑢.

Put 𝑠𝑛 = 22
𝑛

, 𝑙𝑛 = 22𝑛, 𝑞𝑛 = 𝑠𝑛𝑙𝑛, 𝑐𝑛 = ∑
𝑛
𝑖=1 𝑞𝑖 for 𝑛 ≥ 1, and

𝑡
𝑖
𝑛 = {

22𝑛−𝑖−1, if 0 ≤ 𝑖 ≤ 𝑛 − 1,

2𝑛, if 𝑖 = 𝑛.
(8)

Denote that 𝑢̂𝑛 = ⟨1⟩
𝑡0
𝑛⟨1/2⟩

𝑡1
𝑛 ⋅ ⋅ ⋅ ⟨1/2𝑛⟩

𝑡𝑛
𝑛 . Then |𝑢̂𝑛| =

∑
𝑛
𝑖=0 𝑡
𝑖
𝑛 = 𝑙𝑛. For 𝑘 = 0, . . . , 𝑛, denote that 𝑢̂𝑘𝑛 =

⟨1/2𝑘⟩
𝑡𝑘
𝑛⟨1/2𝑘+1⟩

𝑡𝑘+1
𝑛 ⋅ ⋅ ⋅ ⟨1/2𝑛⟩

𝑡𝑛
𝑛 ; then

󵄨󵄨󵄨󵄨󵄨
𝑢̂
𝑘
𝑛

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑢̂𝑛

󵄨󵄨󵄨󵄨
=

∑
𝑛
𝑖=𝑘 𝑡
𝑖
𝑛

𝑙𝑛
=

1

2𝑘
. (9)

We put 𝑢𝑛 = ⟨𝑢̂𝑛⟩
𝑠𝑛 for all 𝑛 ≥ 1, so in particular |𝑢𝑛| = 𝑞𝑛.

Let 𝑥 = 𝑢1 𝑢2 ⋅ ⋅ ⋅ and 𝑦 = ⟨−1⟩
𝑞1⟨1/2⟩

𝑞2 ⋅ ⋅ ⋅

⟨(−1)
𝑛
(1/2𝑛)⟩

𝑞𝑛 . . .. Let 𝑋 be the union of closure of orbits of
𝑥 and 𝑦. For 𝑧 ∈ Y by 𝑧[𝑖, 𝑗]we denote the finite subsequence
of 𝑧 formed by entries from 𝑖th to 𝑗th position, that is, if
𝑧 = 𝑧1𝑧2 . . ., where 𝑧𝑘 ∈ [−1, 1] for 𝑘 ∈ N, then 𝑧[𝑖, 𝑗] =

𝑧𝑖𝑧𝑖+1 ⋅ ⋅ ⋅ 𝑧𝑗.
Note that 𝑠𝑛 = (𝑠𝑛−1)

2
≥ 2𝑛−1𝑠𝑛−1 and 𝑙𝑛 ≥ 𝑙𝑛−1; hence,

𝑞𝑛 ≥ 2𝑛−1𝑞𝑛−1 and so

lim
𝑛→∞

𝑐𝑛−1

𝑞𝑛
≤ lim
𝑛→∞

(𝑛 − 1) 𝑞𝑛−1

2𝑛−1𝑞𝑛−1
= 0,

lim
𝑛→∞

𝑙𝑛+1

𝑞𝑛
= lim
𝑛→∞

4

𝑠𝑛
= 0.

(10)

Fix any 𝑘 ≥ 0 and any 𝑚 ≥ 𝑛 > 𝑘. If 𝑗 > 0 is an
index such that 𝑥[𝑗 + 1, 𝑗 + 𝑚] is a subblock of 𝑢̂𝑛 of the
form ⟨1/2𝑘⟩

𝑡𝑘
𝑛 , then by the structure of 𝑥 and 𝑦, we have that

𝑦[𝑗+1, 𝑗+𝑚] is a subblock of ⟨(−1)𝑛(1/2𝑛)⟩𝑞𝑛 . Assume that 𝑗
as abovementioned has been fixed. We have two possibilities.

Case A. 𝑛 is an even number. Then

𝑑 (𝜎
𝑗
(𝑥) , 𝜎

𝑗
(𝑦)) =

𝑚

∑
𝑖=1

1/2𝑘 − 1/2𝑛

2𝑖

+

∞

∑
𝑖=𝑚+1

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗+𝑖 − 𝑦𝑗+𝑖

󵄨󵄨󵄨󵄨󵄨

2𝑖

= 𝑎𝑛 +

∞

∑
𝑖=𝑚+1

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗+𝑖 − 𝑦𝑗+𝑖

󵄨󵄨󵄨󵄨󵄨

2𝑖
,

(11)
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where

𝑎𝑛 =

𝑚

∑
𝑖=1

1/2𝑘 − 1/2𝑛

2𝑖

=
1

2𝑘
−

1

2𝑛
−

1

2𝑘+𝑚
+

1

2𝑛+𝑚
.

(12)

Thus

𝑎𝑛 ≤ 𝑑 (𝜎
𝑗
(𝑥) , 𝜎

𝑗
(𝑦))

≤ 𝑎𝑛 +

∞

∑
𝑖=𝑚+1

1

2𝑖
≤ 𝑎𝑛 +

1

2𝑚

≤
1

2𝑘
− (

1

2𝑛
−

1

2𝑚
) − (

1

2𝑘+𝑚
−

1

2𝑛+𝑚
) .

(13)

Since𝑚 > 𝑛, we have 𝑑(𝜎𝑗(𝑥), 𝜎𝑗(𝑦)) < 1/2𝑘.

Case B. 𝑛 is an odd number. Then

𝑑 (𝜎
𝑗
(𝑥) , 𝜎

𝑗
(𝑦)) =

𝑚

∑
𝑖=1

(1/2𝑘) + (1/2𝑛)

2𝑖

+

∞

∑
𝑖=𝑚+1

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗+𝑖 − 𝑦𝑗+𝑖

󵄨󵄨󵄨󵄨󵄨

2𝑖

= 𝑏𝑛 +

∞

∑
𝑖=𝑚+1

󵄨󵄨󵄨󵄨󵄨
𝑥𝑗+𝑖 − 𝑦𝑗+𝑖

󵄨󵄨󵄨󵄨󵄨

2𝑖
,

(14)

where

𝑏𝑛 =

𝑚

∑
𝑖=1

1/2𝑘 + 1/2𝑛

2𝑖

=
1

2𝑘
+

1

2𝑛
−

1

2𝑘+𝑚
−

1

2𝑛+𝑚
.

(15)

Thus

𝑏𝑛 ≤ 𝑑 (𝜎
𝑗
(𝑥) , 𝜎

𝑗
(𝑦))

≤ 𝑏𝑛 +

∞

∑
𝑖=𝑚+1

1

2𝑖
= 𝑏𝑛 +

1

2𝑚
.

(16)

Since𝑚 > 𝑛 > 𝑘 ≥ 0, we have 𝑑(𝜎𝑗(𝑥), 𝜎𝑗(𝑦)) > 1/2𝑘.

From Case A and Case B we can see that if 𝑘 is fixed and
𝑛 increases, then 𝑑(𝜎𝑗(𝑥), 𝜎𝑗(𝑦)) tends to 2−𝑘.

Thus, provided that 𝑥[𝑗 + 1, 𝑗 + 𝑚] lies in ⟨1/2𝑘⟩
𝑡𝑘
𝑛 of 𝑢̂𝑛,

the related 𝑛 and𝑚 tend to∞ as 𝑗 → ∞, and, hence,

𝑑 (𝜎
𝑗
(𝑥) , 𝜎

𝑗
(𝑦)) 󳨀→

1

2𝑘
as 𝑗 󳨀→ ∞. (17)

Now we are ready for the main proof. For any positive
number 𝑙 ≥ 𝑞2, we can write

𝑙 = 𝑐𝑛 + 𝑝 𝑙𝑛+1 + 𝑟, (18)

where 𝑝 ≥ 0, 0 ≤ 𝑟 < 𝑙𝑛+1, and 𝑝𝑙𝑛+1 + 𝑟 < 𝑞𝑛+1 are uniquely
determined. Thus

𝑥 [1, 𝑙] = 𝑢1 𝑢2 ⋅ ⋅ ⋅ 𝑢𝑛−1 ⟨𝑢̂𝑛⟩
𝑠𝑛⟨𝑢̂𝑛+1⟩

𝑝
V, (19)

where V = 𝑥[𝑐𝑛 + 𝑝𝑙𝑛+1 + 1, 𝑐𝑛 + 𝑝𝑙𝑛+1 + 𝑟].

Case I. Fix any 𝑡 ∈ (1/2𝑘, 1/2𝑘−1), 𝑘 ≥ 1.
By (17), when 𝑙 is large enough, we have that

(a) if 𝑐𝑛−1 < 𝑗+1 < 𝑗+2𝑛 ≤ 𝑐𝑛+𝑝𝑙𝑛+1 and block 𝑥[𝑗+1, 𝑗+
2𝑛] falls within 𝑢̂𝑘𝑛 or 𝑢̂

𝑘
𝑛+1, then 𝑑(𝜎𝑗(𝑥), 𝜎𝑗(𝑦)) < 𝑡,

(b) similarly, if 𝑐𝑛−1 < 𝑗+1 < 𝑗+2𝑛 ≤ 𝑐𝑛+𝑝𝑙𝑛+1 and block
𝑥[𝑗 + 1, 𝑗 + 2𝑛] does not intersect blocks 𝑢̂𝑘𝑛 and 𝑢̂𝑘𝑛+1
in 𝑥, then 𝑑(𝜎𝑗(𝑥), 𝜎𝑗(𝑦)) > 𝑡.

Let us denote that 𝑔𝑡(ℎ, 𝑖) = #{𝑗 ; 𝑑(𝜎𝑗(𝑥), 𝜎𝑗(𝑦)) < 𝑡, ℎ ≤

𝑗 ≤ 𝑖 − 1}. Then, by (a) and (b) aforementioned, for 𝑙 large
enough, we have that

𝑠𝑛 (
󵄨󵄨󵄨󵄨󵄨
𝑢̂
𝑘
𝑛

󵄨󵄨󵄨󵄨󵄨
− 2𝑛) + 𝑝 (

󵄨󵄨󵄨󵄨󵄨
𝑢̂
𝑘
𝑛+1

󵄨󵄨󵄨󵄨󵄨
− 2𝑛)

≤ 𝑔𝑡 (𝑐𝑛−1 + 1, 𝑐𝑛 + 𝑝𝑙𝑛+1)

≤ 𝑠𝑛 (
󵄨󵄨󵄨󵄨󵄨
𝑢̂
𝑘
𝑛

󵄨󵄨󵄨󵄨󵄨
+ 2𝑛) + 𝑝 (

󵄨󵄨󵄨󵄨󵄨
𝑢̂
𝑘
𝑛+1

󵄨󵄨󵄨󵄨󵄨
+ 2𝑛) .

(20)

Additionally, if 𝑙 increases, then 𝑛 increases as well, and,
hence,

lim
𝑙→∞

2𝑛 (𝑠𝑛 + 𝑝)

𝑙

≤ lim
𝑛→∞

2𝑛 (𝑠𝑛 + 𝑝)

𝑞𝑛 + 𝑝𝑙𝑛+1
≤ lim
𝑛→∞

(
2𝑛𝑠𝑛

𝑞𝑛
+

2𝑛

𝑙𝑛+1
)

≤ lim
𝑛→∞

(
2𝑛

𝑙𝑛
+

2𝑛

𝑙𝑛+1
) ≤ 2 lim

𝑛→∞

2𝑛

22𝑛
= 0.

(21)

Observe that

𝑔𝑡 (𝑐𝑛−1 + 1, 𝑐𝑛 + 𝑝𝑙𝑛+1) ≤ 𝜉𝜎 (𝑥, 𝑦, 𝑙, 𝑡)

≤ 𝑐𝑛−1 + 𝑔𝑡 (𝑐𝑛−1 + 1, 𝑐𝑛 + 𝑝𝑙𝑛+1) + 𝑟.

(22)

Hence, by the previous calculations and (9), we see that

lim
𝑙→∞

1

𝑙
𝜉𝜎 (𝑥, 𝑦, 𝑙, 𝑡)

= lim
𝑙→∞

𝑔𝑡 (𝑐𝑛−1 + 1, 𝑐𝑛 + 𝑝𝑙𝑛+1)

𝑙

= lim
𝑙→∞

𝑔𝑡 (𝑐𝑛−1 + 1, 𝑐𝑛 + 𝑝𝑙𝑛+1)

𝑞𝑛 + 𝑝𝑙𝑛+1

⋅
𝑞𝑛 + 𝑝𝑙𝑛+1

𝑙
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= lim
𝑛→∞

𝑔𝑡 (𝑐𝑛−1 + 1, 𝑐𝑛 + 𝑝𝑙𝑛+1)

𝑞𝑛 + 𝑝𝑙𝑛+1

⋅ lim
𝑙→∞

𝑞𝑛 + 𝑝𝑙𝑛+1

𝑙

= lim
𝑛→∞

𝑠𝑛
󵄨󵄨󵄨󵄨󵄨
𝑢̂𝑘𝑛

󵄨󵄨󵄨󵄨󵄨
+ 𝑝

󵄨󵄨󵄨󵄨󵄨
𝑢̂𝑘𝑛+1

󵄨󵄨󵄨󵄨󵄨

𝑠𝑛
󵄨󵄨󵄨󵄨𝑢̂𝑛

󵄨󵄨󵄨󵄨 + 𝑝
󵄨󵄨󵄨󵄨𝑢̂𝑛+1

󵄨󵄨󵄨󵄨

⋅ lim
𝑙→∞

(1 −
𝑟 + 𝑐𝑛−1

𝑙
)

=
1

2𝑘
⋅ lim
𝑙→∞

(1 −
𝑟 + 𝑐𝑛−1

𝑙
) .

(23)

But (𝑟 + 𝑐𝑛−1)/𝑙 < (𝑙𝑛+1 + 𝑐𝑛−1)/𝑞𝑛 and so, finally, by (10) we
obtain that

lim
𝑙→∞

1

𝑙
𝜉𝜎 (𝑥, 𝑦, 𝑙, 𝑡) =

1

2𝑘
. (24)

In other words, we have just proved that Φ∗𝑥𝑦(𝑡) = Φ𝑥𝑦(𝑡) =

1/2𝑘 for any 𝑡 ∈ (1/2𝑘, 1/2𝑘−1) and any 𝑘 ≥ 1.
It is not hard to verify that Φ∗𝑥𝑦(𝑡) = Φ𝑥𝑦(𝑡) = 1 for every

𝑡 ∈ (1,∞).

Case II. It remains to analyze the situation when 𝑡 = 1/2𝑘

for some 𝑘 ≥ 0. To estimate values of functions Φ𝑥𝑦(𝑡) and
Φ∗𝑥𝑦(𝑡), let us consider the particular case of 𝑙 = 𝑐𝑛; that is,
𝑝 = 𝑟 = 0 in (18).

Case C. Let 𝑛 = 2𝑠 be an even number. By (17) and the
previous discussion of Case A with 𝑚 = 2𝑛, if 𝑙 = 𝑐2𝑠 is large
enough, then

(a󸀠) if 𝑐𝑛−1 < 𝑗 + 1 < 𝑗 + 2𝑛 ≤ 𝑐𝑛 and 𝑥[𝑗 + 1, 𝑗 + 2𝑛] lies
within some 𝑢̂𝑘𝑛, then 𝑑(𝜎𝑗(𝑥), 𝜎𝑗(𝑦)) < 𝑡;

(b󸀠) if 𝑐𝑛−1 < 𝑗 + 1 < 𝑗 + 2𝑛 ≤ 𝑐𝑛 and 𝑥[𝑗 + 1, 𝑗 + 2𝑛] does
not intersect block 𝑢̂𝑘𝑛, then 𝑑(𝜎𝑗(𝑥), 𝜎𝑗(𝑦)) > 𝑡.

Thus performing calculations similar to these done in
Case I leads to the following:

lim
𝑠→∞

1

𝑐2𝑠
𝜉𝜎 (𝑥, 𝑦, 𝑐2𝑠, 𝑡) =

1

2𝑘
. (25)

Case D. Let 𝑛 = 2𝑠 + 1 be an odd number. By (17) and the
discussion in Case B, we have that when 𝑙 = 𝑐2𝑠+1 is large
enough then

(a󸀠󸀠) if 𝑐𝑛−1 < 𝑗 + 1 < 𝑗 + 2𝑛 ≤ 𝑐𝑛 and 𝑥[𝑗 + 1, 𝑗 + 2𝑛] is a
subblock of some 𝑢̂𝑘+1𝑛 , then 𝑑(𝜎𝑗(𝑥), 𝜎𝑗(𝑦)) < 𝑡;

(b󸀠󸀠) if 𝑐𝑛−1 < 𝑗 + 1 < 𝑗 + 2𝑛 ≤ 𝑐𝑛 and 𝑥[𝑗 + 1, 𝑗 + 2𝑛] does
not intersect block 𝑢̂𝑘+1𝑛 , then 𝑑(𝜎𝑗(𝑥), 𝜎𝑗(𝑦)) > 𝑡.

Again, repeating calculations similar to these in Case I,
we see that

lim
𝑠→∞

1

𝑐2𝑠+1
𝜉𝜎 (𝑥, 𝑦, 𝑐2𝑠+1, 𝑡) =

1

2𝑘+1
. (26)

Combining Cases C and D, we obtain that Φ
∗
𝑥𝑦(𝑡) ≥

1/2𝑘 > 1/2𝑘+1 ≥ Φ𝑥𝑦(𝑡), provided that 𝑡 = 1/2𝑘 for some
𝑘 ≥ 0. Summing up Cases I and II together, we see that
𝑈𝑥𝑦 = {1/2𝑘; 𝑘 = 0, 1, 2, . . .}, which completes the proof.

Corollary 6. Let (𝑋, 𝜎) be the dynamical system defined in
Theorem 5. Then it has no DC3 pair.

Proof. We can easily obtain from Theorem 5 that 𝑈𝑥1𝑦1 =

{1/2𝑘; 𝑘 = 0, 1, 2, . . .} when 𝑥1 = 𝜎𝑙(𝑥) and 𝑦1 = 𝜎𝑠(𝑦) for
some 𝑙, 𝑠 ≥ 0, since

lim
𝑛→∞

1

𝑛
# {𝑖; 𝑥𝑖+𝑙 ̸= 𝑥𝑖, 0 ≤ 𝑖 < 𝑛}

= lim
𝑛→∞

1

𝑛
# {𝑖; 𝑦𝑖+𝑠 ̸= 𝑦𝑖, 0 ≤ 𝑖 < 𝑛} = 0.

(27)

Observe that

𝜔 (𝑥, 𝜎) = {⟨
1

2𝑛
⟩
𝑘

⟨
1

2𝑛+1
⟩
∞

; 𝑘, 𝑛 ≥ 0}

∪ {⟨0⟩
𝑘
⟨1⟩
∞
; 𝑘 ≥ 0} ,

𝜔 (𝑦, 𝜎) = {⟨0⟩
∞
} .

(28)

Hence for any 𝑥1, 𝑦1 ∈ 𝑋, we have the following:

𝑈𝑥1𝑦1 =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

{
1

2𝑘
; 𝑘 = 0, 1, 2, . . .} ,

if 𝑥1 ∈ Orb𝜎 (𝑥) ,
𝑦1 ∈ Orb𝜎 (𝑦) ,

0, if 𝑥1, 𝑦1 ∈ Orb𝜎 (𝑥),
0, if 𝑥1, 𝑦1 ∈ Orb𝜎 (𝑦),

0,
if 𝑥1 ∈ Orb𝜎 (𝑥),

𝑦1 ∈ 𝜔 (𝑦, 𝜎) ,

{
1

2𝑘
} for one 𝑘 ≥ 0,

if 𝑥1 ∈ 𝜔 (𝑥, 𝜎) ,

𝑦1 ∈ Orb𝜎 (𝑦) .
(29)

Each case is either trivial or has very similar proof which
follows directly fromTheorem 5 and (27).

2.2. Higher Iterates. It is well known that DC1 or DC2 pairs
are preserved by higher iterates; that is, DC1 (or DC2) pair
for 𝑓 is also DC1 (resp., DC2) pair for 𝑓𝑛 for every 𝑛 > 1 and
vice versa. In this section we will show that there is no such
correspondence in the case of DC3 pair.

Theorem 7 (see Theorem 1 of [10]). If (𝑥, 𝑦) is a DC3 pair
of 𝑓, then for every 𝑛 > 0 there is 0 ≤ 𝑟 < 𝑛 such that
(𝑓
𝑟(𝑥), 𝑓𝑟(𝑦)) is DC3 for 𝑓𝑛.

Proof. Let (𝑥, 𝑦) be a DC3 pair for 𝑓, and let 𝐽 be an open
interval such that Φ𝑥𝑦(𝑡, 𝑓) < Φ∗𝑥𝑦(𝑡, 𝑓) for every 𝑡 ∈ 𝐽.
There is 𝑠 ∈ 𝐽 such that each function Φ𝑓𝑖(𝑥)𝑓𝑖(𝑦)(⋅, 𝑓

𝑛),
Φ∗𝑓𝑖(𝑥)𝑓𝑖(𝑦)(⋅, 𝑓

𝑛), 𝑖 = 0, 1, . . . , 𝑛 − 1, is continuous at 𝑠.
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Observe first that if we denote that 𝑙 = 𝑘𝑛 + 𝑟, for some
0 ≤ 𝑟 < 𝑛 and 𝑘 ≥ 0 (here 𝑘, 𝑟 depend on 𝑙; i.e., 𝑘 = 𝑘(𝑙),
𝑟 = 𝑘(𝑟)), then

𝑛−1

∑
𝑖=0

𝜉𝑓𝑛 (𝑓
𝑖
(𝑥) , 𝑓

𝑖
(𝑦) , 𝑘, 𝑡)

≤ 𝜉𝑓 (𝑥, 𝑦, 𝑙, 𝑡) ≤

𝑛−1

∑
𝑖=0

𝜉𝑓𝑛 (𝑓
𝑖
(𝑥) , 𝑓

𝑖
(𝑦) , 𝑘 + 1, 𝑡) .

(30)

This immediately implies that

𝑛−1

∑
𝑖=0

Φ𝑓𝑖(𝑥)𝑓𝑖(𝑦) (𝑡)

=

𝑛−1

∑
𝑖=0

lim inf
𝑘→∞

1

𝑘
𝜉𝑓𝑛 (𝑓

𝑖
(𝑥) , 𝑓

𝑖
(𝑦) , 𝑘, 𝑡)

≤ 𝑛 lim inf
𝑙→∞

1

𝑛𝑘 (𝑙)

×

𝑛−1

∑
𝑖=0

𝜉𝑓𝑛 (𝑓
𝑖
(𝑥) , 𝑓

𝑖
(𝑦) , 𝑘 (𝑙) , 𝑡)

= 𝑛 lim inf
𝑙→∞

1

𝑙

𝑛−1

∑
𝑖=0

𝜉𝑓𝑛 (𝑓
𝑖
(𝑥) , 𝑓

𝑖
(𝑦) , 𝑘 (𝑙) , 𝑡)

≤ 𝑛 lim inf
𝑙→∞

1

𝑙
𝜉𝑓 (𝑥, 𝑦, 𝑙, 𝑡) = 𝑛Φ𝑥𝑦 (𝑡) .

(31)

Similar calculations lead to the following:

𝑛−1

∑
𝑖=0

Φ
∗
𝑓𝑖(𝑥)𝑓𝑖(𝑦) (𝑡) ≥ 𝑛Φ

∗
𝑥𝑦 (𝑡) . (32)

Now, if none of pairs (𝑓𝑖(𝑥), 𝑓𝑖(𝑦)) is DC3, then
Φ𝑓𝑖(𝑥)𝑓𝑖(𝑦)(𝑠) = Φ∗𝑓𝑖(𝑥)𝑓𝑖(𝑦)(𝑠) for 𝑖 = 0, 1, . . . , 𝑛 − 1, and,
hence, Φ𝑥𝑦(𝑠) = Φ∗𝑥𝑦(𝑠), which is a contradiction.

Next we show that not all 𝑟 = 0, 1, . . . , 𝑛 − 1 are allowed
choices in Theorem 7.

Theorem8. There is amap𝑓 and a pair (𝑥, 𝑦) such that (𝑥, 𝑦)
is DC3 for 𝑓2 but not DC3 for 𝑓.

Proof. Put 𝑠𝑘 = 2𝑘
2

for 𝑘 ≥ 1. Then we have

lim
𝑘→∞

𝑘

𝑠𝑘
= lim
𝑘→∞

𝑠𝑘

𝑠𝑘+1
= 0. (33)

Define a sequence 𝑥𝑛 = (1/(𝑛 + 1), 𝑡𝑛) ∈ R2 by putting
𝑡0 = 𝑡2 = 1/4,

𝑡2𝑖 =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

1

4
+

𝑖 − 𝑠2𝑘+1

2 (2𝑘 + 1)
, if 𝑠2𝑘+1 ≤ 𝑖 < 𝑠2𝑘+1 + (2𝑘 + 1) ,

3

4
, if 𝑠2𝑘+1 + (2𝑘 + 1) ≤ 𝑖 < 𝑠2𝑘+2,

3

4
−

𝑖 − 𝑠2𝑘+2

2 (2𝑘 + 2)
, if 𝑠2𝑘+2 ≤ 𝑖 < 𝑠2𝑘+2 + (2𝑘 + 2) ,

1

4
, if 𝑠2𝑘+2 + (2𝑘 + 2) ≤ 𝑖 < 𝑠2𝑘+3,

(34)

for 𝑘 ≥ 0, and 𝑡2𝑖+1 = 𝑡2𝑖 − 1 for 𝑖 ≥ 0. Next put 𝑦𝑛 = (1/(𝑛 +

1), 0) for 𝑛 ≥ 0. Finally𝑋 = {𝑥𝑛, 𝑦𝑛; 𝑛 ≥ 0}.
We define 𝑓 : 𝑋 → 𝑋 by putting 𝑓(𝑥𝑛) = 𝑥𝑛+1,

𝑓(𝑦𝑛) = 𝑦𝑛+1, 𝑓((0, 0)) = 0, 𝑓((0, 𝑡)) = (0, 𝑡 − 1) for
𝑡 ∈ [1/4, 3/4] and 𝑓((0, 𝑡)) = (0, 𝑡 + 1) for 𝑡 ∈ [−3/4, −1/4].
Since lim𝑛→∞𝑑(𝑥𝑛, 𝑥𝑛+2) = 0, it is easy to verify that 𝑓 is
continuous.

Put 𝑥 = 𝑥0 and 𝑦 = 𝑦0. By (33) and comparing
𝑑(𝑓𝑖+1(𝑥), 𝑓𝑖+1(𝑦)) with 𝑑(𝑓𝑖(𝑥), 𝑓𝑖(𝑦)), we have that

lim
𝑛→∞

1

𝑛
# {𝑖; 𝑑 (𝑓

𝑖
(𝑥) , 𝑓

𝑖
(𝑦)) =

1

4
, 0 ≤ 𝑖 ≤ 𝑛 − 1}

= lim
𝑛→∞

1

𝑛
# {𝑖; 𝑑 (𝑓

𝑖
(𝑥) , 𝑓

𝑖
(𝑦)) =

3

4
, 0 ≤ 𝑖 ≤ 𝑛 − 1}

=
1

2
.

(35)

Thus Φ∗𝑥𝑦(𝑡, 𝑓) = Φ𝑥𝑦(𝑡, 𝑓) for all 𝑡 > 0. That is to say, (𝑥, 𝑦)
is not a DC3 pair for 𝑓.

On the other hand, 𝑑(𝑓2𝑖(𝑥), 𝑓2𝑖(𝑦)) = 𝑡2𝑖 for all 𝑖 ≥ 0;
hence, by (33) we have that

lim
𝑘→∞

1

𝑠2𝑘
# {𝑖; 𝑑 ((𝑓

2
)
𝑖
(𝑥) , (𝑓

2
)
𝑖
(𝑦)) =

3

4
, 0 ≤ 𝑖 ≤ 𝑠2𝑘 − 1}

= lim
𝑘→∞

1

𝑠2𝑘+1
# {𝑖 : 𝑑 ((𝑓

2
)
𝑖
(𝑥) , (𝑓

2
)
𝑖
(𝑦)) =

1

4
,

0 ≤ 𝑖 ≤ 𝑠2𝑘+1 − 1}

= 1.

(36)

Therefore Φ∗𝑥𝑦(𝑡, 𝑓
2) = 1 and Φ𝑥𝑦(𝑡, 𝑓

2) = 0 for every 𝑡 ∈

(1/4, 3/4). In other words, we have just proved that (𝑥, 𝑦) is a
DC3 pair for 𝑓2, and so the proof is completed.

Remark 9. In [10] there is another example of 𝑓 with such
property as in Theorem 8. But the example here is more
simple and has zero topological entropy.

Theorem 10. There is a map 𝑓 and a pair (𝑥, 𝑦) such that
(𝑥, 𝑦) is DC3 for 𝑓 but not DC3 for 𝑓2.
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Proof. Let 𝑥𝑛, 𝑦𝑛 be the sequences defined inTheorem 8 with
the only difference that now 𝑑(𝑝, 𝑞) = 1/4 + |𝑝1 − 𝑞1| if
𝑝 ∈ R × [−∞, 0] and 𝑞 ∈ R × [1/4, +∞], where 𝑝1, 𝑞1
denote first coordinates of respective points. We keep 𝑑 as
Euclidean distance for all other points. Now, if we consider
𝑥, 𝑦 as inTheorem 8, then distance between their orbits under
𝑓2 is equal to 1/4 for any iterate of 𝑓2, while Φ∗𝑥𝑦(𝑡, 𝑓) = 1,
Φ𝑥𝑦(𝑡, 𝑓) = 1/2 for every 𝑡 ∈ (1/4, 3/4).
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