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In this note, we consider global asymptotic stability of the following nonlinear difference equation𝑥
𝑛
= (∏

V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+1)+∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

−

1))/(∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) − ∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)), 𝑛 = 0, 1, . . ., where 𝑘
𝑖
∈ N (𝑖 = 1, 2, . . . , V), V ≥ 2, 𝛽

1
∈ [−1, 1], 𝛽

2
, 𝛽
3
, . . . , 𝛽V ∈ (−∞, +∞),

𝑥
−𝑚
, 𝑥
−𝑚+1
, . . . , 𝑥

−1
∈ (0,∞), and 𝑚 = max

1≤𝑖≤V{𝑘𝑖}. Our result generalizes the corresponding results in the recent literature and
simultaneously conforms to a conjecture in the work by Berenhaut et al. (2007).

1. Introduction

The study of dynamical properties of nonlinear difference
equations has been an area of intense interest in recent years
(e.g., see [1–13]).

In [4], by analysis of semicycle structure, the authors
discussed the global asymptotic stability of rational difference
equation

𝑥
𝑛+1
=

𝑥
𝑛
𝑥
𝑛−1
+ 1

𝑥
𝑛
+ 𝑥
𝑛−1

, 𝑛 = 0, 1, . . . , (1)

where the initial values 𝑥
−1
, 𝑥
0
∈ (0, +∞).

Li [5, 6] investigated the qualitative behavior of the
rational difference equations

𝑥
𝑛
=

𝑥
𝑛−1
+ 𝑥
𝑛−2
+ 𝑥
𝑛−4
+ 𝑥
𝑛−1
𝑥
𝑛−2
𝑥
𝑛−4
+ 𝑎

1 + 𝑥
𝑛−1
𝑥
𝑛−2
+ 𝑥
𝑛−2
𝑥
𝑛−4
+ 𝑥
𝑛−1
𝑥
𝑛−4
+ 𝑎

,

𝑛 = 0, 1, 2, . . . ,

𝑥
𝑛
=

𝑥
𝑛−2
+ 𝑥
𝑛−3
+ 𝑥
𝑛−4
+ 𝑥
𝑛−2
𝑥
𝑛−3
𝑥
𝑛−4
+ 𝑎

1 + 𝑥
𝑛−2
𝑥
𝑛−3
+ 𝑥
𝑛−3
𝑥
𝑛−4
+ 𝑥
𝑛−2
𝑥
𝑛−4
+ 𝑎

,

𝑛 = 0, 1, 2, . . . ,

(2)

with 𝑥
−4
, 𝑥
−3
, . . . , 𝑥

−1
∈ (0,∞) and 𝑎 ∈ [0,∞) via analysis

of semicycle structure and verified that every solution of (2)
converges to equilibrium 1.

By using the transformation method, Berenhaut et al.
[1] studied the behavior of positive solutions to the rational
difference equation

𝑥
𝑛
=

𝑥
𝑛−𝑘
+ 𝑥
𝑛−𝑚

1 + 𝑥
𝑛−𝑘
𝑥
𝑛−𝑚

, 𝑛 = 0, 1, 2, . . . , (3)

with 𝑥
−𝑚
, 𝑥
−𝑚+1
, . . . , 𝑥

−1
∈ (0,∞) and 1 ≤ 𝑘 < 𝑚 and proved

that every solution of (3) converges to the unique equilibrium
1. Based on the above facts, Berenhaut et al. [1] put forward the
following two conjectures.

Conjecture 1. Suppose that 1 ≤ 𝑘 < 𝑙 < 𝑚 and that {𝑥
𝑛
}

satisfies

𝑥
𝑛
=

x
𝑛−𝑘
+ 𝑥
𝑛−𝑙
+ 𝑥
𝑛−𝑚
+ 𝑥
𝑛−𝑘
𝑥
𝑛−𝑙
𝑥
𝑛−𝑚

1 + 𝑥
𝑛−𝑘
𝑥
𝑛−𝑙
+ 𝑥
𝑛−𝑙
𝑥
𝑛−𝑚
+ 𝑥
𝑛−𝑚
𝑥
𝑛−𝑘

,

𝑛 = 0, 1, 2, . . .

(4)

with 𝑥
−𝑚
, 𝑥
−𝑚+1
, . . . , 𝑥

−1
∈ (0,∞). Then, the sequence {𝑥

𝑛
}

converges to the unique equilibrium 1.
Conjecture 2. Suppose that𝑚 is odd and 1 ≤ 𝑘

1
< 𝑘
2
< ⋅ ⋅ ⋅ <

𝑘
𝑚
, and define 𝑆 = {1, 2, . . . , 𝑚}. If {𝑥

𝑛
} satisfies

𝑥
𝑛
=

𝑓
1
(𝑥
𝑛−𝑘1
, 𝑥
𝑛−𝑘2
, . . . , 𝑥

𝑛−𝑘𝑚
)

𝑓
2
(𝑥
𝑛−𝑘1
, 𝑥
𝑛−𝑘2
, . . . , 𝑥

𝑛−𝑘𝑚
)

,

𝑛 = 0, 1, 2, . . . ,

(5)
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with 𝑥
−𝑘𝑚
, 𝑥
−𝑘𝑚+1

, . . . , 𝑥
−1
∈ (0,∞), where

𝑓
1
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

= ∑

𝑗∈{1,3,...,𝑚}

∑

{𝑡1,𝑡2 ,...,𝑡𝑗}⊂𝑆;

𝑡1<𝑡2<⋅⋅⋅<𝑡𝑗

𝑥
𝑡1
, 𝑥
𝑡2
, . . . , 𝑥

𝑡𝑗
,

𝑓
2
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

= 1 + ∑

𝑗∈{2,4,...,𝑚−1}

∑

{𝑡1,𝑡2 ,...,𝑡𝑗}⊂𝑆;

𝑡1<𝑡2<⋅⋅⋅<𝑡𝑗

𝑥
𝑡1
, 𝑥
𝑡2
, . . . , 𝑥

𝑡𝑗
,

(6)

then the sequence {𝑥
𝑛
} converges to the unique equilibrium 1.

Recently, by method used in [4–6], the authors of [12]
studied the global asymptotic stability of the following
nonlinear difference equation.

𝑥
𝑛+1
=

𝐹 (𝑥
𝑛
, 𝑥
𝑛−1
, 𝑥
𝑛−2
, 𝑥
𝑛−3
)

𝐺 (𝑥
𝑛
, 𝑥
𝑛−1
, 𝑥
𝑛−2
, 𝑥
𝑛−3
)

,

𝑛 = 0, 1, . . . ,

(7)

where

𝐹 (𝑥, 𝑦, 𝑧, 𝑤) = 𝑥
𝛼1
𝑦
𝛼2
+ 𝑥
𝛼1
𝑧
𝛼3
+ 𝑥
𝛼1
𝑤
𝛼4
+ 𝑦
𝛼2
𝑧
𝛼3

+ 𝑦
𝛼2
𝑤
𝛼4
+ 𝑧
𝛼3
𝑤
𝛼4
+ 𝑥
𝛼1
𝑦
𝛼2
𝑧
𝛼3
𝑤
𝛼4
+ 1,

𝐺 (𝑥, 𝑦, 𝑧, 𝑤) = 𝑥
𝛼1
+ 𝑦
𝛼2
+ 𝑧
𝛼3
+ 𝑤
𝛼4
+ 𝑥
𝛼1
𝑦
𝛼2
𝑧
𝛼3

+ 𝑥
𝛼1
𝑦
𝛼2
𝑤
𝛼4
+ 𝑥
𝛼1
𝑧
𝛼3
𝑤
𝛼4
+ 𝑦
𝛼2
𝑧
𝛼3
𝑤
𝛼4
,

(8)

the parameter 𝛼
1
∈ (0, 1], 𝛼

2
, 𝛼
3
, 𝛼
4
∈ (0, +∞), and the ini-

tial values 𝑥
−3
, 𝑥
−2
, 𝑥
−1
, 𝑥
0
∈ (0, +∞).

Motivated by the above studies, in this note, we propose
and consider the following nonlinear difference equation.

𝑥
𝑛
=

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) + ∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) − ∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

,

𝑛 = 0, 1, . . . ,

(9)

where 𝑘
𝑖
∈ N (𝑖 = 1, 2, . . . , V), V ≥ 2, 𝛽

1
∈ [−1, 1],

𝛽
2
, 𝛽
3
, . . . , 𝛽V ∈ (−∞, +∞), 𝑥−𝑚, 𝑥−𝑚+1, . . . , 𝑥−1 ∈ (0,∞),

and𝑚 = max
1≤𝑖≤V{𝑘𝑖}.

It is noticed that, letting V = 2, 𝛽
1
= 𝛽
2
= 1, 𝑘

1
= 1,

and 𝑘
2
= 2, (9) reduces to (1); letting V = 3, 𝛽

1
= 𝛽
2
= 𝛽
3
=

1, 𝑘
1
= 1, 𝑘

2
= 2, and 𝑘

3
= 4 and V = 3, 𝛽

1
= 𝛽
2
= 𝛽
3
= 1,

𝑘
1
= 2, 𝑘

2
= 3, and 𝑘

3
= 4, (9) reduces to (2); letting V =

2, 𝛽
1
= 𝛽
2
= 1, 𝑘
1
= 𝑘, and 𝑘

2
= 𝑚, (9) reduces to (3); letting

V = 3, 𝛽
1
= 𝑘, 𝛽

2
= 𝑙, and 𝛽

3
= 𝑚, (9) reduces to (4); letting

V = 4, 𝛽
1
∈ (0, 1], 𝛽

𝑖
= 𝛼
𝑖
(𝑖 = 1, 2, 3, 4), 𝑘

1
= 1, 𝑘

2
= 2,

𝑘
3
= 3, and 𝑘

4
= 4, (9) reduces to (7); letting V = 𝑚 be odd,

1 ≤ 𝑘
1
< 𝑘
2
< ⋅ ⋅ ⋅ < 𝑘

𝑚
, and 𝛽

1
= 𝛽
2
= ⋅ ⋅ ⋅ = 𝛽

𝑚
= 1, (9)

reduces to (5). Clearly, (5) is a special example of (9).
In 2007, Berenhaut and Stević [2] had proved

Conjecture 1. In this paper, by making full use of analytical

techniques, we mainly prove that the unique positive
equilibrium point of (9) is globally asymptotically stable. It is
clear that our result generalizes the corresponding works in
[1, 2, 4–9, 12] and simultaneously conforms to Conjecture 2.

2. Existence of a Unique Positive Equilibrium

In this section, wemainly show the existence of a unique posi-
tive equilibrium of (9).

Theorem 3. In (9) there exists a unique positive equilibrium
point 𝑥 = 1.

Proof. A positive equilibrium point 𝑥 of (9) satisfies the next
equation:

𝑥 =

∏
V
𝑖=1
(𝑥
𝛽𝑖
+ 1) + ∏

V
𝑖=1
(𝑥
𝛽𝑖
− 1)

∏
V
𝑖=1
(𝑥
𝛽𝑖
+ 1) − ∏

V
𝑖=1
(𝑥
𝛽𝑖
− 1)

, (10)

from which we may get

(𝑥 − 1)

V

∏

𝑖=1

(𝑥
𝛽𝑖
+ 1) = (𝑥 + 1)

V

∏

𝑖=1

(𝑥
𝛽i
− 1) ; (11)

that is,

(𝑥 − 1) (𝑥
𝛽1
+ 1)

V

∏

𝑖=2

(𝑥
𝛽𝑖
+ 1)

= (𝑥 + 1) (𝑥
𝛽1
− 1)

V

∏

𝑖=2

(𝑥
𝛽𝑖
− 1) .

(12)

From the above equation, we can get

(𝑥
𝛽1+1

− 1)(

V

∏

𝑖=2

(𝑥
𝛽𝑖
+ 1) −

V

∏

𝑖=2

(𝑥
𝛽𝑖
− 1))

+ (𝑥 − 𝑥
𝛽1
)(

V

∏

𝑖=2

(𝑥
𝛽𝑖
+ 1) +

V

∏

𝑖=2

(𝑥
𝛽𝑖
− 1)) = 0.

(13)

One can see that for any 𝑥 > 0 and V ≥ 2,
V

∏

𝑖=2

(𝑥
𝛽𝑖
+ 1) −

V

∏

𝑖=2

(𝑥
𝛽𝑖
− 1) > 0,

V

∏

𝑖=2

(𝑥
𝛽𝑖
+ 1) +

V

∏

𝑖=2

(𝑥
𝛽𝑖
− 1) > 0.

(14)

(i) If 𝛽
1
= −1, 0, 1, from (13) and (14), we can get that (9)

has a unique positive equilibrium 𝑥 = 1.
(ii) If −1 < 𝛽

1
< 0 or 0 < 𝛽

1
< 1 and 0 < 𝑥 < 1, we have

𝑥 < 𝑥
𝛽1
, 𝑥

𝛽1+1

< 1. (15)

Further, we have

(𝑥
𝛽1+1

− 1)(

V

∏

𝑖=2

(𝑥
𝛽𝑖
+ 1) −

V

∏

𝑖=2

(𝑥
𝛽𝑖
− 1))

+ (𝑥 − 𝑥
𝛽1
)(

V

∏

𝑖=2

(𝑥
𝛽𝑖
+ 1) +

V

∏

𝑖=2

(𝑥
𝛽𝑖
− 1)) < 0.

(16)
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(iii) If −1 < 𝛽
1
< 0 or 0 < 𝛽

1
< 1 and 𝑥 > 1, we have

(𝑥
𝛽1+1

− 1)(

V

∏

𝑖=2

(𝑥
𝛽𝑖
+ 1) −

V

∏

𝑖=2

(𝑥
𝛽𝑖
− 1))

+ (𝑥 − 𝑥
𝛽1
)(

V

∏

𝑖=2

(𝑥
𝛽𝑖
+ 1) +

V

∏

𝑖=2

(𝑥
𝛽𝑖
− 1)) > 0.

(17)

It is clear that (9) has a unique positive equilibrium 𝑥 = 1.
The proof is complete.

3. Global Asymptotic Stability for the Unique
Positive Equilibrium Point

In this section, we give our main result.

Theorem 4. The unique positive equilibrium point 𝑥 = 1 of
(9) is globally asymptotically stable.

In order to prove Theorem 4, we introduce the following
lemma by Kruse and Nesemann [3] andmake full use of ana-
lytical techniques.

Lemma 5. Consider the difference equation

𝑥
𝑛+𝑘
= 𝑓 (𝑥

𝑛+𝑘−1
, . . . , 𝑥

𝑛
) , 𝑛 = 0, 1, 2, . . . , (18)

where 𝑘 ∈ N and 𝑓 : (0,∞)𝑘 → (0,∞) is a continuous
function with some unique equilibrium 𝑥. Suppose that there
is a 𝑝 ∈ N such that for all solutions {𝑥

𝑛
} of (18)

(𝑥
𝑛
− 𝑥
𝑛+𝑝
)(

𝑥
2

𝑥
𝑛

− 𝑥
𝑛+𝑝
) ≤ 0, (19)

where equality holds if and only if 𝑥
𝑛
= 𝑥. Then 𝑥 is globally

asymptotically stable.

Proof of Theorem 4. Let {𝑥
𝑛
}
∞

𝑛=−𝑚
be any solution of (9). We

have

𝑥
𝑛
− 𝑥
𝛽1

𝑛−𝑘1

=

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) + ∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) − ∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

− 𝑥
𝛽1

𝑛−𝑘1

=

(1 − 𝑥
𝛽1

𝑛−𝑘1

)∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) + (1 + 𝑥
𝛽1

𝑛−𝑘1

)∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) − ∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

=

(1 − 𝑥
𝛽1

𝑛−𝑘1

) (1 + 𝑥
𝛽1

𝑛−𝑘1

) (∏
V
𝑖=2
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) − ∏
V
𝑖=2
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1))

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) − ∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

,

𝑛 = 0, 1, . . . ,

1

𝑥
𝛽1

𝑛−𝑘1

− 𝑥
𝑛

=

1

𝑥
𝛽1

𝑛−𝑘1

−

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) + ∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) − ∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

=

(1 − 𝑥
𝛽1

𝑛−𝑘1

)∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) − (1 + 𝑥
𝛽1

𝑛−𝑘1

)∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) − ∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

,

=

(1 − 𝑥
𝛽1

𝑛−𝑘1

) (1 + 𝑥
𝛽1

𝑛−𝑘1

) (∏
V
𝑖=2
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) + ∏
V
𝑖=2
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1))

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

+ 1) − ∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛−𝑘𝑖

− 1)

,

𝑛 = 0, 1, . . . .

(20)

It follows from (20) that

𝑥𝑛+𝑘1
− 𝑥
𝛽1
𝑛

=

(1 − 𝑥
𝛽1
𝑛
) (1 + 𝑥

𝛽1
𝑛
) (∏

V
𝑖=2
(𝑥
𝛽𝑖

𝑛+𝑘1−𝑘𝑖
+ 1) − ∏

V
𝑖=2
(𝑥
𝛽𝑖

𝑛+𝑘1−𝑘𝑖
− 1))

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛+𝑘1−𝑘𝑖
+ 1) − ∏

V
𝑖=1
(𝑥
𝛽𝑖

𝑛+𝑘1−𝑘𝑖
− 1)

,

𝑛 = −𝑘1, −𝑘1 + 1, . . . ,

1

𝑥
𝛽1
𝑛

− 𝑥𝑛+𝑘1

=

(1 − 𝑥
𝛽1
𝑛
) (1 + 𝑥

𝛽1
𝑛
) (∏

V
𝑖=2
(𝑥
𝛽𝑖

𝑛+𝑘1−𝑘𝑖
+ 1) + ∏

V
𝑖=2
(𝑥
𝛽𝑖

𝑛+𝑘1−𝑘𝑖
− 1))

∏
V
𝑖=1
(𝑥
𝛽𝑖

𝑛+k1−𝑘𝑖
+ 1) − ∏

V
𝑖=1
(𝑥
𝛽𝑖

𝑛+𝑘1−𝑘𝑖
− 1)

,

𝑛 = −𝑘1, −𝑘1 + 1, . . . .

(21)

Clearly, from (21), we have

(𝑥
𝛽1

𝑛
− 𝑥
𝑛+𝑘1
)(

1

𝑥
𝛽1

𝑛

− 𝑥
𝑛+𝑘1
) ≤ 0,

𝑛 = −𝑘
1
, −𝑘
1
+ 1, . . . .

(22)

From (22), we have

1− 𝑥
𝑛+𝑘1
(

1

𝑥
𝛽1

𝑛

+ 𝑥
𝛽1

𝑛
) + 𝑥

2

𝑛+𝑘1

≤ 0,

𝑛 = −𝑘
1
, −𝑘
1
+ 1, . . . .

(23)

If 𝛽
1
= ±1, it is clear that

1

𝑥
𝛽1

𝑛

+ 𝑥
𝛽1

𝑛
=

1

𝑥
𝑛

+ 𝑥
𝑛
. (24)

If 0 < 𝑥
𝑛
< 1 and −1 < 𝛽

1
< 1, we have 𝑥

𝑛
< 𝑥
𝛽1

𝑛
and

0 < 𝑥
𝛽1+1

𝑛
< 1, so that

(𝑥
𝑛
− 𝑥
𝛽1

𝑛
)(1 −

1

𝑥
𝑛
𝑥
𝛽1

𝑛

) > 0. (25)
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Similarly, if 𝑥
𝑛
> 1 and −1 < 𝛽

1
< 1, we have 𝑥

𝑛
> 𝑥
𝛽1

𝑛
and

𝑥
𝛽1+1

𝑛
> 1, so that

(𝑥
𝑛
− 𝑥
𝛽1

𝑛
)(1 −

1

𝑥
𝑛
𝑥
𝛽1

𝑛

) > 0. (26)

Hence, for −1 ≤ 𝛽
1
≤ 1, we always have

1

𝑥
𝛽1

𝑛

+ 𝑥
𝛽1

𝑛
≤

1

𝑥
𝑛

+ 𝑥
𝑛
. (27)

Further, from (23) and (27), we have

1 − 𝑥
𝑛+𝑘1
(

1

𝑥
𝑛

+ 𝑥
𝑛
) + 𝑥
2

𝑛+𝑘1

≤ 1 − 𝑥
𝑛+𝑘1
(

1

𝑥
𝛽1

𝑛

+ 𝑥
𝛽1

𝑛
) + 𝑥

2

𝑛+𝑘1

≤ 0,

𝑛 = −𝑘
1
, −𝑘
1
+ 1, . . . .

(28)

Therefore,

(𝑥
𝑛
− 𝑥
𝑛+𝑘1
) (

1

𝑥
𝑛

− 𝑥
𝑛+𝑘1
) ≤ 0,

𝑛 = −𝑘
1
, −𝑘
1
+ 1, . . . ,

(29)

where equality holds if and only if 𝑥
𝑛
= 𝑥 = 1. By Lemma 5

and (29), with 𝑝 = 𝑘
1
∈ N, it follows that the unique positive

equilibrium point 𝑥 = 1 of (9) is globally asymptotically
stable. The proof is complete.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The author is grateful to the referees for their careful reading
of the paper and many valuable comments and suggestions
that greatly improved the presentation of this work. This
paper is supported partly by Hunan Provincial Natural Sci-
ence Foundation ofChina (no. 13JJ3075), Soft Science Fund of
Science and Technology Department of Hunan Province (no.
2011ZK3066), Start-up Fund of University of South China
(no. 2011XQD49), and the construct program in USC.

References

[1] K. S. Berenhaut, J. D. Foley, and S. Stević, “The global attractivity
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