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A Nicholson’s blowflies model with feedback control and time delay is studied. By applying the comparison theorem of the
differential equation and fluctuation lemma and constructing a suitable Lyapunov functional, sufficient conditions which guarantee
the permanence, extinction, and existence of a unique globally attractive positive almost periodic solution of the system are
obtained. It is proved that the feedback control variable and time delay have no influence on the permanence and extinction of
the system.

1. Introduction

Let 𝑓(𝑡) be any continuous bounded function defined on
[0, +∞); we set

𝑓𝑙 = inf
𝑡≥0
𝑓 (𝑡) , 𝑓𝑢 = sup

𝑡≥0

𝑓 (𝑡) . (1)

In order to describe the dynamics ofNicholson’s blowflies,
Gurney et al. [1] proposed the following mathematical model
in 1980:

�̇� (𝑡) = −𝛿𝑁 (𝑡) + 𝑃𝑁 (𝑡 − 𝜏) 𝑒
−𝑎𝑁(𝑡−𝜏), (2)

where𝑁(𝑡) is the size of the population at time 𝑡,𝑃 is themax-
imum per capita daily egg production rate, (1/𝑎) is the size at
which the population reproduces at itsmaximum rate, 𝛿 is the
per capita daily adult death rate, and 𝜏 is the generation time.
Kulenović and Ladas [2], Győri and Ladas [3], and Győri
and Trofimchuk [4] investigated the oscillatory behaviors of
the solutions of (2). For the attractivity, Kulenović et al. [5]
and So and Yu [6] have shown that, when 𝑃 > 𝛿, every
positive solution 𝑁(𝑡) of (2) tends to a positive equilibrium
𝑁∗ = (1/𝑎) ln(𝑃/𝛿) as 𝑡 → ∞ if

(𝑒𝛿𝜏 − 1) (
𝑃

𝛿
− 1) < 1. (3)

Reference [5] further showed that, for 𝑃 ≤ 𝛿, every
nonnegative solution of (2) tends to zero as 𝑡 → ∞, and
for 𝑃 > 𝛿, (2) is uniformly persistent. Furthermore, Li and
Fan [7] considered the following nonautonomous equation:

�̇� (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑥 (𝑡)}) , (4)

where 𝛼(𝑡), 𝛿(𝑡), and 𝑝(𝑡) are all positive 𝜔-periodic func-
tions. The authors show that (4) has a unique globally
attractive 𝜔-periodic positive solution if

𝑝 (𝑡) > 𝛿 (𝑡) for 𝑡 ∈ [0, 𝜔] . (5)

Their results improved the results of Saker and Agarwal [8]
who considered system (4) with 𝛼(𝑡) = 𝑎 (𝑎 is a constant).

Recently, Wang and Fan [9] proposed the following
discrete Nicholson’s blowflies model with feedback control:

𝑥 (𝑛 + 1) = 𝑥 (𝑛) exp {−𝛿 (𝑛) + 𝑝 (𝑛) exp {−𝛼 (𝑛) 𝑥 (𝑛)}

−𝑐 (𝑛) 𝜇 (𝑛)} ,

Δ𝜇 (𝑛) = −𝑎 (𝑛) 𝜇 (𝑡) + 𝑏 (𝑛) 𝑥 (𝑛 − 𝑚) .

(6)

Sufficient conditions are established for the permanence and
the extinction of the system (6). They show that the bounded
feedback terms do not have any influence on the permanence
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or extinction of (6). The authors in [9] also proposed the
following continuous model:

�̇� (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑥 (𝑡)} − 𝑐 (𝑡) 𝜇 (𝑡)) ,

�̇� (𝑡) = −𝑎 (𝑡) 𝜇 (𝑡) + 𝑏 (𝑡) 𝑥 (𝑡 − 𝜏) ;

(7)

however, they did not discuss the dynamic behaviors of
the system (7). Considering that continuous models can
excellently show the dynamic behaviors of those populations
who have a long life cycle, overlapping generations, and large
quantity, sufficient conditions for the permanence, global
attractivity, and the existence of a unique, globally attractive,
strictly positive almost periodic solution of the system (7)
with 𝜏 = 0 are obtained by Yu [10]. As pointed out by
Nindjin et al. [11], time delay plays an important role in many
biological dynamical systems, being particularly relevant in
ecology and a model with time delay is a more realistic
approach to the understanding of dynamics. Hence, it is
necessary to study the model (7) which contains time delay.

In the following discussion, we always assume that
𝛿(𝑡), 𝑝(𝑡), 𝛼(𝑡), 𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡) are all continuous, positive
almost periodic functions. Also, from the viewpoint of math-
ematical biology, we consider (7) together with the following
initial conditions:

𝑥 (𝜃) = 𝜑 (𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0] 𝜑 (0) > 0,

𝜇 (𝜃) = 𝜓 (𝜃) ≥ 0, 𝜃 ∈ [−𝜏, 0] 𝜓 (0) > 0,
(8)

where 𝜑(𝑠) and 𝜓(𝑠) are continuous on [−𝜏, 0]. It is not
difficult to see that solutions of (7) and (8) are well defined
for all 𝑡 ≥ 0 and satisfy

𝑥 (𝑡) > 0, 𝜇 (𝑡) > 0, for 𝑡 ≥ 0. (9)

The aim of this paper is, by constructing a suitable
Lyapunov functional and applying the analysis technique
of Feng et al. [12], to obtain sufficient conditions for the
existence of a unique globally attractive positive almost
periodic solution of the system (7) with initial condition (8).

This paper is organized as follows. In Section 2, by
applying the analysis technique of [13, 14] and Fluctuation
lemma [15, 16], we present the permanence and the extinction
of model (7) and (8). In Section 3, by constructing a suitable
Lyapunov functional, a sufficient conditions for the existence
of a unique globally attractive positive almost periodic solu-
tion of the system (7) and (8). Examples together with their
numeric simulations are stated in Section 4. For more works
on almost periodic solutions of the ecosystem with feedback
control, one could refer to [17–23] and the references cited
therein.

2. Permanence and Extinction

Now let us state several lemmas which will be useful in
proving the main result of this section.

Lemma 1 (see [13]). Assume that 𝑎 > 0, 𝑏(𝑡) > 0 is a
boundedness continuous function and 𝑥(0) > 0. Further
suppose that

(i)

�̇� (𝑡) ≤ −𝑎𝑥 (𝑡) + 𝑏 (𝑡) (10)

then for all 𝑡 ≥ 𝑠,

𝑥 (𝑡) ≤ 𝑥 (𝑡 − 𝑠) exp {−𝑎𝑠} + ∫
𝑡

𝑡−𝑠

𝑏 (𝜏) exp {𝑎 (𝜏 − 𝑡)} 𝑑𝜏.

(11)

Particularly, if 𝑏(𝑡) is bounded above with respect to𝑀,
then

lim sup
𝑡→+∞

𝑥 (𝑡) ≤
𝑀

𝑎
. (12)

(ii) Also suppose that

�̇� (𝑡) ≥ −𝑎𝑥 (𝑡) + 𝑏 (𝑡) ; (13)

then for all 𝑡 ≥ 𝑠,

𝑥 (𝑡) ≥ 𝑥 (𝑡 − 𝑠) exp {−𝑎𝑠} + ∫
𝑡

𝑡−𝑠

𝑏 (𝜏) exp {𝑎 (𝜏 − 𝑡)} 𝑑𝜏.

(14)

Particularly, if 𝑏(𝑡) is bounded above with respect to𝑚,
then

lim inf
𝑡→+∞

𝑥 (𝑡) ≥
𝑚

𝑎
. (15)

Lemma 2 (see [20]). If 𝑎 > 0, 𝑏 > 0 and �̇� ≥ 𝑥(𝑏 − 𝑎𝑥), when
𝑡 ≥ 0 and 𝑥(0) > 0, one has

lim inf
𝑡→+∞

𝑥 (𝑡) ≥
𝑏

𝑎
. (16)

If 𝑎 > 0, 𝑏 > 0, and �̇� ≤ 𝑥(𝑏 − 𝑎𝑥), when 𝑡 ≥ 0 and 𝑥(0) > 0,
one has

lim sup
𝑡→+∞

𝑥 (𝑡) ≤
𝑏

𝑎
. (17)

Lemma 3. Let (𝑥(𝑡), 𝜇(𝑡))𝑇 be any solution of system (7) with
initial condition (8); there exists positive numbers𝑀1 and𝑀2,
which are independent of the solution of the system, such that

lim sup
𝑡→+∞

𝑥 (𝑡) ≤ 𝑀1, lim sup
𝑡→+∞

𝜇 (𝑡) ≤ 𝑀2. (18)

Proof. Let (𝑥(𝑡), 𝜇(𝑡))𝑇 be any solution of system (7) satisfying
initial condition (8). Since𝑥 exp{−𝛼𝑙𝑥(𝑡)} ≤ (1/𝛼𝑙𝑒) for 𝑥 > 0,
according to the positivity of solution and the first equation
of system (7), for 𝑡 ≥ 0,

�̇� (𝑡) ≤ 𝑥 (𝑡) (−𝛿
𝑙 + 𝑝𝑢 exp {−𝛼𝑙𝑥 (𝑡)})

≤ −𝛿𝑙𝑥 (𝑡) +
𝑝𝑢

𝛼𝑙𝑒
,

(19)

where 𝑒 is the mathematical constant.
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By applying Lemma 1(i) to (19), we have

lim sup
𝑡→+∞

𝑥 (𝑡) ≤
𝑝𝑢

𝛿𝑙𝛼𝑙𝑒

Δ
= 𝑀1. (20)

Hence, there exists 𝑇1 > 0 such that

𝑥 (𝑡) ≤ 2𝑀1, ∀𝑡 ≥ 𝑇1. (21)

Equation (21) together with the second equation of (7) leads
to

�̇� (𝑡) ≤ −𝑎
𝑙𝜇 (𝑡) + 2𝑏

𝑢𝑀1, ∀𝑡 ≥ 𝑇1 + 𝜏. (22)

Using Lemma 1(i) again, one has

lim sup
𝑡→+∞

𝜇 (𝑡) ≤
2𝑏𝑢𝑀1
𝑎𝑙
Δ
= 𝑀2. (23)

Obviously, 𝑀𝑖(𝑖 = 1, 2) are independent of the solution of
system (7). Equations (20) and (23) show that the conclusion
of Lemma 3 holds. The proof is completed.

Lemma 4. Assume that

(𝐻1)

𝑝 (𝑡) > 𝛿 (𝑡) , 𝑡 ≥ 0, (24)

holds. Then there exists positive constants 𝑚1 and 𝑚2, which
are independent of the solution of system (7), such that

lim inf
𝑡→+∞

𝑥 (𝑡) ≥ 𝑚1, lim inf
𝑡→+∞

𝜇 (𝑡) ≥ 𝑚2. (25)

Proof. Let (𝑥(𝑡), 𝜇(𝑡))𝑇 be any solution of system (7) satisfy-
ing initial condition (8). From Lemma 3, there exists a 𝑇2 >
𝑇1 + 𝜏 such that for all 𝑡 ≥ 𝑇2, 𝑥(𝑡) ≤ 𝑀, 𝜇(𝑡) ≤ 𝑀,
where𝑀 = 2max{𝑀1,𝑀2}. According to the first equation
of system (7) and the positivity of solution, for 𝑡 ≥ 𝑇2,

�̇� (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑥 (𝑡)} − 𝑐 (𝑡) 𝜇 (𝑡))

≥ 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡)𝑀} − 𝑐 (𝑡)𝑀)

Δ
= −𝑄 (𝑡) 𝑥 (𝑡) ,

(26)

where 𝑄(𝑡) = 𝛿(𝑡) − 𝑝(𝑡) exp{−𝛼(𝑡)𝑀} + 𝑐(𝑡)𝑀.
Integrating both sides of (26) from 𝜂 (𝜂 ≤ 𝑡) to 𝑡 leads to

𝑥 (𝑡)

𝑥 (𝜂)
≥ exp{−∫

𝑡

𝜂

𝑄 (𝑠) 𝑑𝑠} , (27)

or

𝑥 (𝜂) ≤ 𝑥 (𝑡) exp{∫
𝑡

𝜂

𝑄 (𝑠) 𝑑𝑠} . (28)

Particularly, taking 𝜂 = 𝑡 − 𝜏, one can get

𝑥 (𝑡 − 𝜏) ≤ 𝑥 (𝑡) exp{∫
𝑡

𝑡−𝜏

𝑄 (𝑠) 𝑑𝑠} . (29)

Substituting (29) into the second equation of system (7) leads
to

�̇� (𝑡) ≤ −𝑎
𝑙𝜇 (𝑡) + 𝑏

𝑢𝑥 (𝑡) exp{∫
𝑡

𝑡−𝜏

𝑄 (𝑠) 𝑑𝑠} . (30)

Applying Lemma 1(i) to the above differential inequality, for
0 ≤ 𝑠 ≤ 𝑡, one has

𝜇 (𝑡) ≤ 𝜇 (𝑡 − 𝑠) exp {−𝑎𝑙𝑠}

+ ∫
𝑡

𝑡−𝑠

𝑏𝑢𝑥 (𝜂) exp{∫
𝜂

𝜂−𝜏

𝑄 (𝑢) 𝑑𝑢} exp {𝑎𝑙 (𝜂 − 𝑡)} 𝑑𝜂

from (28)
≤ 𝜇 (𝑡 − 𝑠) exp {−𝑎𝑙𝑠}

+ ∫
𝑡

𝑡−𝑠

𝑏𝑢𝑥 (𝑡) exp{∫
𝑡

𝜂

𝑄 (𝑢) 𝑑𝑢} exp{∫
𝜂

𝜂−𝜏

𝑄 (𝑢) 𝑑𝑢}

× exp {𝑎𝑙 (𝜂 − 𝑡)} 𝑑𝜂

≤ 𝜇 (𝑡 − 𝑠) exp {−𝑎𝑙𝑠} + 𝑏𝑢𝑥 (𝑡) ∫
𝑡

𝑡−𝑠

exp{∫
𝑡

𝜂

𝑄 (𝑢) 𝑑𝑢}

× exp{∫
𝜂

𝜂−𝜏

𝑄 (𝑢) 𝑑𝑢}𝑑𝜂,

(31)

wherewe used the factmax𝜂∈[𝑡−𝑠,𝑡] exp{𝑎
𝑙(𝜂−𝑡)} = exp{0} = 1.

Note that there exists a 𝐾, such that 2𝑐𝑢𝑀 exp{−𝑎𝑙𝑠} <
(𝛽/2), as 𝑠 ≥ 𝐾, where 𝛽 = inf 𝑡≥0(𝑝(𝑡) − 𝛿(𝑡)). In fact, we can
choose 𝐾 > (1/𝑎𝑙) ln(4𝑐𝑢𝑀/𝛽). And so, fixing 𝐾, combined
with (31), we can obtain

𝜇 (𝑡) ≤ 𝑀 exp {−𝑎𝑙𝐾} + 𝑏𝑢𝑥 (𝑡) ∫
𝑡

𝑡−𝐾

exp{∫
𝑡

𝜂

𝑄 (𝑢) 𝑑𝑢}

× exp{∫
𝜂

𝜂−𝜏

𝑄 (𝑢) 𝑑𝑢} 𝑑𝜂

≤ 𝑀 exp {−𝑎𝑙𝐾} + 𝐷𝑥 (𝑡) ,
(32)

for all 𝑡 > 𝑇2 + 𝐾, where 𝐷 = sup
𝑡≥𝑇3
(𝑏𝑢

∫
𝑡

𝑡−𝐾
exp{∫𝑡
𝜂
𝑄(𝑢)𝑑𝑢} exp{∫𝜂

𝜂−𝜏
𝑄(𝑢)𝑑𝑢}𝑑𝜂) > 0.

Considering that 𝑒−𝑥 ≥ 1 − 𝑥, for 𝑥 > 0, from the first
equation of system (7) and the positivity of the solution, for
𝑡 > 𝑇2 + 𝐾, we can get

�̇� (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑥 (𝑡)} − 𝑐 (𝑡) 𝜇 (𝑡))

≥ 𝑥 (𝑡) ( − 𝛿 (𝑡) + 𝑝 (𝑡) − 𝑝 (𝑡) 𝛼 (𝑡) 𝑥 (𝑡)

−2𝑐𝑢𝑀 exp {−𝑎𝑙𝐾} − 𝑐𝑢𝐷𝑥 (𝑡))

≥ 𝑥 (𝑡) (
𝛽

2
− (𝑝𝑢𝛼𝑢 + 𝑐𝑢𝐷)𝑥 (𝑡)) .

(33)
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By Lemma 2, we have

lim inf
𝑡→+∞

𝑥 (𝑡) ≥
𝛽

2 (𝑝𝑢𝛼𝑢 + 𝑐𝑢𝐷)

Δ
= 𝑚1. (34)

Thus, there exists 𝑇3 > 𝑇2 + 𝐾 such that for all 𝑡 > 𝑇3,

𝑥 (𝑡) ≥
𝑚1
2
. (35)

Equation (35) together with the second equation of (7) leads
to

�̇� (𝑡) ≥ −𝑎
𝑢𝜇 (𝑡) + 𝑏

𝑙𝑚1
2
, ∀𝑡 > 𝑇3. (36)

By applying Lemma 1(ii) to the above differential inequality,
we have

lim inf
𝑡→+∞

𝜇 (𝑡) ≥
𝑏𝑙𝑚1
2𝑎𝑢
Δ
= 𝑚2. (37)

Obviously, 𝑚𝑖 (𝑖 = 1, 2) are independent of the solution of
system (7). Equations (34) and (37) show that the conclusion
of Lemma 4 holds. The proof is completed.

From Lemmas 3–4 and the definition of permanence, we
can obtain the following conclusion.

Theorem 5. Assume that (𝐻1) holds; then system (7) with
initial condition (8) is permanent.

As a direct corollary of Theorem 2 in [24], from
Theorem 5, we have the following.

Corollary 6. Suppose that (𝐻1) holds; then system
(7) admits at least one positive 𝜔-periodic solution if
𝛿(𝑡), 𝑝(𝑡), 𝛼(𝑡), 𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡) are all continuous positive
𝜔-periodic functions.

Theorem 7. Let (𝑥(𝑡), 𝜇(𝑡))𝑇 be any positive solution of the
system (7) with initial condition (8). Assume that

∫
∞

0

(𝑝 (𝑡) − 𝛿 (𝑡)) 𝑑𝑡 = −∞ or 𝑝 (𝑡) ≤ 𝛿 (𝑡) , 𝑡 ≥ 0

(38)

holds; then

lim
𝑡→+∞

𝑥 (𝑡) = 0, lim
𝑡→+∞

𝜇 (𝑡) = 0. (39)

Proof. Firstly, from the the first equation of (7),

�̇� (𝑡) ≤ 𝑥 (𝑡) (𝑝 (𝑡) − 𝛿 (𝑡)) . (40)

If the former case of (38) holds, then

0 < 𝑥 (𝑡) ≤ 𝑥 (0) exp [∫
𝑡

0

(𝑝 (𝑡) − 𝛿 (𝑡)) 𝑑𝑡] → 0,

as 𝑡 → ∞,

(41)

which shows that lim𝑡→+∞𝑥(𝑡) = 0.

If the latter case of (38) holds, from (40) we have �̇�(𝑡) < 0
or 𝑥(𝑡) is decreasing; therefore, lim𝑡→+∞𝑥(𝑡) = 𝑞 ∈ [0, +∞).
Hence lim sup

𝑡→+∞
= lim inf 𝑡→+∞𝑥(𝑡) = 𝑞. We only need

to show that 𝑞 = 0. Otherwise, if 𝑞 > 0, then there exists
a 𝑇4 > 0, such that 𝑥(𝑡) > (𝑞/2) for 𝑡 ≥ 𝑇4. According to
the Fluctuation lemma, there exists a sequence 𝜉𝑛 → ∞ as
𝑛 → ∞ such that �̇�(𝜉𝑛) → 0, 𝑥(𝜉𝑛) → lim sup

𝑡→∞
= 𝑞, as

𝑛 → ∞. We can choose a large enough number𝑁 such that
𝜉𝑛 > 𝑇4 for 𝑛 > 𝑁; hence, 𝑥(𝜉𝑛) > (𝑞/2) for all 𝑛 > 𝑁.

For 𝑛 > 𝑁, 𝑝(𝑡) ≤ 𝛿(𝑡) together with the first equation of
(7) leads to

�̇� (𝜉𝑛) ≤ 𝑥 (𝜉𝑛) (−𝛿 (𝜉𝑛) + 𝑝 (𝜉𝑛) exp {−𝛼 (𝜉𝑛) 𝑥 (𝜉𝑛)})

≤ 𝑥 (𝜉𝑛) (−𝛿 (𝜉𝑛) + 𝛿 (𝜉𝑛) exp {−𝛼 (𝜉𝑛)
𝑞

2
)})

≤ 𝑥 (𝜉𝑛) (−1 + exp {−𝛼
𝑙 𝑞

2
)}) 𝛿𝑙.

(42)

Let 𝑛 → ∞; we obtain that 0 ≤ 𝑞(−1 + exp{−𝛼𝑙(𝑞/2)})𝛿𝑙 or
exp{−𝛼𝑙(𝑞/2))} > 1 which is impossible. Hence, 𝑞 = 0 or

lim
𝑡→+∞

𝑥 (𝑡) = 0. (43)

Now, we come to prove that

lim
𝑡→+∞

𝜇 (𝑡) = 0. (44)

For any 𝜖 > 0, according to (43), there exists a 𝑇5 > 0, such
that

𝑥 (𝑡) < 𝜖 ∀𝑡 > 𝑇5. (45)

Then, for 𝑡 > 𝑇5 + 𝜏,

�̇� (𝑡) ≤ −𝑎
𝑙𝜇 (𝑡) + 𝑏

𝑢𝜖. (46)

Thus, by applying Lemma 1(i) to the above differential
inequality, we have

0 < 𝜇 (𝑡) ≤
𝑏𝑢𝜖

𝑎𝑙
(47)

which implies that

lim
𝑡→+∞

𝜇 (𝑡) = 0. (48)

The proof is complete.

3. Existence of a Unique Almost
Periodic Solution

Now, we give the definition of the almost periodic function.

Definition 8 (see [25, 26]). A function 𝑓(𝑡, 𝑥), where 𝑓 is an
𝑚-vector, 𝑡 is a real scalar, and 𝑥 is an 𝑛-vector, is said to be
almost periodic in 𝑡 uniformly with respect to 𝑥 ∈ 𝑋 ⊂ 𝑅𝑛, if
𝑓(𝑡, 𝑥) is continuous in 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑋, and if for any 𝜀 > 0,
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there is a constant 𝑙(𝜀) > 0, such that in any interval of length
𝑙(𝜀), there exists 𝜏 such that the inequality

𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)
 =
𝑚

∑
𝑖=1

𝑓𝑖 (𝑡 + 𝜏, 𝑥) − 𝑓𝑖 (𝑡, 𝑥)
 < 𝜀 (49)

is satisfied for all 𝑡 ∈ (−∞, +∞), 𝑥 ∈ 𝑋. The number 𝜏 is
called an 𝜀-translation number of 𝑓(𝑡, 𝑥).

Definition 9 (see [25, 26]). A function 𝑓 : 𝑅 → 𝑅 is said to
be an asymptotically almost periodic function if there exists
an almost periodic function 𝑞(𝑡) and a continuous function
𝑟(𝑡) such that

𝑓 (𝑡) = 𝑞 (𝑡) + 𝑟 (𝑡) , 𝑡 ∈ 𝑅, 𝑟 (𝑡) → 0 as 𝑡 → ∞. (50)

We denote by 𝑆(𝐸) the set of all solutions 𝑧(𝑡) =

(𝑥(𝑡), 𝜇(𝑡))𝑇 of system (7) satisfying 𝑚1 ≤ 𝑥(𝑡) ≤ 𝑀1, 𝑚2 ≤
𝜇(𝑡) ≤ 𝑀2 for all 𝑡 ∈ 𝑅.

Lemma 10. One has 𝑆(𝐸) ̸= 0.

Proof. Since 𝛿(𝑡), 𝑝(𝑡), 𝛼(𝑡), 𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡) are almost
periodic functions, there exists a sequence {𝑡𝑛}, 𝑡𝑛 → ∞ as
𝑛 → ∞ such that

𝛿 (𝑡 + 𝑡𝑛) → 𝛿 (𝑡) , 𝑝 (𝑡 + 𝑡𝑛) → 𝛿 (𝑡) ,

𝛼 (𝑡 + 𝑡𝑛) → 𝛿 (𝑡) , 𝑐 (𝑡 + 𝑡𝑛) → 𝛿 (𝑡) ,

𝑎 (𝑡 + 𝑡𝑛) → 𝛿 (𝑡) , 𝑏 (𝑡 + 𝑡𝑛) → 𝛿 (𝑡) ,

(51)

as 𝑛 → ∞ uniformly on 𝑅. Suppose 𝑧(𝑡) = (𝑥(𝑡), 𝜇(𝑡))𝑇
is a solution of (7) satisfying 𝑚1 ≤ 𝑥(𝑡) ≤ 𝑀1, 𝑚2 ≤
𝜇(𝑡) ≤ 𝑀2 for 𝑡 > 𝑇. Obviously, the sequence (𝑧(𝑡 + 𝑡𝑛))
is uniformly bounded and equicontinuous on each bounded
subset of 𝑅. Therefore, by the Ascoli-Arzela theorem, there
exists a subsequence of {𝑡𝑛}, which we still denote by {𝑡𝑛},
such that 𝑥(𝑡 + 𝑡𝑛) → 𝑚(𝑡), 𝜇(𝑡 + 𝑡𝑛) → 𝑛(𝑡), as 𝑛 → ∞
uniformly on each bounded subset of 𝑅. For any 𝑇1 ∈ 𝑅, we
may assume that 𝑡𝑛 + 𝑇1 ≥ 𝑇 for all 𝑛. For 𝑡 ≥ 0, we have

𝑥 (𝑡 + 𝑡𝑛 + 𝑇1) − 𝑥 (𝑡𝑛 + 𝑇1)

= ∫
𝑡+𝑇1

𝑇1

𝑥 (𝑠 + 𝑡𝑛) (−𝛿 (𝑠 + 𝑡𝑛) + 𝑝 (𝑠 + 𝑡𝑛)

× exp {−𝛼 (𝑠 + 𝑡𝑛) 𝑥 (𝑠 + 𝑡𝑛)}

−𝑐 (𝑠 + 𝑡𝑛) 𝜇 (𝑠)) 𝑑𝑠,

𝜇 (𝑡 + 𝑡𝑛 + 𝑇1) − 𝜇 (𝑡𝑛 + 𝑇1)

= ∫
𝑡+𝑇1

𝑇1

(−𝑎 (𝑠 + 𝑡𝑛) 𝜇 (𝑠 + 𝑡𝑛) + 𝑏 (𝑠 + 𝑡𝑛) 𝑥 (𝑠 + 𝑡𝑛 − 𝜏)) 𝑑𝑠.

(52)

Applying Lebesgue’s dominated convergence theorem and
letting 𝑛 → ∞ in to previous equations, we obtain

𝑚(𝑡 + 𝑇1) − 𝑚 (𝑇1)

= ∫
𝑡+𝑇1

𝑇1

𝑚(𝑠) (−𝛿 (𝑠) + 𝑝 (𝑠)

× exp {−𝛼 (𝑠)𝑚 (𝑠)} − 𝑐 (𝑠) 𝑛 (𝑠)) 𝑑𝑠,

𝑛 (𝑡 + 𝑇1)−𝑛 (𝑇1)=∫
𝑡+𝑇1

𝑇1

(−𝑎 (𝑠) 𝑛 (𝑠) + 𝑏 (𝑠)𝑚 (𝑠 − 𝜏)) 𝑑𝑠,

(53)

for all 𝑡 ≥ 0. Since 𝑇1 ∈ 𝑅 is arbitrarily given, (𝑚(𝑡), 𝑛(𝑡))𝑇 is
a solution of system (7) on 𝑅. It is clear that𝑚1 ≤ 𝑚(𝑡) ≤ 𝑀1,
𝑚2 ≤ 𝑛(𝑡) ≤ 𝑀2 for 𝑡 ∈ 𝑅. That is to say, (𝑚(𝑡), 𝑛(𝑡))𝑇 ∈ 𝑆(𝐸).
This completes the proof.

Lemma 11 (see [27]). Let 𝑓 be a nonnegative function defined
on [0, +∞) such that 𝑓 is integrable on [0, +∞) and is
uniformly continuous on [0, +∞). Then, lim𝑡→+∞𝑓(𝑡) = 0.

Theorem 12. In addition to (𝐻1), further suppose that

(𝐻2) there exists a ℎ > 0, such that

𝑝𝑙𝛼𝑙 exp (𝛼𝑢𝑀1) − 𝑏
𝑢 > ℎ, 𝑎𝑙 − 𝑐𝑢 > ℎ, (54)

where 𝑀1 is defined in (23); then system (7) with initial
conditions (8) is globally attractive. That is to say, for any two
positive solutions, one has

lim
𝑡→+∞

𝑥 (𝑡) − 𝑥
∗
(𝑡)
 = 0, lim

𝑡→+∞

𝜇 (𝑡) − 𝜇
∗
(𝑡)
 = 0.

(55)

Proof. Let (𝑥∗(𝑡), 𝜇∗(𝑡))𝑇 and (𝑥(𝑡), 𝜇(𝑡))𝑇 be any two positive
solutions of system (7)-(8). Theorem 5 implies there exist
positive constants 𝑇, 𝑚𝑖, and𝑀𝑖 (𝑖 = 1, 2) such that for 𝑡 ≥ 𝑇

𝑚1 ≤ 𝑥 (𝑡) ≤ 𝑀1, 𝑚1 ≤ 𝑥
∗
(𝑡) ≤ 𝑀1,

𝑚2 ≤ 𝜇 (𝑡) ≤ 𝑀2, 𝑚2 ≤ 𝜇
∗
(𝑡) ≤ 𝑀2,

(56)

where 𝑚𝑖 and 𝑀𝑖 (𝑖 = 1, 2) are defined in Lemma 3 and
Lemma 4. Set 𝑉(𝑡) = 𝑉1(𝑡) + 𝑉2(𝑡), where

𝑉1 (𝑡) =
ln𝑥 (𝑡) − ln𝑥

∗
(𝑡)
 ,

𝑉2 (𝑡) =
𝜇 (𝑡) − 𝜇

∗
(𝑡)
 + 𝑏
𝑢 ∫
𝑡

𝑡−𝜏

𝑥 (𝑢) − 𝑥
∗
(𝑢)
 𝑑𝑢.

(57)
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Calculating the upper right derivatives of 𝑉1(𝑡) along the
solution of (7) leads to

𝐷+𝑉1 (𝑡)

= sgn [𝑥 (𝑡) − 𝑥∗ (𝑡)]

× (𝑝 (𝑡) (exp {−𝛼 (𝑡) 𝑥 (𝑡)} − exp {−𝛼 (𝑡) 𝑥∗ (𝑡)})

+𝑐 (𝑡) (𝜇
∗
(𝑡) − 𝜇 (𝑡)))

= sgn [𝑥 (𝑡) − 𝑥∗ (𝑡)]

× (𝑝 (𝑡) (−𝛼 (𝑡) exp {−𝜉 (𝑡)} (𝑥 (𝑡) − 𝑥∗ (𝑡)))

+𝑐 (𝑡) (𝜇
∗
(𝑡) − 𝜇 (𝑡)))

≤ −𝑝 (𝑡) 𝛼 (𝑡) (exp {−𝜉 (𝑡)} 𝑥 (𝑡) − 𝑥
∗
(𝑡)
)

+ 𝑐 (𝑡)
𝜇 (𝑡) − 𝜇

∗
(𝑡)
 ,

(58)

where we used the elementary mean value theorem of differ-
ential calculus and 𝜉(𝑡) lies between 𝛼(𝑡)𝑥(𝑡) and 𝛼(𝑡)𝑥∗(𝑡).
Then, for 𝑡 ≥ 𝑇, we have

𝛼𝑙𝑚1 ≤ 𝜉 (𝑡) ≤ 𝛼
𝑢𝑀1. (59)

Hence, by (58), we can have

𝐷+𝑉1 (𝑡) ≤ −𝑝
𝑙𝛼𝑙 exp (𝛼𝑢𝑀1)

𝑥 (𝑡) − 𝑥
∗
(𝑡)


+ 𝑐𝑢
𝜇 (𝑡) − 𝜇

∗
(𝑡)
 .

(60)

Calculating the upper right derivatives of 𝑉2(𝑡) along the
solution of (7), one has

𝐷+𝑉2 (𝑡) = sgn [𝜇 (𝑡) − 𝜇∗ (𝑡)]

× (−𝑎 (𝑡) (𝜇 (𝑡) − 𝜇
∗
(𝑡))

+𝑏 (𝑡) (𝑥 (𝑡 − 𝜏) − 𝑥
∗
(𝑡 − 𝜏)))

+ 𝑏𝑢 (
𝑥 (𝑡) − 𝑥

∗
(𝑡)
 −
𝑥 (𝑡 − 𝜏) − 𝑥

∗
(𝑡 − 𝜏)

)

≤ −𝑎𝑙
𝜇 (𝑡) − 𝜇

∗
(𝑡)
 + 𝑏
𝑢 𝑥 (𝑡) − 𝑥

∗
(𝑡)
 .

(61)

According to (58), (66), and condition (𝐻2), we can obtain

𝐷+𝑉 (𝑡) ≤ (𝑏
𝑢 − 𝑝𝑙𝛼𝑙 exp (𝛼𝑢𝑀1))

𝑥 (𝑡) − 𝑥
∗
(𝑡)


+ (𝑐𝑢 − 𝑎𝑙)
𝜇 (𝑡) − 𝜇

∗
(𝑡)


< ℎ [
𝜇 (𝑡) − 𝜇

∗
(𝑡)
 +
𝑥 (𝑡) − 𝑥

∗
(𝑡)
] .

(62)

Integrating both sides of (62) from 𝑇 to 𝑡 leads to

𝑉 (𝑡) + ℎ∫
𝑡

𝑇

[
𝜇 (𝑠) − 𝜇

∗
(𝑠)
 +
𝑥 (𝑠) − 𝑥

∗
(𝑠)
] 𝑑𝑠

< 𝑉 (𝑇) < +∞, 𝑡 ≥ 𝑇.

(63)

Then,

∫
𝑡

𝑇

[
𝜇 (𝑠) − 𝜇

∗
(𝑠)
 +
𝑥 (𝑠) − 𝑥

∗
(𝑠)
] 𝑑𝑠 <

𝑉 (𝑇)

ℎ
< +∞,

𝑡 ≥ 𝑇.

(64)

Hence, |𝜇(𝑡) − 𝜇∗(𝑡)| + |𝑥(𝑡) − 𝑥∗(𝑡)| ∈ 𝐿1([𝑇, +∞)). By
system (7) and Theorem 5, we get 𝜇(𝑡), 𝜇∗(𝑡), 𝑥(𝑡), 𝑥∗(𝑡),
and their derivatives are bounded on [𝑇, +∞), which implies
that |𝜇(𝑡) − 𝜇∗(𝑡)| + |𝑥(𝑡) − 𝑥∗(𝑡)| is uniformly continuous on
[𝑇, +∞). By Lemma 11, we obtain

lim
𝑡→+∞

𝑥 (𝑡) − 𝑥
∗
(𝑡)
 = 0, lim

𝑡→+∞

𝜇 (𝑡) − 𝜇
∗
(𝑡)
 = 0.

(65)

The proof of Theorem 12 is complete.

Theorem 13. Suppose all conditions of Theorem 12 hold; then
there exists a unique almost periodic solution of systems (7) and
(8).

Proof. According to Lemma 10, there exists a bounded posi-
tive solution𝑢(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡))

𝑇 of (7) with initial condition
(8).Then there exists a sequence {𝑡

𝑘
}, {𝑡
𝑘
} → ∞ as 𝑘 → ∞,

such that (𝑢1(𝑡 + 𝑡


𝑘
), 𝑢2(𝑡 + 𝑡



𝑘
))𝑇 is a solution of the following

system:

�̇� (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡 + 𝑡


𝑘
) + 𝑝 (𝑡 + 𝑡

𝑘
) exp {−𝛼 (𝑡 + 𝑡

𝑘
) 𝑥 (𝑡)}

−𝑐 (𝑡 + 𝑡
𝑘
) 𝜇 (𝑡)) ,

�̇� (𝑡) = −𝑎 (𝑡 + 𝑡


𝑘
) 𝜇 (𝑡) + 𝑏 (𝑡 + 𝑡



𝑘
) 𝑥 (𝑡 − 𝜏) .

(66)

According to Theorem 5 and the fact that 𝛿(𝑡), 𝑝(𝑡),
𝛼(𝑡), 𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡) are all continuous, positive almost peri-
odic functions, we know that both {𝑢𝑖(𝑡 + 𝑡



𝑘
)} (𝑖 = 1, 2) and

its derivative function {�̇�(𝑡 + 𝑡
𝑘
)} (𝑖 = 1, 2) are uniformly

bounded; thus, {𝑢𝑖(𝑡 + 𝑡


𝑘
)} (𝑖 = 1, 2) are uniformly bounded

and equi-continuous. By Ascoli’s theorem, there exists a
uniformly convergent subsequence {𝑢𝑖(𝑡 + 𝑡𝑘)} ⊆ {𝑢𝑖(𝑡 + 𝑡



𝑘
)}

such that for any 𝜀 > 0, there exists a 𝐾(𝜀) > 0 with the
property that if𝑚, 𝑘 ≥ 𝐾(𝜀), then

𝑢𝑖 (𝑡 + 𝑡𝑚) − 𝑢𝑖 (𝑡 + 𝑡𝑘)
 < 𝜀, 𝑖 = 1, 2. (67)

That is to say, 𝑢𝑖(𝑡) (𝑖 = 1, 2) are asymptotically almost
periodic functions. Hence there exists two almost periodic
functions 𝑟𝑖(𝑡 + 𝑡𝑘) (𝑖 = 1, 2) and two continuous functions
𝑠𝑖(𝑡 + 𝑡𝑘) (𝑖 = 1, 2) such that

𝑢𝑖 (𝑡 + 𝑡𝑘) = 𝑟𝑖 (𝑡 + 𝑡𝑘) + 𝑠𝑖 (𝑡 + 𝑡𝑘) , 𝑖 = 1, 2, (68)
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where
lim
𝑘→+∞

𝑟𝑖 (𝑡 + 𝑡𝑘) = 𝑟𝑖 (𝑡) , lim
𝑘→+∞

𝑠𝑖 (𝑡 + 𝑡𝑘) = 0, 𝑖 = 1, 2,

(69)

𝑟𝑖(𝑡) (𝑖 = 1, 2) are also almost periodic functions.
Therefore,

lim
𝑘→+∞

𝑢𝑖 (𝑡 + 𝑡𝑘) = 𝑟𝑖 (𝑡) , 𝑖 = 1, 2. (70)

On the other hand,

lim
𝑘→+∞

�̇�𝑖 (𝑡 + 𝑡𝑘) = lim
𝑘→+∞

lim
ℎ→0

𝑢𝑖 (𝑡 + 𝑡𝑘 + ℎ) − 𝑢𝑖 (𝑡 + 𝑡𝑘)

ℎ

= lim
ℎ→0

lim
𝑘→+∞

𝑢𝑖 (𝑡 + 𝑡𝑘 + ℎ) − 𝑢𝑖 (𝑡 + 𝑡𝑘)

ℎ

= lim
ℎ→0

𝑟𝑖 (𝑡 + ℎ) − 𝑟𝑖 (𝑡)

ℎ
.

(71)

So ̇𝑟𝑖(𝑡) (𝑖 = 1, 2) exist. Moreover,

̇𝑟1 (𝑡) = lim
𝑘→+∞

�̇�1 (𝑡 + 𝑡𝑘)

= lim
𝑘→+∞

{𝑢1 (𝑡 + 𝑡𝑘)

× (−𝛿 (𝑡 + 𝑡𝑘) − 𝑐 (𝑡 + 𝑡𝑘) 𝑢2 (𝑡 + 𝑡𝑘) + 𝑝 (𝑡 + 𝑡𝑘)

× exp {−𝛼 (𝑡 + 𝑡𝑘) 𝑢1 (𝑡 + 𝑡𝑘)})}

= 𝑟1 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑟1 (𝑡)} − 𝑐 (𝑡) 𝑟2 (𝑡)) ,

̇𝑟2 (𝑡) = lim
𝑘→+∞

�̇�2 (𝑡 + 𝑡𝑘)

= lim
𝑘→+∞

{−𝑎 (𝑡 + 𝑡𝑘) 𝑟2 (𝑡 + 𝑡𝑘)

+𝑏 (𝑡 + 𝑡𝑘) 𝑟1 (𝑡 + 𝑡𝑘 − 𝜏)}

= −𝑎 (𝑡) 𝑟2 (𝑡) + 𝑏 (𝑡) 𝑟1 (𝑡 − 𝜏) .

(72)

These show that (𝑟1(𝑡), 𝑟2(𝑡))
𝑇 satisfied system (7). Hence,

(𝑟1(𝑡), 𝑟2(𝑡))
𝑇 is a positive almost periodic solution of (7).

Then, it follows from Theorem 12 that system (7) has a
unique positive almost periodic solution. The proof is com-
pleted.

Without the feedback terms, that is 𝑎(𝑡) = 0, 𝑏(𝑡) =
0, 𝑐(𝑡) = 0, and (7) becomes the following equation:

�̇� (𝑡) = 𝑥 (𝑡) (−𝛿 (𝑡) + 𝑝 (𝑡) exp {−𝛼 (𝑡) 𝑥 (𝑡)}) . (73)

Equation (73) with periodic coefficients has been studied by
Li and Fan [7] and Saker and Agarwal [8] with 𝛼(𝑡) = 𝑎. Since
the periodic case is a special case of almost periodic, hence,
as a direct corollary of Theorem 13, we have the following.

Corollary 14. Suppose 𝛿(𝑡), 𝑝(𝑡), 𝛼(𝑡), 𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡) are
all continuous positive𝜔-periodic functions and 𝑝(𝑡) > 𝛿(𝑡) for
𝑡 ∈ [0, 𝜔]; then (73) has a unique globally attractive 𝜔-periodic
positive solution.

Remark 15. Li and Fan in [7] show that (73) has a unique
globally attractive 𝜔-periodic positive solution if 𝑝(𝑡) >
𝛿(𝑡) for 𝑡 ∈ [0, 𝜔], which is the same as Corollary 14. Thus,
Theorem 13 supplements and generalizes results in [7, 8].

4. Examples and Numeric Simulations

Now we give several examples together with their numeric
simulations to show the feasibility of our main results.

Example 16. Consider the following example:

�̇� (𝑡) = 𝑥 (𝑡) (−5 − sin (√5𝑡)

+ 10 exp {− (30 + cos (√11𝑡)) 𝑥 (𝑡)}

− (1 + 0.5 sin (√7𝑡)) 𝜇 (𝑡)) ,

�̇� (𝑡) = − (2.5 + 0.5 cos (√7𝑡)) 𝜇 (𝑡)

+ (5.8 + 0.2 sin (√3𝑡)) 𝑥 (𝑡 − 2) .

(74)

In this case, corresponding to system (7), we have 𝛿(𝑡) =
5 + sin(√5𝑡), 𝑝(𝑡) = 10, 𝛼(𝑡) = 30 + cos(√11𝑡), 𝑎(𝑡) =
2.5 + 0.5 cos(√7𝑡), 𝑏(𝑡) = 5.8 + 0.2 sin(√3𝑡), 𝑐(𝑡) = 1 +
0.5 sin(√7𝑡), 𝜏 = 2. According to the proof of Lemmas 3 and
4, one has

𝑀1 =
3𝑝𝑢

2𝛿𝑙𝛼𝑙𝑒
= 0.04757, 𝑀2 =

3𝑏𝑢𝑀1
2𝑎𝑙

= 0.214066,

𝑚1 =
𝑝𝑙 − 𝛿𝑢 − 𝑐𝑢𝑀2

2𝑝𝑙𝛼𝑢
= 0.005934,

𝑚2 =
𝑏𝑙𝑚1
2𝑎𝑢

= 0.0055384.

(75)

Hence,

𝑝 (𝑡) > 𝛿 (𝑡) , 𝑝𝑙𝛼𝑙 exp (𝛼𝑢𝑀1) − 𝑏
𝑢 ≅ 1261.193896 > 0,

𝑎𝑙 − 𝑐𝑢 = 0.5 > 0.

(76)

Thus, all the conditions of Theorem 13 are satisfied, and so,
there exists a unique almost periodic solution of systems (74).
Figure 1 shows this property.
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Figure 1: Dynamics of the 𝑥(𝑡)) and 𝜇(𝑡) of system (74) with the
initial values (𝑥(0), 𝜇(0))𝑇 = (0.02, 0.05)𝑇, (0.03, 0.03)𝑇, (0.04,
0.08)𝑇, (0.005, 0.1)𝑇; here 𝑡 ∈ [0, 100].

Example 17. Consider the following example:

�̇� (𝑡) = 𝑥 (𝑡) (−2 −
1

(𝑡 + 1)2

+ 2 exp {− (30 + cos (√11𝑡)) 𝑥 (𝑡)}

− (1 + 0.5 sin (√7𝑡)) 𝜇 (𝑡) ) ,

�̇� (𝑡) = − (2.5 + 0.5 cos (√7𝑡)) 𝜇 (𝑡)

+ (5.8 + 0.2 sin (√3𝑡)) 𝑥 (𝑡 − 2) .

(77)

In this case, we have

𝑝 (𝑡) < 𝛿 (𝑡) . (78)

Hence, By Theorem 7, we know that any positive solution of
system (77) satisfies lim𝑡→+∞𝑥(𝑡) = 0, lim𝑡→+∞𝜇(𝑡) = 0.
Numerical simulation also confirms our result (see Figure 2).

5. Conclusion

In this paper, we consider a Nicholson’s blowflies model
with feedback control and time delay. It is shown that
feedback control variable and time delay have no influence
on the permanence and extinction of the system. Also, by
constructing a suitable Lyapunov functional, a set of sufficient
conditions which ensure the existence of a unique globally
attractive positive almost periodic solution of the system
is established. Moreover, compared with the main result
of the relative discrete model (see [9]), we can see that
the continuous and discrete models have similar results on
permanence and the extinction of the Nicholson’s blowflies

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

So
lu

tio
n 

0 20 40 60 80 100
Time 𝑡

𝑥

𝜇

Figure 2: The dynamic behavior of system (77) with initial condi-
tion (𝑥(0), 𝜇(0))𝑇 = (0.03, 0.05)𝑇, (0.02, 0.04)𝑇, (0.005, 0.01)𝑇,
(0.002, 0.003)𝑇; here 𝑡 ∈ [0, 100].

model with feedback control and time delay. At the end
of this paper, two examples together with their numerical
simulations show the verification of our main results. Our
results supplement and generalize the results in [7, 8].
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[5] M. R. S. Kulenović, G. Ladas, and Y. G. Sficas, “Global attractiv-
ity in Nicholson’s blowflies,” Applicable Analysis, vol. 43, no. 1-2,
pp. 109–124, 1992.

[6] J. W.-H. So and J. S. Yu, “Global attractivity and uniform
persistence in Nicholson’s blowflies,” Differential Equations and
Dynamical Systems, vol. 2, no. 1, pp. 11–18, 1994.

[7] W.-T. Li and Y.-H. Fan, “Existence and global attractivity of
positive periodic solutions for the impulsive delay Nicholson’s
blowflies model,” Journal of Computational and Applied Mathe-
matics, vol. 201, no. 1, pp. 55–68, 2007.

[8] S. H. Saker and S. Agarwal, “Oscillation and global attractivity
in a periodic Nicholson’s blowflies model,” Mathematical and
Computer Modelling, vol. 35, no. 7-8, pp. 719–731, 2002.

[9] L.-L. Wang and Y.-H. Fan, “Permanence for a discrete Nichol-
son’s blowflies model with feedback control and delay,” Interna-
tional Journal of Biomathematics, vol. 1, no. 4, pp. 433–442, 2008.



Discrete Dynamics in Nature and Society 9

[10] S. B. Yu, “Almost periodic solution of Nicholson’s blowflies
model with feedback control,” Journal of Fuzhou University.
Natural Science Edition, vol. 38, no. 4, pp. 481–485, 2010
(Chinese).

[11] A. F. Nindjin, M. A. Aziz-Alaoui, and M. Cadivel, “Analysis of a
predator-prey model with modified Leslie-Gower and Holling-
type II schemes with time delay,”Nonlinear Analysis: RealWorld
Applications, vol. 7, no. 5, pp. 1104–1118, 2006.

[12] C. H. Feng, Y. J. Liu, and W. G. Ge, “Almost periodic solutions
for delay Lotka-Volterra competitive systems,”Acta Mathemati-
caeApplicatae Sinica, vol. 28, no. 3, pp. 458–465, 2005 (Chinese).

[13] F. Chen, J. Yang, and L. Chen, “Note on the persistent property
of a feedback control system with delays,” Nonlinear Analysis:
Real World Applications, vol. 11, no. 2, pp. 1061–1066, 2010.

[14] F. Chen, J. Yang, L. Chen, and X. Xie, “On a mutualism model
with feedback controls,”AppliedMathematics andComputation,
vol. 214, no. 2, pp. 581–587, 2009.

[15] A. Tineo, “Asymptotic behaviour of positive solutions of the
nonautonomous Lotka-Volterra competition equations,”Differ-
ential and Integral Equations, vol. 6, no. 2, pp. 449–457, 1993.

[16] W. M. Hirsch, H. Hanisch, and J.-P. Gabriel, “Differential
equation models of some parasitic infections: methods for the
study of asymptotic behavior,” Communications on Pure and
Applied Mathematics, vol. 38, no. 6, pp. 733–753, 1985.

[17] Z. J. Du and Y. S. Lv, “Permanence and almost periodic solution
of a Lotka-Volterra model with mutual interference and time
delays,”AppliedMathematicalModelling, vol. 37, no. 3, pp. 1054–
1068, 2012.

[18] X. Lin and F. Chen, “Almost periodic solution for a Volterra
model with mutual interference and Beddington-DeAngelis
functional response,” Applied Mathematics and Computation,
vol. 214, no. 2, pp. 548–556, 2009.

[19] X. X. Chen and F.D. Chen, “Almost-periodic solutions of a delay
population equationwith feedback control,”Nonlinear Analysis:
Real World Applications, vol. 7, no. 4, pp. 559–571, 2006.

[20] F. Chen, Z. Li, and Y. Huang, “Note on the permanence of a
competitive system with infinite delay and feedback controls,”
Nonlinear Analysis: Real World Applications, vol. 8, no. 2, pp.
680–687, 2007.

[21] W.Qi and B. Dai, “Almost periodic solution for 𝑛-species Lotka-
Volterra competitive system with delay and feedback controls,”
Applied Mathematics and Computation, vol. 200, no. 1, pp. 133–
146, 2008.

[22] Y. Xia, J. Cao,H. Zhang, and F. Chen, “Almost periodic solutions
of 𝑛-species competitive systemwith feedback controls,” Journal
of Mathematical Analysis and Applications, vol. 294, no. 2, pp.
503–522, 2004.

[23] F. Chen and X. Cao, “Existence of almost periodic solution in a
ratio-dependent Leslie system with feedback controls,” Journal
of Mathematical Analysis and Applications, vol. 341, no. 2, pp.
1399–1412, 2008.

[24] Z. D. Teng, “The almost periodic Kolmogorov competitive
systems,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 42, no. 7, pp. 1221–1230, 2000.

[25] A. M. Fink, Almost Periodic Differential Equations, vol. 377 of
Lecture Notes in Mathematics, Springer, Berlin, Germany, 1974.

[26] C. Y. He, Almost Periodic Differential Equations, Higher Educa-
tion Publishing House, Beijing, China, 1992.
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