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We study the lattice dynamical system of a nonlinear Boussinesq equation.We first verify the Lipschitz continuity of the continuous
semigroup associated with the system. Then, we provide an estimation of the tail of the difference between two solutions of the
system. Finally, we obtain the existence of an exponential attractor of the system.

1. Introduction

Lattice dynamical systems (LDSs) have a wide range of
applications in many areas such as electrical engineering,
chemical reaction theory, laser systems, material science,
and biology [1, 2]. In recent years, many works about the
asymptotic behavior of LDSs have been done, which include
the global attractor, see [3–11] and the references therein.
However, the global attractor sometimes attracts orbits at a
relatively slow speed and it might take an unexpected long
time to be reached. For this reason, the exponential attractor
having finite fractal dimension and attracting all bounded
sets exponentially was introduced, and it has been studied for
a large class of LDSs, see [12–15] and the references therein.
Han presented in [13] some sufficient conditions for the
existence of exponential attractor for LDSs in the weighted
space of infinite sequences and applied the result to obtain
the existence of exponential attractors for some LDSs. Zhou
and Han in [15] presented some sufficient conditions for the
existence of uniform exponential attractor for LDSs, which
is easier to verify the existence of exponential attractor for
some LDSs. Abdallah in [3] considered the following initial
problem of lattice system of nonlinear Boussinesq equation:
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which appears in many fields of physics and mechanics, for
example, long waves in shallow water, nonlinear elastic beam
systems, thermomechanical phase transitions, and some
Hamiltonian mechanics. Abdallah has in [3] investigated the
existence and finite-dimensional approximation of the global
attractor for (1) under the following conditions:

𝑓 = (𝑓

𝑖
)

𝑖∈Z
∈ 𝑙

2
, 𝜆 > 4

󵄨

󵄨

󵄨

󵄨

𝛽

󵄨

󵄨

󵄨

󵄨

. (4)

In this paper, motivated by the ideas of [13, 15], we will further
prove the existence of an exponential attractor for the system
(1) under the condition (4).

The paper is organized as follows. In Section 2, we present
some preliminaries. Section 3 is devoted to the existence of an
exponential attractor for (1).

2. Preliminaries

In this section, we present the definition of an exponential
attractor and some sufficient conditions for the existence
of an exponential attractor for a semigroup in a separable
Hilbert space from [13, 15].
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3. Exponential Attractor for System (1)
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In this section, we will study the existence of an exponen-
tial attractor of (10) in the space 𝐻.
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󵄩

󵄩

󵄩

Φ

𝑖 (
𝑡)

󵄩

󵄩

󵄩

󵄩

2

𝐻
=

󵄩

󵄩

󵄩

󵄩

(𝜔

𝑖 (
𝑡) , 𝜁𝑖 (

𝑡))

󵄩

󵄩

󵄩

󵄩

2

𝐻

= (𝐵𝜔 (𝑡))

2

𝑖
+ 𝜆(𝜔

𝑖 (
𝑡))

2
+ (𝜁

𝑖 (
𝑡))

2
,

∀𝑖 ∈ Z.

(21)

Proof. (1) Taking the inner product (⋅, ⋅)
𝐻
of (17) with Φ(𝑡),

we obtain

(𝜔̈ + 𝛿𝜔̇ + 𝛼 (𝐴𝜔) + 𝛽 (𝐵𝜔) + 𝜆𝜔

− (

1

3

𝑘𝐷(𝐷

∗
𝑢

(1)
)

3

−

1

3

𝑘𝐷(𝐷

∗
𝑢

(2)
)

3

) , 𝜔̇ + 𝜀𝜔) = 0.

(22)
We can write (22) into the following form:

𝑑

𝑑𝑡

𝑃 (𝑡) + 𝑁 (𝑡) = 0,
(23)

where

𝑃 (𝑡) =

1

2

‖𝜔̇‖

2
+

𝛼

2

‖𝐵𝜔‖

2
−

𝛽

2

‖𝐷𝜔‖

2
+

𝜆

2

‖𝜔‖

2

+ 𝜀 (𝜔̇, 𝜔) +

𝜀𝛿

2

‖𝜔‖

2
,

𝑁 (𝑡) = (𝛿 − 𝜀) ‖𝜔̇‖

2
+ 𝜀𝛼‖𝐵𝜔‖

2
− 𝜀𝛽‖𝐷𝜔‖

2
+ 𝜀𝜆‖𝜔‖

2

−

1

3

𝑘 (𝐷((𝐷

∗
𝑢

(1)
)

3

− (𝐷

∗
𝑢

(2)
)

3

) , 𝜔̇ + 𝜀𝜔) .

(24)
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Then,
𝜀𝑃 (𝑡) − 𝑁 (𝑡)

=

3𝜀 − 2𝛿

2

‖𝜔̇‖

2
−

𝜀𝛼

2

‖𝐵𝜔‖

2
+

𝜀𝛽

2

‖𝐷𝜔‖

2

+

𝜀 (𝜀𝛿 − 𝜆)

2

‖𝜔‖

2
+ 𝜀

2
(𝜔̇, 𝜔)

+

1

3

𝑘 (𝐷((𝐷

∗
𝑢

(1)
)

3

− (𝐷

∗
𝑢

(2)
)

3

) , 𝜔̇ + 𝜀𝜔)

≤

𝜀

2
+ 3𝜀 − 2𝛿

2

‖𝜔̇‖

2

+

𝜀 (𝜀 (1 + 𝛿) + 4

󵄨

󵄨

󵄨

󵄨

𝛽

󵄨

󵄨

󵄨

󵄨

− 𝜆)

2

‖𝜔‖

2

+

1

3

𝑘 (𝐷((𝐷

∗
𝑢

(1)
)

3

− (𝐷

∗
𝑢

(2)
)

3

) , 𝜔̇ + 𝜀𝜔)

≤

1

3

𝑘 (𝐷((𝐷

∗
𝑢

(1)
)

3

− (𝐷

∗
𝑢

(2)
)

3

) , 𝜔̇ + 𝜀𝜔) .

(25)

Since

𝑃 (𝑡) ≥

1

4

‖𝜔̇‖

2
+

𝛼

2

‖𝐵𝜔‖

2

+ (

𝜆 − 4

󵄨

󵄨

󵄨

󵄨

𝛽

󵄨

󵄨

󵄨

󵄨

+ 𝜀𝛿 − 2𝜀

2

2

) ‖𝜔‖

2
,

(26)

thus,
1

3

𝑘 (𝐷((𝐷

∗
𝑢

(1)
)

3

− (𝐷

∗
𝑢

(2)
)

3

) , 𝜔̇ + 𝜀𝜔)

=

1

3

𝑘 ((𝐷

∗
𝑢

(1)
)

3

− (𝐷

∗
𝑢

(2)
)

3

, 𝐷

∗
(𝜔̇ + 𝜀𝜔))

≤ 8𝑘𝑟

2

0
(2‖𝜔̇‖

2
+ (1 + 2𝜀

2
) ‖𝜔‖

2
)

≤ 8𝑘𝑟

2

0
𝑀

4
𝑃 (𝑡) .

(27)

From (23), (25), and (27), it follows that for 𝑡 > 0,
𝑑

𝑑𝑡

𝑃 (𝑡) ≤ (−𝜀 + 8𝑘𝑟

2

0
𝑀

4
) 𝑃 (𝑡) .

(28)

Applying Gronwall’s inequality to (28), we obtain

𝑃 (𝑡) ≤ 𝑒

(−𝜀+8𝑘𝑟
2

0
𝑀
4
)𝑡
𝑃 (0) .

(29)

Since

𝑃 (𝑡) ≥

1

4

‖𝜔̇‖

2
+

𝛼

2

‖𝐵𝜔‖

2
+

𝜆 − 4𝛽

2

‖𝜔‖

2
+

𝜀𝛿 − 2𝜀

2

2

‖𝜔‖

2

≥ 𝑀

5‖
Φ(𝑡)‖

2

𝐻
,

(30)

𝑃 (𝑡) ≤

1

2

‖𝜔̇‖

2
+

𝛼

2

‖𝐵𝜔‖

2
+ 2

󵄨

󵄨

󵄨

󵄨

𝛽

󵄨

󵄨

󵄨

󵄨

‖𝜔‖

2
+

𝜆

2

‖𝜔‖

2

+ 𝜀 (𝜔̇, 𝜔) +

𝜀𝛿

2

‖𝜔‖

2
≤ 𝑀

6‖
Φ(𝑡)‖

2

𝐻
.

(31)

From (29) to (31), it follows that for 𝑡 > 0,

‖Φ(𝑡)‖

2

𝐻
≤

𝑀

6

𝑀

5

𝑒

(−𝜀+8𝑘𝑟
2

0
𝑀
4
)𝑡
‖Φ(0)‖

2

𝐻
. (32)

(2) Choosing a smooth increasing function 𝜉 ∈ C1(R
+
,

R) satisfies

𝜉 (𝑠) = 0, 0 ⩽ 𝑠 < 1,

0 ⩽ 𝜉 (𝑠) ⩽ 1, 1 ⩽ 𝑠 < 2,

𝜉 (𝑠) = 1, 𝑠 ⩾ 2,

󵄨

󵄨

󵄨

󵄨

󵄨

𝜉

󸀠
(𝑠)

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

0
, 𝑠 ∈ R

+
,

(33)

where𝐶
0
is a positive constant. For 𝑡 ≥ 0, letΨ

𝑖
= 𝜉(|𝑖|/𝑀)Φ

𝑖
,

𝑦 = (𝜉(|𝑖|/𝑀)𝜔

𝑖
(𝑡))

𝑖∈Z, 𝑧 = (𝜉(|𝑖|/𝑀)𝜁

𝑖
(𝑡))

𝑖∈Z, where 𝑀 ∈ N.
Taking the inner product (⋅, ⋅)

𝐻
of (17) with Ψ = {Ψ

𝑖
(𝑡)}

𝑖∈Z,
we obtain

(𝜔̈ + 𝛿𝜔̇ + 𝛼 (𝐴𝜔) + 𝛽 (𝐵𝜔) + 𝜆𝜔

− (

1

3

𝑘𝐷(𝐷

∗
𝑢

(1)
)

3

−

1

3

𝑘𝐷(𝐷

∗
𝑢

(2)
)

3

) , 𝑧) = 0.

(34)

Similar to (4.3)–(4.5) in [3], we can get

𝑑

𝑑𝑡

𝑃

1 (
𝑡) + 𝑁

1 (
𝑡) = 0,

(35)

where

𝑃

1 (
𝑡) = ∑

𝑖∈Z

𝜉 (

|𝑖|

𝑀

)(

1

2

𝜔̇

2

𝑖
+

𝛼

2

(𝐵𝜔)

2

𝑖
−

𝛽

2

(𝐷𝜔)

2

𝑖

+

𝜆

2

𝜔

2

𝑖
+ 𝜀𝜔̇

𝑖
𝜔

𝑖
+

𝜀𝛿

2

𝜔

2

𝑖
) ,

𝑁

1 (
𝑡) = ∑

𝑖∈Z

(𝜉 (

|𝑖|

𝑀

) ((𝛿 − 𝜀) 𝜔̇

2

𝑖
+ 𝜀𝛼(𝐵𝜔)

2

𝑖

−𝜀𝛽(𝐷𝜔)

2

𝑖
+ 𝜀𝜆𝜔

2

𝑖
) )

+

1

3

𝑘 ((𝐷

∗
𝑢

(1)
)

3

− (𝐷

∗
𝑢

(2)
)

3

,

(𝜉 (

|𝑖|

𝑀

) (𝐷

∗
𝜁)

𝑖
)

𝑖∈Z
)

+ ∑

𝑖∈Z

(𝛼(𝐵𝜔)𝑖
((𝐵𝑧)𝑖

− 𝜉 (

|𝑖|

𝑀

) (𝐵𝜁)𝑖
)

+ 𝛽(𝐷𝜔)𝑖
((𝐷𝑧)𝑖

− 𝜉 (

|𝑖|

𝑀

) (𝐷𝜁)𝑖
)

+

1

3

𝑘 ((𝐷

∗
𝑢

(1)
)

3

𝑖
− (𝐷

∗
𝑢

(2)
)

3

𝑖
)

× ((𝐷𝑧)𝑖
− 𝜉 (

|𝑖|

𝑀

) (𝐷𝜁)𝑖
)) .

(36)
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Then,

𝜀𝑃

1 (
𝑡) − 𝑁

1 (
𝑡)

≤ −

1

3

𝑘 ((𝐷

∗
𝑢

(1)
)

3

− (𝐷

∗
𝑢

(2)
)

3

, (𝜉 (

|𝑖|

𝑀

) (𝐷

∗
𝜁)

𝑖
)

𝑖∈Z
)

− ∑

𝑖∈Z

(𝛼(𝐵𝜔)𝑖
((𝐵𝑧)𝑖

− 𝜉 (

|𝑖|

𝑀

) (𝐵𝜁)𝑖
)

+ 𝛽(𝐷𝜔)𝑖
((𝐷𝑧)𝑖

− 𝜉 (

|𝑖|

𝑀

) (𝐷𝜁)𝑖
)

+

1

3

𝑘 ((𝐷

∗
𝑢

(1)
)

3

𝑖
− (𝐷

∗
𝑢

(2)
)

3

𝑖
)

× ((𝐷𝑧)𝑖
− 𝜉 (

|𝑖|

𝑀

) (𝐷𝜁)𝑖
)) .

(37)

By (3) of Lemma 3, there exist 𝐾

1
= 𝐾(𝜆𝜀/16𝑘𝑀

4
), 𝑇
1

=

𝑇(𝜆𝜀/16𝑘𝑀

4
), such that

∑

|𝑖|≥𝐾
1

((𝐵𝑢

(𝑗)
(𝑡))

2

𝑖
+ 𝜆(𝑢

(𝑗)

𝑖
(𝑡))

2

+ (V(𝑗)
𝑖

(𝑡))

2

)

≤

𝜆𝜀

16𝑘𝑀

4

, 𝑗 = 1, 2, ∀𝑡 ≥ 𝑇

1
.

(38)

This implies that

(𝑢

(1)

𝑖
(𝑡))

2

+ (𝑢

(2)

𝑖
(𝑡))

2

≤

𝜀

8𝑘𝑀

4

, ∀ |𝑖| > 𝐾

1
, 𝑡 ≥ 𝑇

1
.

(39)

Then, for𝑀 > 𝐾

1
+ 1, 𝑡 ≥ 𝑇

1
,

−

1

3

𝑘 ((𝐷

∗
𝑢

(1)
)

3

− (𝐷

∗
𝑢

(2)
)

3

, (𝜉 (

|𝑖|

𝑀

) (𝐷

∗
𝜁)

𝑖
)

𝑖∈Z
)

≤

1

3

𝑘∑

𝑖∈Z

𝜉 (

|𝑖|

𝑀

)

󵄨

󵄨

󵄨

󵄨

(𝐷

∗
𝜔)

𝑖
(𝐷

∗
𝜁)

𝑖

󵄨

󵄨

󵄨

󵄨

× ((𝐷

∗
𝑢

(1)
)

2

𝑖
+ (𝐷

∗
𝑢

(1)
)

𝑖
(𝐷

∗
𝑢

(2)
)

𝑖
+ (𝐷

∗
𝑢

(2)
)

2

𝑖
)

≤ 𝑘∑

𝑖∈Z

𝜉 (

|𝑖|

𝑀

)

󵄨

󵄨

󵄨

󵄨

󵄨

(𝐷

∗
𝜔)

𝑖
(𝐷

∗
𝜁)

𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

× ((𝑢

(1)
)

2

𝑖
+ (𝑢

(2)
)

2

𝑖
+ (𝑢

(1)
)

2

𝑖−1
+ (𝑢

(2)
)

2

𝑖−1
)

≤

𝜀

2

𝑃

1 (
𝑡) +

𝐶

0
𝜀𝑀

6

4𝑀

‖Φ‖

2

𝐻
.

(40)

Since

− ∑

𝑖∈Z

(𝛼(𝐵𝜔)𝑖
((𝐵𝑧)𝑖

− 𝜉 (

|𝑖|

𝑀

) (𝐵𝜁)𝑖
)

+ 𝛽(𝐷𝜔)𝑖
((𝐷𝑧)𝑖

− 𝜉 (

|𝑖|

𝑀

) (𝐷𝜁)𝑖
)

+

1

3

𝑘 ((𝐷

∗
𝑢

(1)
)

3

𝑖
− (𝐷

∗
𝑢

(2)
)

3

𝑖
)

× ((𝐷𝑧)𝑖
− 𝜉 (

|𝑖|

𝑀

) (𝐷𝜁)𝑖
))

≤

𝐶

0

𝑀

(𝛼‖𝐵𝜔‖

2
+ (2

󵄨

󵄨

󵄨

󵄨

𝛽

󵄨

󵄨

󵄨

󵄨

+ 384𝑘𝑟

4

0
) ‖𝜔‖

2

+(

6𝛼 + 3

󵄨

󵄨

󵄨

󵄨

𝛽

󵄨

󵄨

󵄨

󵄨

+ 𝑘

6

)

󵄩

󵄩

󵄩

󵄩

𝜁

󵄩

󵄩

󵄩

󵄩

2
)

≤

𝐶

0
𝑀

7

𝑀

‖Φ‖

2

𝐻
,

(41)

where𝑀
7
= max{𝛼, (2|𝛽|+384𝑘𝑟4

0
)/𝜆, (6𝛼+3|𝛽|+𝑘)/6}. From

(32), (35), (37), and (40)-(41), it follows that for 𝑀 > 𝐾

1
+ 1,

𝑡 ≥ 𝑇

1
,

𝑑

𝑑𝑡

𝑃

1 (
𝑡) ≤ −

𝜀

2

𝑃

1 (
𝑡) +

𝐶

0
𝑀

6
𝑀

8

𝑀

5
𝑀

𝑒

(−𝜀+8𝑘𝑟
2

0
𝑀
4
)𝑡
‖Φ(0)‖

2

𝐻
,

(42)

where 𝑀

8
= 𝜀𝑀

6
/4 + 𝑀

7
. Applying Gronwall’s inequality to

(42) from 𝑇

2
to 𝑡, where 𝑇

2
= max{𝑇

0
, 𝑇

1
}, we obtain that for

𝑀 > 𝐾

1
+ 1,

𝑃

1 (
𝑡) ≤ 𝑒

−(𝜀/2)(𝑡−𝑇
2
)
𝑃

1
(𝑇

2
)

+

2𝐶

0
𝑀

6
𝑀

8

󵄨

󵄨

󵄨

󵄨

−𝜀 + 16𝑘𝑟

2

0
𝑀

4

󵄨

󵄨

󵄨

󵄨

𝑀

5
𝑀

𝑒

(−𝜀+8𝑘𝑟
2

0
𝑀
4
)𝑡

× ‖Φ(0)‖

2

𝐻
.

(43)

Similar to (30), we can get

𝑀

5
∑

𝑖∈Z

𝜉 (

|𝑖|

𝑀

)

󵄩

󵄩

󵄩

󵄩

Φ

𝑖
(𝑡)

󵄩

󵄩

󵄩

󵄩

2

𝐻
≤ 𝑃

1 (
𝑡) . (44)

Since

𝑃

1
(𝑇

2
) ≤ 𝑃 (𝑇

2
) . (45)

By (31)-(32), we obtain

𝑃 (𝑇

2
) ≤

𝑀

2

6

𝑀

5

𝑒

(−𝜀+8𝑘𝑟
2

0
𝑀
4
)𝑇
2

‖Φ(0)‖

2

𝐻
.

(46)
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From (43) to (46), it follows that for 𝑡 ≥ 𝑇

2
,𝑀 > 𝐾

1
+ 1,

∑

𝑖∈Z

𝜉 (

|𝑖|

𝑀

)

󵄩

󵄩

󵄩

󵄩

Φ

𝑖 (
𝑡)

󵄩

󵄩

󵄩

󵄩

2

𝐻

≤ (

𝑀

2

6

𝑀

2

5

𝑒

−(𝜀𝑡+𝜀𝑇
2
−16𝑘𝑟

2

0
𝑀
4
𝑇
2
)/2

+

2𝐶

0
𝑀

6
𝑀

8

󵄨

󵄨

󵄨

󵄨

−𝜀 + 16𝑘𝑟

2

0
𝑀

4

󵄨

󵄨

󵄨

󵄨

𝑀

2

5
𝑀

𝑒

(−𝜀+8𝑘𝑟
2

0
𝑀
4
)𝑡
) ‖Φ(0)‖

2

𝐻
.

(47)

Letting

𝑇

∗
= max {

1

𝜀

(2 (ln (256𝑀

2

6
) − ln𝑀

2

5
)

+16𝑘𝑟

2

0
𝑀

4
𝑇

2
− 𝜀𝑇

2
) , 𝑇

2
} ;

𝑀

∗
= max{

1024𝐶

0
𝑀

6
𝑀

8

󵄨

󵄨

󵄨

󵄨

−𝜀 + 16𝑘𝑟

2

0
𝑀

4

󵄨

󵄨

󵄨

󵄨

𝑀

2

5

𝑒

(−𝜀+8𝑘𝑟
2

0
𝑀
4
)𝑇
∗

, 2𝐾

1
+ 3} ,

(48)

we then have

𝑀

2

6

𝑀

2

5

𝑒

−(𝜀𝑇
∗

+𝜀𝑇
2
−16𝑘𝑟

2

0
𝑀
4
𝑇
2
)/2

+

2𝐶

0
𝑀

6
𝑀

8

󵄨

󵄨

󵄨

󵄨

−𝜀 + 16𝑘𝑟

2

0
𝑀

4

󵄨

󵄨

󵄨

󵄨

𝑀

2

5
𝑀

∗
𝑒

(−𝜀+8𝑘𝑟
2

0
𝑀
4
)𝑇
∗

≤

1

128

,

∑

|𝑖|>𝑀
∗

󵄩

󵄩

󵄩

󵄩

Φ

𝑖
(𝑇

∗
)

󵄩

󵄩

󵄩

󵄩

2
≤

1

128

‖Φ(0)‖

2
.

(49)

As a direct consequence of (1)-(2), (4) of Lemma 3, (1)-(2)
of Lemma 4 andTheorem 2, we have our main result.

Theorem 5. Assume that (4) and (14) hold. Then, the semi-
group {𝑆

𝜀
(𝑡)}

𝑡≥0
of (10) possesses an exponential attractor M

onA = ⋃

𝑡≥𝑇
0

𝑆

𝜀
(𝑡)Owith (𝑖) M is compact; (𝑖𝑖) B ⊂ M ⊂ O,

where B is the global attractor; (𝑖𝑖𝑖) M has a finite fractal
dimension dim

𝑓
(M) ≤ 2𝐾

0
(2𝑀

∗
+ 1) ln√

𝐿(𝑇

∗
) + 1 + 1,

where 𝐾

0
is a constant and 𝑇

∗ and 𝑀

∗ are as in (48); and
(iv) there exist two positive constants 𝑘

1
and 𝑘

2
such that

dist(𝑆
𝜀
(𝑡)𝑢,M) ≤ 𝑘

1
𝑒

−𝑘
2
𝑡 for all 𝑢 ∈ O, 𝑡 ≥ 0.
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