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This paper analyzes the dynamics of the cold receptor neural network model. First, it examines noise effects on neuronal stimulus
in the model. From ISI plots, it is shown that there are considerable differences between purely deterministic simulations and noisy
ones. The ISI-distance is used to measure the noise effects on spike trains quantitatively. It is found that spike trains observed in
neural models can be more strongly affected by noise for different temperatures in some aspects; meanwhile, spike train has greater
variability with the noise intensity increasing.The synchronization of neuronal network with different connectivity patterns is also
studied. It is shown that chaotic and high period patterns are more difficult to get complete synchronization than the situation in
single spike and low period patterns.The neuronal network will exhibit various patterns of firing synchronization by varying some
key parameters such as the coupling strength. Different types of firing synchronization are diagnosed by a correlation coefficient
and the ISI-distancemethod.The simulations show that the synchronization status of neurons is related to the network connectivity
patterns.

1. Introduction

It is expected that the processed neural information can be
encoded in the structure of inter-spike-interval (ISI) series;
that is, the neural firing activities can be represented by the
patterns of neural spike trains [1–4].

Since the introduction of the concept of stochastic reso-
nance [5], a positive role of noise has become an important
issue in physics and related neural systems. Nonlinear sys-
tems can change their dynamics with the addition of noise
[1, 6]. Most neural models consist of differential equations
that can reproduce observed neuronal behavior. When these
models are stimulated by noise, a variety of phenomena
including stochastic resonance and coherence resonance will
be observed [7–10]. Besides the deterministic state that
triggers themembrane potential of neurons, firing spike train
is also affected by noise [11]. For example, for subthreshold
oscillations near the threshold of spike generation, it is
dependent on noise whether a spike is triggered or not. Spike
activity with skipping can be fully understood only when
noise is considered. Transitions of spike train patterns are
also affected by noise [12]. With the addition of noise, it was

observed there were a variety of spike train patterns in tem-
perature sensitive skin receptors for information encoding
[13, 14]. The corresponding data analyses suggest that noise
can extend the dynamical behavior of the system [15, 16].
Similar results can also be observed in experiment [17–20],
which indicate that the nervous systemmay take advantage of
the benefits of noises, including internal thermal fluctuations
and external noisy inputs.

Except the contribution of a single neuron on information
transmitting, synchronization of a set of interacting units has
been intensively studied in the natural world [21, 22]. The
synchronization of neuronal signals has been proposed as
one of the mechanisms to encode the signal [23, 24]. It is
suggested that theoretical studies of synchronized behaviors
in neuronal system play an important role in information
processing of olfactory systems. Synchronous behavior of
two electrically coupled neurons was studied by Postnova
et al. [25]. Asynchronous and other synchronous states
were investigated too. The results showed that the coupling
strength could have important role on the synchronous states.
Synchronization of fast-spiking neurons connected by elec-
trical synapses was investigated byNomura and his team [26].
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Many different measures have been introduced to char-
acterize effects of noise and the synchronization transac-
tion of neurons [26–29]. There exist different connectivity
patterns including ring-like neuronal network and grid-like
neuronal network. The former only considers the coupling
of nearest neighbor neurons, while the latter includes all
the nearest neighbor connected couplings. Synchronization
studies between two coupled neurons and multiple neural
networks are studied [30–34].

Except the traditionalmethods, in this paper, ISI distance,
a new method recently introduced by Kreuz et al. [35, 36],
is used to characterize effects of noise in a Hodgkin-Huxley
type model of temperature encoding and synchronization.
This is a simple approach that extracts information from the
interspike intervals by evaluating the ratio of the instanta-
neous firing rates, which is complementary to the spike-based
approaches. With the addition of noise, the neural model
can generate a variety of new different patterns compared
to deterministic situation; synchronization status of neural
network with different connection types is also investigated,
and the simulations show that the synchronization status is
much related to the network connectivity patterns.

The paper is organized as follows: the model of neural
system is introduced in Section 2. Noise effects on neural
system are characterized in Section 3, including bifurcation
plots and ISI distance about the noise effects. Section 4
presents the synchronization results of two-coupled neurons
and neuronal networks with different connection patterns,
showing the different states of synchronization by varying
control parameters, the coupling strength. Finally, a brief
conclusion is given in Section 5.

2. The Neural Model

A simplified Hodgkin-Huxley model [16] is used to simulate
the spike train activity of cold receptor response to temper-
ature changes in the skin. This model consists of two sets
of ionic conductance, each related to de- and repolarizing
currents:
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are the equilibrium potentials, 𝑔

𝑖
are the conductance, and

𝑉
0𝑖
and 𝑠

𝑖
are the half-activation potentials and the slopes

of sigmoidal steady-state activation curves. The constant 𝜂
is the coupling contrast, while 𝑘 is the relaxation factor.
Temperature dependencies are introduced by the parameters
𝜌 and 𝜙, respectively,

𝜌 = 1.3
(𝑇−𝑇0/10), 𝜙 = 3.0

(𝑇−𝑇0)/10, (7)

where 𝑇 is the temperature and 𝑇
0
is the reference tempera-

ture.

3. Noise Effects on the Neural System

In order to study the stochastic disturbances on the model,
noise is implemented to themembrane potential Equation (1)
in each time step Δ𝑡 according to the Box-Mueller algorithm
[37]:

𝑉
𝑡+Δ𝑡

= 𝑉
𝑡
+ (

𝑓 (𝑉)

𝐶
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= (− 4 𝑑 ln (𝑎) Δ𝑡)1/2 cos (2𝜋𝑏) ,

(8)

where 𝑎, 𝑏 are random numbers between 0 and 1, 𝑑 is the
noise intensity, and the noise𝑔

𝑤
is determined by its Gaussian

statistical features.
In the deterministic situation without noise, the neural

model described above exhibits different types of spiking
patterns when the parameter of temperature 𝑇 is varying.
At low temperature, spike pattern is period single firing,
and then for slightly higher temperature the firing pattern
changes into chaos firing.When𝑇 is increasing to 15∘C, spike
train patterns become bursts, and the number of spikes per
burst will be reduced if the temperature is further increased
(up to 𝑇 = 20

∘C), for high temperatures again regular
single-spike activity occurs (𝑇 = 35

∘C), but with higher
spiking frequency. These varying processes of spike train
pattern can be seen from the ISI plot shown in Figure 1(a),
in which successive interspike intervals are plotted versus
time as a function of temperature scaling. Starting form
high temperatures, the behavior of the spike firing patterns
changes from subthreshold oscillations to high-frequency
regular single spike. At lower temperatures, there are several
abrupt transitions from period one to period four with the
number of spikes per burst increases. At temperature around
10
∘C, increasing the number of bifurcations occurs followed

by chaotic patterns. At still lower temperature, regular single-
spike activity with lower frequency appears again.

In the noisy simulation, the neural model exhibits tem-
perature dependencies that well follow the main characteris-
tics of the experimental data. When especially 𝑑 is taken as
0.5, some fluctuations of spike timing are visible as shown
in Figure 1(b). At 𝑇 = 35

∘C, instead of regular single-
spike generation, two spikes per oscillation cycle appear.
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Figure 1: ISI plots with respect to variation of the temperature 𝑇 in the deterministic situation and the noise situation with 𝑑 = 0.5.

At mid temperatures, the abrupt transitions of deterministic
simulation are completely smoothed out by noise, which can
be seen in the interval plot as shown in Figure 1(b). The
qualitative differences occur in the lower and higher temper-
ature situations, in which skipping in the noisy simulations
appears and the transitions to chaotic interval sequences in
deterministic simulations disappear.

ISI distance is an useful method to qualitative the effects
of noise on the neuron system [35]. This approach is based
on the time intervals between successive spikes as the basic
element for measuring the difference of the two spike trains
qualitatively. Due to the self-adaptation of this method, it
can naturally describe the characterization of neuronal spike
trains.The ISI distance between two spike trains 𝑥(𝑡) and 𝑦(𝑡)
is introduced briefly by the following procedure. First, define
the interspike interval of the spike train 𝑥(𝑡) at time 𝑡 by
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where 𝑡𝑥
𝑖
is the time of the 𝑖th spike of the spike train 𝑥(𝑡). In

the same manner, define the function of 𝑖th spike of 𝑦(𝑡), and
then the normalized ratio 𝐼(𝑡) is taken as follows:
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Finally, the 𝐼𝑆𝐼 distance𝐷
𝐼
is computed through integrat-

ing over time as follows:

𝐷
𝐼
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𝑡𝑀

0

𝑑𝑡 |𝐼 (𝑡)| . (11)

Here, this measure is used to qualitatively characterize
the difference between deterministic and noisy spike trains of
the cold receptor. Figure 2 shows the change of ISI distances
as a continuous function of temperature. As shown in the
picture, at each fixed temperature, the ISI distance increases
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Figure 2: The change of ISI distance as a function of temperature 𝑇
at different noise densities. Solid line: 𝑑 = 0.5; dashed line: 𝑑 = 0.05;
dot-dashed line: 𝑑 = 0.5.

with the noise intensity becoming larger. For example, at
𝑇 = 10

∘C, when 𝑑 is taken as 0.005, 0.05, and 0.5, the ISI
distance is 0.212, 0.457, and 0.603, respectively, which means
that the higher noise intensity causes stronger fluctuations of
the times in the spike train.

From the study of noise effect in the neural system, we
can obtain that, with the addition of noise, the neural model
can generate a variety of different spike train patterns and
allow continuous transitions from bursting to subthreshold
oscillations. Thus, the system with noise may be more close
to actual dynamics underlying the experimental data.
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4. Synchronization Study in
Neural Network System

In the process of information transmitting and code, syn-
chronization of firing plays an important role. Hence in
this section, synchronization of two coupled neurons and
network is studied.

Dynamics of multiple coupled neurons in this paper are
controlled as shown by the following differential equations:
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where 𝑔
𝑐
is coupling strength and 𝑉

𝑖
and 𝑉

𝑗
are voltages

between adjacent neuron 𝑖 and 𝑗. For two bidirectional
coupled neurons (Figure 3(a)), 𝑖, 𝑗 = 1, 2; for the ring-like
network with 𝑁 neurons (Figure 3(b)), 𝐼couple(𝑖) is the sum
of the adjacent neurons including previous and next ones:
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For the grid-like network (Figure 3(c)), the 𝐼couple(𝑖, 𝑗) of a
neuron at position (𝑖, 𝑗) is the sum of the input currents from
the nearest neighbor neurons:

𝐼couple (𝑖, 𝑗) = ∑𝑔
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− 𝑉
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(14)

4.1. Synchronization of Two Coupled Neurons. First, synchro-
nization status of two identical coupled neurons is consid-
ered. The ISI distance method introduced above is used to
estimate the degree of synchrony between two spike trains. As
introduced in Section 3, the quantity of ISI ratio 𝐼

1,2
(𝑡)will be

zero if two spike trains are completely alike, or it will approach
−1 and 1, respectively, if two spike trains differ greatly. So
the more synchronous the coupled neurons are, the less the
ISI distance 𝐷

𝐼
is, and 𝐷

𝐼
is equal to 0 when the complete

synchronization state of the coupled neurons is achieved.
For two identical coupled neurons as Figure 3(a), syn-

chronization of the two-coupled neurons both at regular sin-
gle spiking is investigated and the numerical result is shown
in Figure 4 by varying the coupling strengths. In the figure,
the change of the ISI distance ((10) and (11)) as a function of
the increasing coupling strength is shown. It increases to its
maximal value when 𝑔

𝑐
= 0.013ms/cm2, before that, the 𝐼𝑆𝐼

distance is increasing due to chaotic behavior of the neuron.
Then it decreases gradually to 0 in the range of 0.013 <

𝑔
𝑐
< 0.03ms/cm2. Finally, it remains as 0 when 𝑔

𝑐
is larger.

The ISI distance here shows that the synchronous degree of
two neurons first decreases and then increases to complete
synchronization when 𝑔

𝑐
is large enough. Similar results can

be found in other identical coupled neurons with different
firing patterns (bursting, chaos firing, etc.).

Another method to characterize the synchrony degree
between two spike trains is the correlation coefficient (CC),
and the CC is calculated as follows:

CC =
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where 𝑉1
𝑖
(or 𝑉2
𝑖
) is the sampling of the membrane potential

𝑉
1
(𝑡) (or 𝑉2(𝑡)). ⟨⋅⟩ calculates the average over the number

of the sampling. So the larger the correlation coefficient is,
the more synchronous the two coupled neurons are, and the
complete synchronization will be achieved when correlation
coefficient is equal to 1.

As illustrated in Figure 5, the correlation coefficient value
(15) increases gradually from 0 to 1 when 𝑔

𝑐
reaches 0.032 and

maintains it thereafter.
Except synchronization of two identical neurons, several

different synchronized states of distinct neurons are also
investigated. Similar results are obtained that all neurons
will get synchronized when 𝑔

𝑐
is larger enough as shown in

Figure 6, in which we put all correlation coefficients with
respect to the coupling strength 𝑔

𝑐
together. But it can be

observed from the local enlargement of the figure in the
right corner that there are still some differences. In Figure 6,
different states correspond to different line styles. It can be
seen that CC of neurons (𝑉1 (𝑇 = 3

∘C) versus𝑉2 (𝑇 = 5
∘C))

and (𝑉1 (𝑇 = 5
∘C) versus 𝑉2 (𝑇 = 7

∘C)) gets synchronized
rapidly after being coupled with 𝑔

𝑐
, while these two states are

all synchronized in single-spike pattern, which means that
this state is more easy to be synchronized. CC of neurons
(𝑉1 (𝑇 = 32

∘C) versus 𝑉2 (𝑇 = 35
∘C)) is also increased

rapidly, but slower than the above two cases because of their
high frequencies. The most slowly synchronized neurons are
(𝑉1 (𝑇 = 5

∘C) versus𝑉2 (𝑇 = 10
∘C)), in which two neurons

are all in chaos states.

4.2. Synchronization of Neuronal Network. First, synchro-
nization effects in neural networks coupled in ring-like
manner are investigated. The network is connected by 25
coupled neurons as ring-like manner (Figure 3(b)). An ISI-
distance method for multiple spike trains is used to give the
quantitative results for synchronized spike trains [35]. First,
the ISI for each spike train is assigned and by computing over
all absolute ISI ratios |𝐼

𝑚,𝑛
(𝑡)|, the instantaneous average𝐴(𝑡)

is obtained as follows:
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𝑁
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𝐴 (𝑡) 𝑑𝑡.

(16)

Average over time, 𝐷𝑎
𝐼
, is achieved. It is obvious that the

more synchronous the multiple spike trains are, the smaller
the ISI distance 𝐷𝑎

𝐼
is; when complete synchronization state

of the neuronal network is achieved, 𝐷𝑎
𝐼
is equal to 0. Then

the effect of two parameters on synchronization of ring-
like network is investigated. The contour graph of the ISI
distance in the (𝑔

𝑐
, 𝑇) parameter plane is shown in Figure 7.
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(a) (b) (c)

Figure 3: Structure of network connectivity patterns. (a) Two bidirectional coupled neurons. (b) A coupled ring-like neuronal network. (c)
A coupled grid-like neuronal network.
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Figure 4: Plot of the ISI distance of two coupled neurons as a
function of coupling strength 𝑔

𝑐
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function of coupling strength 𝑔

𝑐
.

0 2 4 6 8 10

1.1

1

0.9

0.8

0.7

0.6

0.5

1.1

1

0.9

0.8

0.7

0.6

0.5

5–7
5–10
15–20

7–10
32–35
3–5

0 0.1 0.2 0.3 0.4
C

or
re

lat
io

n 
co

effi
ci

en
t

C
or

re
lat

io
n 

co
effi

ci
en

t

gc

gc
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of all the states.

The plot shows that when coupling strength is bigger than
0.02ms/cm2, no matter what the value of 𝑇 is, the neurons
are in a complete synchronous state. Also the region that ISI
distance almost equals 0 is much larger than that of only
changing one parameter 𝑔

𝑐
shown as Figure 4. It indicates

that the realization of synchronization in the ring-like neuron
network is easier than that of two coupled neurons with
changing only one parameter. Another obvious conclusion is
that, no matter what the temperature 𝑇 is, when increasing
the coupling strength, the neurons in the ring-like network
can finally reach synchronization.

Next, to understand the relationship between synchro-
nization and the network connection patterns, network con-
nection type is changed to grid network.The number of neu-
rons in the grid-like network is still 25. The coupling current
of a neuron is the sum of the currents for the nearest neighbor
neurons (𝑀 = 𝑁 = 3). The corresponding contour graph
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Figure 7:The contour plot of the ISI distance in the (𝑔
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ring-like network.
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plane for grid network.

of the ISI distance in the (𝑔
𝑐
, 𝑇) parameter plane is shown

in Figure 8. As illustrated in the figure, the map differs from
that of the ring-like neuronal network. It can be observed
that the region that ISI distance almost equals 0 is larger
than that of the ring-like neuronal network; when coupling
strength is bigger than 0.012ms/cm2, all neurons are in a
complete synchronous state. It indicates that synchronization
state is related to the network connection type; that is, the
synchronization in coupled grid-like neuronal network is
easier than ring-like connected neurons.Alsowe can see from
the simulation that, no matter what the 𝑇 is (the uncoupled
neurons are in all kinds of firing patterns including regular
single spike, chaotic, or bursting status), when the coupling
strength is bigger enough, the grid-like neuronal network
can eventually reach the complete synchronization, which is
similar to ring-like network.

Compared to Figure 1, it can be observed from Figures 7
and 8 that 𝑔

𝑐
of chaotic and high period pattern are larger

than the ones in spike and low period patterns, which means

that chaotic and high period patterns are more difficult to get
complete synchronization than the situation in single spike
and low period patterns. It can be also seen from these two
figures that the tendency of 𝐼𝑆𝐼with temperature𝑇 (𝑔

𝑐
< 0.02

in Figure 7 and 𝑔
𝑐
< 0.015 in Figure 8) is consistent with

the situation of single neuron, that is, increasing first and
then decreasing. This means that it is possible to establish
the relation between network dynamics and single-neuron
dynamics.

5. Conclusion

First, the noise effects on the neuronal system are studied.
With the addition of noise, the neural model can generate a
variety of new different patterns compared to deterministic
situation. For a qualitative computing of noise effect, the
𝐼𝑆𝐼 distance is introduced to characterize how noise affects
the variability of the neural spike train. It is shown that the
𝐼𝑆𝐼 distance will increase with the noise intensity becoming
larger, which means that the higher noise intensity can cause
stronger fluctuations in the spike train. Meanwhile, noise has
less effect on spike trains for higher temperature within the
bursting regime. These stochastic phenomena mean that sig-
nal encoding can be different with the change of noise level.

Then synchronization status of neural network with
different connection types is investigated. The simulations
show that the synchronization status is much related to the
network connectivity patterns. By tuning both temperature
and coupling strength, there exists a larger synchronous
region for grid-like neuronal network than that of ring-
like network. It is also shown that chaotic and high period
patterns are more difficult to get complete synchronization
than the situation in single spike and low period pattern.

The method and results in this study may be instructive
for the study of neural encoding of spike trains under noisy
and network environment. Network study results show that
it may be possible to establish the relation between network
dynamics and single-neuron dynamics.
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