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Nonnegative matrix factorization (NMF) is a useful tool in learning a basic representation of image data. However, its performance
and applicability in real scenarios are limited because of the lack of image information. In this paper, we propose a constrained
matrix decomposition algorithm for image representation which contains parameters associated with the characteristics of image
data sets. Particularly, we impose label information as additional hard constraints to the 𝛼-divergence-NMF unsupervised learning
algorithm.The resulted algorithm is derived by using Karush-Kuhn-Tucker (KKT) conditions as well as the projected gradient and
its monotonic local convergence is proved by using auxiliary functions. In addition, we provide a method to select the parameters
to our semisupervised matrix decomposition algorithm in the experiment. Compared with the state-of-the-art approaches, our
method with the parameters has the best classification accuracy on three image data sets.

1. Introduction

Learning an efficient representation of image information is
a key problem in machine learning and computer vision.
Efficiency of the representation refers to the ability to capture
significant information from a high dimensional image space.
Such a high dimensional problem is difficult to manipulate
and compute; therefore dimension reduction becomes the
crucialmethod to copewith this problem. Fortunately,matrix
factorization is a valid approach to solve the dimension
reduction problem, and it has a long and successful history
in dealing with image representation [1–3]. Some methods of
matrix factorization can be referred to as principal compo-
nent analysis (PCA) [4], singular value decomposition (SVD)
[5], vector quantization (VQ) [6], and nonnegative matrix
factorization (NMF) [7].

Among all techniques for matrix factorization, NMF is
distinguished from others by its use of nonnegative con-
straints in learning a basis representation of image data [8]
and has been applied in face recognition [9–11], medical
imaging [12, 13], electroencephalogram (EEG) classifica-
tion for brain computer interface [14], and many other
areas. However, NMF is an unsupervised learning algorithm

and inapplicable to learning a basic representation from lim-
ited image information.Thus, to make up for this deficiency,
extra constraints are implicitly or explicitly incorporated into
NMF to derive some semisupervised matrix decomposition
algorithms. In [15], the authors impose label information as
additional hard constraints to NMF based on the squared
Euclidean distance and Kulback-Leibler divergence. Such
a representation encodes the data points from the same
class using the indicator matrix in a new representation
space, where the obtained part-based representation is more
discriminating.

However, none of the semisupervised NMF algorithms
mentioned above contain parameters associated with the
characteristics of image data sets. In this paper, we introduce
𝛼-divergence-NMF algorithm [16], where 𝛼 is a parameter.
We impose the labeled constraints to the 𝛼-divergence-NMF
algorithm to derive a generic constraint matrix decomposi-
tion algorithm which includes some existing algorithms as
their special cases: one of them is CNMFKL [15] with 𝛼 =

1. Then, we obtain the proposed algorithm using Karush-
Kuhn-Tucker (KKT)method as well as the projected gradient
method and prove its monotonic local convergence using an
auxiliary function. Comparing to the current semisupervised
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NMF algorithms, we analyze the classification accuracy for
two fixed values of 𝛼 (𝛼 = 0.5, 2) on three image data sets.

The CNMF
𝛼
algorithm does not work well for a fixed

value of 𝛼. Since the parameter 𝛼 is associated with the
characteristics of a learning machine, the model distribution
is more inclusive when 𝛼 goes to +∞ and is more exclusive
when 𝛼 approaches to −∞.The selection of the optimal value
of 𝛼 plays a critical role in determining the discriminative
basis vectors. In this paper, we provide a method to select
parameters 𝛼 for our semisupervised CNMF

𝛼
algorithm.The

variation of 𝛼 is associated with the characteristics of image
data sets. Compared with the algorithms in [15, 16], our
algorithm is more complete and systemic.

The rest of the paper is organized as follows. In Section 2,
we make a brief overview on standard NMF algorithm and
constraint NMF algorithm. The detailed algorithms with
labeled constraints and theoretical proof of the convergence
of the algorithms are provided in Sections 3 and 4 separately.
Section 5 presents some experimental results to show the
advantages of our algorithm. Finally, a conclusion is given in
Section 6.

2. Related Work

NMF, proposed by Lee and Seung [7], is considered to provide
a part-based representation and applied in diverse examples
of nonnegative data [17–21] including text data mining,
subsystem identification, spectral data analysis, audio and
sound processing, and document clustering.

Suppose 𝑋 = [𝑥
1
, . . . , 𝑥

𝑛
] ∈ 𝑅

𝑚×𝑛 is a set of 𝑛 training
images, where {𝑥

𝑡
}
𝑛

𝑡=1
is a column vector and consists of 𝑚

nonnegative pixel values of a training image. NMF is to find
two nonnegative matrix factors 𝑊 ∈ 𝑅

𝑚×𝑟 and 𝐻 ∈ 𝑅
𝑛×𝑟 to

approximate the original image matrix

𝑋 ≈ 𝑊𝐻
𝑇

, (1)

where the positive integer 𝑟 is smaller than𝑚 or 𝑛.
NMF uses nonnegative constraints to make the rep-

resentation purely adapted to an unsupervised way. It is
inapplicable to learn a basis representation to the limited
image information. To make up for this deficiency, extra
constraints such as locality [22], sparseness [9], and orthog-
onality [23] were implicitly or explicitly incorporated into
NMF to identify better local features or provide more sparse
representation.

In [15], the authors impose label information as additional
hard constraints to NMF unsupervised learning algorithm
to derive a semisupervised matrix decomposition algorithm,
which makes the obtained representation more discriminat-
ing. The label information is incorporated as follows.

Suppose 𝑋 = {𝑥
𝑖
}
𝑛

𝑖=1
is a data set, which consists of n

training images. Set that the first 𝑠 images {𝑥
1
, . . . , 𝑥

𝑠
} (𝑠 ≤ 𝑛)

are represented by the label information, and the remaining
𝑛 − 𝑠 images {𝑥

𝑠+1
, . . . , 𝑥

𝑛
} (𝑠 ≤ 𝑛) are represented by the

unlabeled. Assume there exist 𝑐 classes and each image from

{𝑥
1
, . . . , 𝑥

𝑠
} is designated one class. Then we have an 𝑠 × 𝑐

indicator matrix 𝑆, which can be represented as

𝑠
𝑖𝑗
= {

1, if𝑥
𝑖
is designated the 𝑗th class,

0, otherwise.
(2)

From the indicator matrix 𝑆, a label constraint matrix 𝑈 can
be defined as

𝑈 = (

𝑆
𝑠×𝑐

0

0 𝐼
𝑛−𝑠

) , (3)

where 𝐼
𝑛−𝑠

denotes an (𝑛 − 𝑠) × (𝑛 − 𝑠) identity matrix.
Imposing the label information as additional hard con-

straint by an auxiliary matrix 𝑉, there is 𝐻 = 𝑈𝑉. It
verifies that ℎ

𝑖
= ℎ
𝑗
if 𝑥
𝑖
and 𝑥

𝑗
have the same labels. With

the label constraints, the standard NMF is transformed into
factorizing a large-size matrix 𝑋 into the product of three
small-size matrices𝑊, 𝑈, and 𝑉:

𝑋 ≈ 𝑊(𝑈𝑉)
𝑇

. (4)

Such a representation encodes the data points from the same
class using the indicatormatrix in a new representation space.

3. A Constrained Algorithm Based NMF
𝛼

The exact form of the error measure of (1) is as crucial
as the nonnegative constraints in the success of the NMF
algorithm in learning a useful representation of image data.
In the researches on NMF, there are quite a large number
of investigations for error measure, such as Csiszár's f-
divergences [24], Amari's 𝛼-divergence [25], and Bregman
divergences [26]. Here, we introduce a genetic multiplicative
updating algorithm [16] which iteratively minimizes the 𝛼-
divergence between𝑋 and𝑊𝐻

𝑇. We define the 𝛼-divergence
as
𝐷
𝛼
[𝑋‖𝑊𝐻

𝑇

]

=

1

𝛼 (1 − 𝛼)

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

{𝛼𝑋
𝑖𝑗
+ (1 − 𝛼) [𝑊𝐻

𝑇

]
𝑖𝑗

− 𝑋
𝛼

𝑖𝑗
[𝑊𝐻
𝑇

]

1−𝛼

𝑖𝑗

} ,

(5)

where 𝛼 is a positive parameter. We combine the labeled con-
straints with (4) to derive the following objective function,
which is based on the 𝛼-divergence between𝑋 and𝑊(𝑈𝑉)

𝑇,

𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

]

=

1

𝛼 (1 − 𝛼)

×

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

{𝛼𝑋
𝑖𝑗
+ (1 − 𝛼) [𝑊𝑉

𝑇

𝑈
𝑇

]
𝑖𝑗

− 𝑋
𝛼

𝑖𝑗
[𝑊𝑉
𝑇

𝑈
𝑇

]

1−𝛼

𝑖𝑗

} .

(6)

With the constraints 𝑊
𝑖𝑗

≥ 0, 𝑈
𝑖𝑗

≥ 0, and 𝑉
𝑖𝑗

≥ 0, the
minimization of𝐷

𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

] can be formulated as a con-
strained minimization problem with inequality constraints.
In the following, we will present two methods to find a local
minimum of (6).
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3.1. KKT Method. Let 𝜆
𝑖𝑗
≥ 0 and 𝜇

𝑖𝑗
≥ 0 be the Lagrangian

multipliers associated with constraints 𝑉
𝑖𝑗

≥ 0 and 𝑊
𝑖𝑗

≥

0, respectively. The Karush-Kuhn-Tucker conditions require
that both the optimality conditions

𝜕𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

]

𝜕𝑉
𝑖𝑗

=

1

𝛼

{∑

𝑘

[𝑈
𝑇

𝑊]
𝑘𝑖

−∑

𝑘

[𝑈
𝑇

𝑊]
𝑘𝑖

(

𝑋
𝑘𝑗

[𝑊𝑉
𝑇
𝑈
𝑇
]
𝑘𝑗

)

𝛼

} = 𝜆
𝑖𝑗
,

(7)

𝜕𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

]

𝜕𝑊
𝑖𝑗

=

1

𝛼

{∑

𝑘

[𝑉
𝑇

𝑈
𝑇

]
𝑗𝑘

−∑

𝑘

[𝑉
𝑇

𝑈
𝑇

]
𝑗𝑘

(

𝑋
𝑖𝑘

[𝑊𝑉
𝑇
𝑈
𝑇
]
𝑖𝑘

)

𝛼

} = 𝜇
𝑖𝑗

(8)

and the complementary slackness conditions

𝜆
𝑖𝑗
𝑉
𝑖𝑗
= 0,

𝜇
𝑖𝑗
𝑊
𝑖𝑗
= 0

(9)

are satisfied. If 𝑉
𝑖𝑗
= 0 and 𝑊

𝑖𝑗
= 0, then either 𝜆

𝑖𝑗
𝜇
𝑖𝑗
can

have any values. At the same time, if 𝜆
𝑖𝑗
= 0 and 𝜇

𝑖𝑗
= 0, then

𝑉
𝑖𝑗
≥ 0 and𝑊

𝑖𝑗
≥ 0. Hence we need both 𝜆

𝑖𝑗
̸= 0 𝜇
𝑖𝑗

̸= 0 and
𝑉
𝑖𝑗

̸= 0 𝑊
𝑖𝑗

̸= 0. It follows from (9) that

𝜆
𝑖𝑗
𝑉
𝛼

𝑖𝑗
= 0,

𝜇
𝑖𝑗
𝑊
𝛼

𝑖𝑗
= 0.

(10)

We multiply both sides of (7) and (8) by 𝑉
𝑖𝑗

and 𝑊
𝑖𝑗
,

respectively, and incorporate with (10), and then we obtain
the following updating rules:

𝑉
𝑖𝑗
← 𝑉

𝑖𝑗

[

[

[

∑
𝑘
[𝑈
𝑇

𝑊]
𝑘𝑖

(𝑋
𝑘𝑗
/[𝑊𝑉

𝑇

𝑈
𝑇

]
𝑘𝑗

)

𝛼

∑
𝑙
[𝑈
𝑇
𝑊]
𝑙𝑖

]

]

]

1/𝛼

, (11)

𝑊
𝑖𝑗
← 𝑊

𝑖𝑗

[

[

∑
𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑗𝑘

(𝑋
𝑖𝑘
/[𝑊𝑉

𝑇

𝑈
𝑇

]
𝑖𝑘

)

𝛼

∑
𝑙
[𝑉
𝑇
𝑈
𝑇
]
𝑗𝑙

]

]

1/𝛼

. (12)

3.2. Projected Gradient Method. Considering the gradient
descent algorithm [24, 25], the updating rules for the objec-
tive function (6) can be also derived by using the projected
gradient method [27] and have the form

𝜙 (𝑉
𝑖𝑗
) ← 𝜙 (𝑉

𝑖𝑗
) + 𝛿
𝑖𝑗

𝜕𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

]

𝜕𝑉
𝑖𝑗

,

𝜙 (𝑊
𝑖𝑗
) ← 𝜙 (𝑊

𝑖𝑗
) + 𝛾
𝑖𝑗

𝜕𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

]

𝜕𝑊
𝑖𝑗

,

(13)

where 𝜙(⋅) is a suitably chosen function and 𝛿
𝑖𝑗
and 𝛾
𝑖𝑗
are two

parameters to control the step size of gradient descent. Then,
we have

𝑉
𝑖𝑗
← 𝜙

−1

(𝜙 (𝑉
𝑖𝑗
) + 𝛿
𝑖𝑗

𝜕𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

]

𝜕𝑉
𝑖𝑗

) ,

𝑊
𝑖𝑗
← 𝜙

−1

(𝜙 (𝑊
𝑖𝑗
) + 𝛾
𝑖𝑗

𝜕𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

]

𝜕𝑊
𝑖𝑗

) .

(14)

Setting 𝜙(Ω) = Ω
𝛼, to guarantee that the updating rules (11)

and (12) hold, we need

𝛿
𝑖𝑗
= −

𝛼𝑉
𝛼

𝑖𝑗

∑
𝑘
[𝑈
𝑇
𝑊]
𝑘𝑖

, 𝛾
𝑖𝑗
= −

𝛼𝑊
𝛼

𝑖𝑗

∑
𝑘
[𝑉
𝑇
𝑈
𝑇
]
𝑗𝑘

. (15)

From (7) and (8), the updating rules become

𝑉
𝛼

𝑖𝑗
← 𝑉

𝛼

𝑖𝑗
+ 𝛿
𝑖𝑗

𝜕𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

]

𝜕𝑉
𝑖𝑗

= 𝑉
𝛼

𝑖𝑗

∑
𝑘
[𝑈
𝑇

𝑊]
𝑘𝑖

(𝑋
𝑘𝑗
/[𝑊𝑉

𝑇

𝑈
𝑇

]
𝑘𝑗

)

𝛼

∑
𝑙
[𝑈
𝑇
𝑊]
𝑙𝑖

,

𝑊
𝛼

𝑖𝑗
← 𝑊

𝛼

𝑖𝑗
+ 𝛾
𝑖𝑗

𝜕𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

]

𝜕𝑊
𝑖𝑗

= 𝑊
𝛼

𝑖𝑗

∑
𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑗𝑘

(𝑋
𝑖𝑘
/[𝑊𝑉

𝑇

𝑈
𝑇

]
𝑖𝑘

)

𝛼

∑
𝑙
[𝑉
𝑇
𝑈
𝑇
]
𝑗𝑙

,

(16)

which are the same as the updating rules (11) and (12).
We have shown that the algorithm can be derived using
Karush-Kuhn-Tucker conditions and presented alternative of
the algorithm using the projected gradient. The use of the
two methods guarantees the correctness of the algorithm
theoretically.

In the following, we will give a theorem to guarantee the
convergence of the iterations in updates (11) and (12).

Theorem 1. For the objective function (6), 𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

]

is nonincreasing under the updating rules (11) and (12). The
objective function 𝐷

𝛼
is invariant under these updates if and

only if 𝑉 and𝑊 are at a stationary point.

Multiplicative updates for our constrained algorithm
based NMF

𝛼
are given in (11) and (12). These updates find

a local minimum of 𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

], which is the final
solution of (11) and (12). Note that, when 𝛼 = 1, the updates
(11) and (12) are the samewithCNMFKL algorithm [15], which
is a special case included in our generic constraint matrix
decomposition algorithm. In the following, we will give the
proof of Theorem 1.

4. Convergence Analysis

To proveTheorem 1, wewillmake use of an auxiliary function
thatwas used in the expectation-maximization algorithm [28,
29].
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Definition 2. A function 𝐺(𝑥, 𝑥) is defined as an auxiliary
function for 𝐹(𝑥) if the following two conditions are both
satisfied:

𝐺 (𝑥, 𝑥) = 𝐹 (𝑥) , 𝐺 (𝑥, 𝑥) ≥ 𝐹 (𝑥) . (17)

Lemma 3. Assume that the function 𝐺(𝑥, 𝑥) is an auxiliary
function for 𝐹(𝑥); then 𝐹(𝑥) is nonincreasing under the update

𝑥
𝑡+1

= argmin
𝑥

𝐺(𝑥, 𝑥
𝑡

) . (18)

Proof . Consider 𝐹(𝑥𝑡+1) ≤ 𝐺(𝑥
𝑡+1

, 𝑥
𝑡

) ≤ 𝐺(𝑥
𝑡

, 𝑥
𝑡

) = 𝐹(𝑥
𝑡

).

It can be observed that the equality 𝐹(𝑥
𝑡+1

) = 𝐹(𝑥
𝑡

)

holds only if 𝑥𝑡 is a local minimum of 𝐺(𝑥, 𝑥). We iterate the
update in (18) to obtain a sequence of estimates that converge
to a local minimum 𝑥min = argmin

𝑥
𝐹(𝑥) of the objective

function given by

𝐹 (𝑥min) ≤ ⋅ ⋅ ⋅ ≤ 𝐹 (𝑥
𝑡+1

) ≤ 𝐹 (𝑥
𝑡

)

≤ ⋅ ⋅ ⋅ ≤ 𝐹 (𝑥
2
) ≤ 𝐹 (𝑥

1
) ≤ 𝐹 (𝑥

0
) .

(19)

In the following, we will show that the objective function (6)
is nonincreasing under the updating rules (11) and (12) by
defining the appropriate auxiliary functions with respect to
𝑉
𝑖𝑗
and𝑊

𝑖𝑗
.

Lemma 4. Function

𝐺(𝑉, �̂�)

=

1

𝛼 (1 − 𝛼)

∑

𝑖,𝑗,𝑘

𝑋
𝑖𝑗
𝜉
𝑖𝑗𝑘

(�̂�)

×

{
{

{
{

{

𝛼 + (1 − 𝛼)

𝑊
𝑖𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑘𝑗

𝑋
𝑖𝑗
𝜉
𝑖𝑗𝑘

(�̂�)

− (

𝑊
𝑖𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑘𝑗

𝑋
𝑖𝑗
𝜉
𝑖𝑗𝑘
(�̂�)

)

1−𝛼

}
}

}
}

}

,

(20)

where 𝜉
𝑖𝑗𝑘
(�̂�) = 𝑊

𝑖𝑘
[�̂�
𝑇

𝑈
𝑇

]
𝑘𝑗
/∑
𝑙
𝑊
𝑖𝑙
[�̂�
𝑇

𝑈
𝑇

]
𝑙𝑗
, is an auxiliary

function for

𝐹 (𝑉) =

1

𝛼 (1 − 𝛼)

×∑

𝑖,𝑗

𝛼𝑋
𝑖𝑗
+ (1 − 𝛼) [𝑊𝑉

𝑇

𝑈
𝑇

]
𝑖𝑗

− 𝑋
𝛼

𝑖𝑗
[𝑊𝑉
𝑇

𝑈
𝑇

]

1−𝛼

𝑖𝑗

.

(21)

Proof. Obviously, 𝐺(𝑉,𝑉) = 𝐹(𝑉). According to the defini-
tion of auxiliary function, we only need to prove 𝐺(𝑉, �̂�) ≥

𝐹(𝑉). To do this, we use the convex function 𝑓(⋅) for positive
𝛼 to rewrite the 𝛼-divergence function 𝐹(𝑉) as

𝐹 (𝑉) = ∑

𝑖,𝑗

𝑋
𝑖𝑗
𝑓(

∑
𝑘
𝑊
𝑖𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑘𝑗

𝑋
𝑖𝑗

) , (22)

where

𝑓 (𝑥) =

1

𝛼 (1 − 𝛼)

[𝛼 − (1 − 𝛼) 𝑥 − 𝑥
1−𝛼

] . (23)

Note that ∑
𝑘
𝜉
𝑖𝑗𝑘
(�̂�) = 1 and 𝜉

𝑖𝑗𝑘
(�̂�) ≥ 0 from the definition

of 𝜉
𝑖𝑗𝑘
(�̂�). Applying Jensen's inequality [30], it leads to

𝑓(∑

𝑘

𝑊
𝑖𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑘𝑗

) ≤ ∑

𝑘

𝜉
𝑖𝑗𝑘

(�̂�) 𝑓(

𝑊
𝑖𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑘𝑗

𝜉
𝑖𝑗𝑘

(�̂�)

) .

(24)

From the above inequality, it follows that

𝐹 (𝑉) = ∑

𝑖,𝑗

𝑋
𝑖𝑗
𝑓(

∑
𝑘
𝑊
𝑖𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑘𝑗

𝑋
𝑖𝑗

)

≤ ∑

𝑖,𝑗,𝑘

𝑋
𝑖𝑗
𝜉
𝑖𝑗𝑘

(�̂�) 𝑓(

𝑊
𝑖𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑘𝑗

𝑋
𝑖𝑗
𝜉
𝑖𝑗𝑘

(�̂�)

)

= 𝐺 (𝑉, �̂�) ,

(25)

which satisfies the condition of auxiliary function.

Reversing the rules of 𝑉
𝑖𝑗
and𝑊

𝑖𝑗
in Lemma 4, we define

an auxiliary function for the update (12).

Lemma 5. Function

𝐺(𝑊, �̂�)

=

1

𝛼 (1 − 𝛼)

∑

𝑖,𝑗,𝑘

𝑋
𝑖𝑗
𝜂
𝑖𝑗𝑘

(�̂�)

×

{
{

{
{

{

𝛼 + (1 − 𝛼)

𝑊
𝑖𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑘𝑗

𝑋
𝑖𝑗
𝜂
𝑖𝑗𝑘

(�̂�)

− (

𝑊
𝑖𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑘𝑗

𝑋
𝑖𝑗
𝜂
𝑖𝑗𝑘

(�̂�)

)

1−𝛼

}
}

}
}

}

,

(26)

where 𝜂
𝑖𝑗𝑘
(�̂�) = �̂�

𝑖𝑘
[𝑉
𝑇

𝑈
𝑇

]
𝑘𝑗
/∑
𝑙
�̂�
𝑖𝑙
[𝑉
𝑇

𝑈
𝑇

]
𝑙𝑗
, is an auxil-

iary function for

𝐹 (𝑊)

=

1

𝛼 (1 − 𝛼)

×∑

𝑖,𝑗

𝛼𝑋
𝑖𝑗
+ (1 − 𝛼) [𝑊𝑉

𝑇

𝑈
𝑇

]
𝑖𝑗

− 𝑋
𝛼

𝑖𝑗
[𝑊𝑉
𝑇

𝑈
𝑇

]

1−𝛼

𝑖𝑗

.

(27)

This can be easily proved in the same way as Lemma 4.
From Lemmas 4 and 5, now we can demonstrate the conver-
gence of Theorem 1.
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Proof. To guarantee the stability of 𝐹(𝑉), from Lemma 3, we
just need to obtain the minimum of 𝐺(𝑉, �̂�) with respect to
𝑉
𝑖𝑗
. Set the gradient of (20) to zero; there is

𝜕𝐺 (𝑉, �̂�)

𝜕𝑉
𝑖𝑗

=

1

𝛼

∑

𝑘

[𝑈
𝑇

𝑊]
𝑘𝑖

{
{

{
{

{

1 − (

𝑊
𝑘𝑖
[𝑉
𝑇

𝑈
𝑇

]
𝑖𝑗

𝑋
𝑘𝑗
𝜉
𝑘𝑗𝑖

(�̂�)

)

−𝛼

}
}

}
}

}

= 0.

(28)

Then, it follows that

𝑉
𝑖𝑗
= �̂�
𝑖𝑗

[

[

[

∑
𝑘
[𝑈
𝑇

𝑊]
𝑘𝑖

(𝑋
𝑘𝑗
/∑
𝑙
𝑊
𝑘𝑙
[�̂�
𝑇

𝑈
𝑇

]
𝑙𝑗

)

𝛼

∑
𝑘
[𝑈
𝑇
𝑊]
𝑘𝑖

]

]

]

1/𝛼

, (29)

which is similar to the form of the updating rule (11).
Similarly, to guarantee the updating rule (12) holds, the
minimum of 𝐺(𝑊, �̂�), which can be determined by setting
the gradient of (26) to zero, must exist.

Since 𝐺 is an auxiliary function, according to Lemma 4,
𝐹 in (21) is nonincreasing under the update (11). Multiplying
updates (11) and (12), we can find a local minimum of
𝐷
𝛼
[𝑋‖𝑊(𝑈𝑉)

𝑇

].

5. Experiments

In this section, the CNMF
𝛼

algorithm is systematically
compared with the current constrained NMF algorithms
on three image data sets, named ORL Database [31], Yale
Database [32], and Caltech 101 Database [33]. The details of
the above three databases will be described individually later.
We introduce the evaluated algorithms firstly.

(i) Constrained nonnegative matrix factorization algo-
rithm in [15] aims to minimize the F-norm cost.

(ii) Constrained nonnegative matrix factorization algo-
rithm with parameter 𝛼 = 0.5 in this paper aims to
minimize the Hellinger divergence cost.

(iii) Constrained nonnegative matrix factorization algo-
rithm with parameter 𝛼 = 1 in [15], aiming at min-
imizing the KL-divergence cost, is the best reported
algorithm in image representation.

(iv) Constrained nonnegative matrix factorization algo-
rithm with parameter 𝛼 = 2 in this paper aims to
minimize the 𝜒2-divergence cost.

(v) Constrained nonnegative matrix factorization algo-
rithm with parameter 𝛼 = 𝛼

𝑘
in this paper aims to

minimize the 𝛼-divergence cost, where the param-
eters 𝛼

𝑘
are associated with the characteristics of

the image database and designed by the presented
method. CNMFKL algorithm is a special case of our
CNMF

𝛼𝑘
algorithm with 𝛼 = 𝛼

𝑘
= 1.

We apply these algorithms to a problem of classification
and evaluate their performance on three image data sets
which contain a number of different categories of image. For
each date set, the evaluations are conducted with different
numbers of clusters; here the number of clusters 𝑘 varies from
2 to 10.We randomly choose 𝑘 categories fromone image data
set and mix the images of these 𝑘 categories as the collection
𝑋. Then, for the semisupervised algorithms, we randomly
pick up 10 percent images from each category in𝑋 and record
their category number as the available label information to
obtain the label matrix𝑈. For some special data sets, the label
process is different and we will describe the details later.

Suppose a data set has 𝑁 categories 𝐶
1
, 𝐶
2
. . . , 𝐶

𝑁
, and

the cardinalities of these labeled images are 𝐿
1
, 𝐿
2
. . . , 𝐿
𝑁
,

respectively. Since the label constraint matrix 𝑈 is composed
of the indicatormatrix 𝑆 and the identity matrix 𝐼, the indica-
tor matrix 𝑆 plays a critical role in classification performance
for different categories in𝑋. To determine the effectiveness of
𝑆, we define a measure to represent the relationship between
the cardinalities of labeled samples and the total samples,

𝑟 (𝑘) =

𝐿max (𝑘) − 𝐿min (𝑘)

∑
𝑘

𝑖=1
𝐶
𝑖

𝑘, (30)

where 𝐿max(𝑘) and 𝐿min(𝑘) denote the maximum and mini-
mum labeled cardinalities of 𝑘 categories. For the fixed cluster
number 𝑘 in the data set, 𝑟(𝑘) is different if the number of
samples in each category is different. Then, we compute 𝛼 as
follows:

𝛼
𝑘
=

𝛼
𝑁

𝑟 (𝑁)

( |𝑟 (𝑘) − 𝑟 (𝑁)|

× (












𝐿max (𝑘) 𝑘

∑
𝑘

𝑖=1
𝐶
𝑖

−

∑
𝑁

𝑖=1
𝐿
𝑖

∑
𝑁

𝑖=1
𝐶
𝑖












+












𝐿min (𝑘) 𝑘

∑
𝑘

𝑖=1
𝐶
𝑖

−

∑
𝑁

𝑖=1
𝐿
𝑖

∑
𝑁

𝑖=1
𝐶
𝑖












)

−1

) ,

(31)

where

𝛼
𝑁
= (𝐿max (𝑁) − 𝐿min (𝑁))

× (












𝐿max (𝑁) −

∑
𝑁

𝑖=1
𝐿
𝑖

∑
𝑁

𝑖=1
𝐶
𝑖












+












𝐿min (𝑁) −

∑
𝑁

𝑖=1
𝐿
𝑖

∑
𝑁

𝑖=1
𝐶
𝑖












)

−1

.

(32)

The value of 𝛼
𝑘
computed by (31) is associated with the

characteristics of image data sets, since its variation is caused
by both the cardinalities of labeled samples in each category
and the total samples. We can obtain both the cardinalities
of labeled samples and the total samples in our semisuper-
vised algorithms. However, we can not get the cardinalities
of labeled images exactly in many real-word applications.
Moreover, the value of 𝛼 varies depending on data sets. It is
still an open problem how to select the optimal 𝛼 [16].

To evaluate the classification performance, we define
classification accuracy as the first measure. Our CNMF

𝛼
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algorithm described in (11) and (12) provides a classification
label of each sample, marked 𝑠

𝑖𝑙𝑖
. Suppose 𝑋 = {𝑥

𝑖
}
𝑛

𝑖=1
is a

data set, which consists of n training images. For each sample,
let 𝑙
𝑖
be the true class label provided by the image data set.

More specifically, if the image 𝑥
𝑖
is designated the 𝑙

𝑖
th class,

we evaluate it as a correct label and set 𝑠
𝑖𝑙𝑖

= 1. Otherwise,
it is counted as a false label and noted 𝑠

𝑖𝑙𝑖
= 0. Eventually, we

compute the percentage of correct labels obtained by defining
the accuracy measure as

Ac (𝑠
𝑖𝑙𝑖
) =

∑
𝑛

𝑖=1
𝑠
𝑖𝑙𝑖

𝑛

. (33)

To evaluate the classification performance, we carry
out computation about the normalized mutual information,
which is used to measure how similar two sets of clusters are,
as the second measure. Given two data sets of clusters 𝐶

𝑖
and

𝐶
𝑗
, their normalized mutual information is defined as

NMI (𝐶
𝑖
, 𝐶
𝑗
)

=

∑
𝑐𝑖∈𝐶𝑖 ,𝑐𝑗∈𝐶𝑗

𝑝 (𝑐
𝑖
, 𝑐
𝑗
) ⋅ log {𝑝 (𝑐

𝑖
, 𝑐
𝑗
) / [𝑝 (𝑐

𝑖
) 𝑝 (𝑐
𝑗
)]}

max (𝐻 (𝐶
𝑖
) ,𝐻 (𝐶

𝑗
))

,

(34)

which takes values between 0 and 1. Where 𝑝(𝑐
𝑖
), 𝑝(𝑐

𝑗
)

denote the probabilities that an image arbitrarily chosen from
the data set belongs to the clusters 𝐶

𝑖
and 𝐶

𝑗
, respectively,

and 𝑝(𝑐
𝑖
, 𝑐
𝑗
) denotes the joint probability that this arbitrarily

selected image belongs to the cluster 𝐶
𝑖
as well as 𝐶

𝑗
at the

same time.𝐻(𝐶
𝑖
) and 𝐻(𝐶

𝑗
) are the entropies of 𝐶

𝑖
and 𝐶

𝑗
,

respectively.
Experimental results on each data set will be presented as

classification accuracy and the normalized mutual informa-
tion is in Tables 1 and 2.

5.1. ORL Database. The Cambridge ORL Face Database has
400 images for 40 different people, 10 images per person.
The images of some people are taken at different times,
varying lighting slightly, facial expressions (open/closed eyes,
smiling/nonsmiling), and facial details (glasses/no glasses).
All the images are taken against a dark homogeneous back-
ground with the subjects in an upright, frontal position and
slight left-right out-of-plane rotation. To locate the faces,
the input images are preprocessed. They are resized to 32 ×

32 pixels with 256 gray levels per pixel and normalized in
orientation so that two eyes in the facial areas are aligned at
the same position.

There are 10 images for each category in ORL and 10
percent is just one image. For the fixed parameter 𝛼 (𝛼 =

0.5, 1, 2), we randomly choose two images from each category
to provide the label information. Note that the same label
is meaningless for (30). To obtain 𝑟(𝑘), we divide the 40
categories into 3 groups: 10 categories, 20 categories, and 10
categories. In the first 10 categories, pick up 1 image from
each category to provide the label information; pick up 2
images from each category in the second 20 categories; and
pick up 3 from each category in the remaining categories.The

dividing process is repeated 10 times and the obtained average
classification accuracy is recorded as the final result.

Figure 1 shows the graphical classification accuracy rates
and normalized mutual information on the ORL Database.
Note that if the samples in the collection 𝑋 come from
the same group, we set 𝛼

𝑘
= 0.67. Because of the same

number of samples in each category, the variation of the
𝛼 is small even though we label different cardinalities of
samples. Compared to the constrained nonnegative matrix
factorization algorithms with fixed parameters, our CNMF

𝛼𝑘

algorithm gives the best performance since the selection of
𝛼
𝑘
is suitable to the collection 𝑋. Table 1 summarizes the

detailed classification accuracy and error bars of CNMF
𝛼=0.5

,
CNMF

𝛼=2
, and CNMF

𝛼𝑘
. It shows that our CNMF

𝛼𝑘
algo-

rithm achieves 1.92 percent improvement compared to the
best reported CNMFKL algorithm (𝛼 = 1) [15] in average
classification accuracy. For normalized mutual information,
the details and the error bars of our constrained algorithms
with 𝛼 = 0.5, 𝛼 = 2, and 𝛼

𝑘
are listed in Table 2. Comparing

to the best algorithmCNMF, ourCNMF
𝛼𝑘
algorithmachieves

0.54 percent improvement.

5.2. Yale Database. The Yale Database consists of 165
grayscale images for 15 individuals, 11 images per person.
One per image is taken from different facial expression or
configuration: center-light, w/glasses, happy, left-light, w/no
glasses, normal, right-light, sad, sleepy, surprised, and wink.
We preprocess all the images of Yale Database in the same
way as the ORL Database. Each image is linearly stretched to
a 1,024-dimensional vector in image space.

TheYaleDatabase also has the same number of samples in
each category. To obtain an appropriate 𝛼, we do similar label
processing to the ORL Database. Divide the 15 individuals
into 3 groups averagely, choose 1 image from each category
in the first group, choose 2 from each category in the second,
and choose 3 from each category in the remaining group.
We repeat the process 10 times and record the average
classification accuracy as the final result.

Figure 2 shows the classification accuracy and normal-
ized mutual information on the Yale Database. Set 𝛼

𝑘
=

0.55 when 𝑟(𝑘) − 𝑟(𝑁) = 0. It indicates that the samples
in the collection 𝑋 just come from two groups; that is,
choose 15 images from 10 categories in the first and second
group. CNMF

𝛼𝑘
achieves an extraordinary performance for

all the cases and CNMF
𝛼=0.5

follows. This suggests that the
constrained nonnegative matrix factorization algorithm has
a higher classification accuracy when the value of 𝛼 is close
to 𝛼
𝑘
. Comparing to the best reported CNMFKL algorithm,

CNMF
𝛼𝑘

achieves 2.42 percent improvement in average
classification accuracy. For normalized mutual information,
CNMF

𝛼𝑘
achieves 7.2 percent improvement compared to

CNMF. The details of classification accuracy and normal-
ized mutual information are provided in Tables 3 and 4,
which contain the error bars of CNMF

𝛼=0.5
, CNMF

𝛼=2
, and

CNMF
𝛼𝑘
.

5.3. Caltech 101 Database. The Caltech 101 Database created
by Caltech University has images of 101 different object



Discrete Dynamics in Nature and Society 7

Table 1: The comparison of classification accuracy rates on the ORL Database.

𝑘

Classification accuracy Ac(𝑠
𝑖𝑙𝑖
) (%)

CNMF CNMF
𝛼=1

CNMF
𝛼=0.5

CNMF
𝛼=2

CNMF
𝛼𝑘

2 93.90 92.95 93.51 ± 0.09 92.14 ± 0.18 93.89 ± 0.91
3 86.20 84.33 85.71 ± 0.83 82.26 ± 1.23 86.21 ± 2.07
4 84.55 84.05 84.74 ± 0.56 83.02 ± 0.47 84.78 ± 0.36
5 80.16 78.38 80.10 ± 0.22 80.15 ± 0.18 80.16 ± 0.29
6 76.72 76.73 77.13 ± 0.28 77.60 ± 0.19 78.09 ± 0.40
7 81.14 79.04 80.34 ± 0.81 78.07 ± 0.88 82.15 ± 1.95
8 78.08 77.02 78.66 ± 0.69 78.77 ± 0.94 79.45 ± 1.33
9 83.19 82.23 83.57 ± 0.36 81.22 ± 0.21 85.19 ± 1.21
10 77.03 76.88 77.69 ± 0.12 77.75 ± 0.19 78.96 ± 0.73
Avg. 82.33 81.29 82.38 81.22 83.21

Table 2: The comparison of normalized mutual information on the ORL Database.

𝑘

Normalized mutual information (%)
CNMF CNMF

𝛼=1
CNMF

𝛼=0.5
CNMF

𝛼=2
CNMF

𝛼𝑘

2 78.24 75.82 76.01 ± 0.14 73.94 ± 0.11 77.67 ± 0.58
3 76.61 75.36 75.38 ± 0.41 74.50 ± 0.53 75.92 ± 1.55
4 78.69 77.82 77.96 ± 0.47 77.04 ± 0.54 79.27 ± 1.26
5 76.69 74.27 75.32 ± 0.80 72.62 ± 0.87 75.35 ± 1.67
6 76.52 76.09 76.21 ± 0.12 76.09 ± 0.67 77.60 ± 1.82
7 82.45 81.35 82.36 ± 0.42 81.35 ± 0.26 83.08 ± 1.59
8 80.57 79.92 80.11 ± 0.73 79.91 ± 0.68 82.49 ± 1.97
9 86.03 85.67 86.73 ± 0.70 85.67 ± 0.37 88.05 ± 1.15
10 81.77 81.07 82.07 ± 0.12 81.07 ± 0.12 82.97 ± 1.71
Avg. 79.73 78.60 79.13 78.02 80.27

categories. Each category contains about 31 to 800 images
with a total of 9,144 samples of size roughly 300 × 300 pixels.
This database is particularly challenging for learning a basis
representation of image information, because the number
of training samples per category is exceedingly small. In
our experiment, we select the 10 largest categories (3,044
images in total), except the background category. To represent
the input images, we do the preprocessing by using the
codewords generated by SIFT features [34]. Then we obtain
555,292 SIFT descriptors and generate 500 codewords. By
assigning the descriptors to the closest codewords, each
image in Caltech 101 database is represented by a 500-
dimensional frequency histogram.

We randomly select 𝑘 categories from Faces-Easy cate-
gory in Caltech 101 database and convert them to gray-scale
of 32 × 32. The label process is repeated 10 times and the
obtained values of 𝛼

𝑘
computed by (31) are listed in Table 7.

The variation of the 𝛼 in the same 𝑘 categories is great.That is,
selecting an appropriate 𝛼 plays a critical role for the mixture
of different categories in one image data set, especially in the
case that the number of samples in each category is different.
The choice of 𝛼

𝑘
can fully reflect the effectiveness of the

indicator matrix 𝑆.
Figure 3 shows the effect that derived from the using of

proposed algorithm with 𝛼
𝑘
. The upper part of figure is the

original samples which contain 26 images, the middle part

is their gray images, and the lower is the combination of the
basis vectors learned by CNMF

𝛼𝑘
.

The classification accuracy results and normalizedmutual
information for Faces-Easy category in Caltech 101 database
are detailed in Tables 5 and 6, which contain the error bars of
CNMF

𝛼=0.5
, CNMF

𝛼=2
, and CNMF

𝛼𝑘
. The graphical results

of classification performance are shown in Figure 4. The best
performance in this experiment is achieved when the param-
eters𝛼

𝑘
listed in Table 7were selected. In general, ourmethod

demonstrates much better effectiveness in classification by
choosing 𝛼

𝑘
. Comparing to the best reported algorithm

other than our CNMF
𝛼
algorithm, CNMF

𝛼𝑘
achieves 2.4

percent improvement in average classification accuracy, and
comparing to the CNMF algorithm [15] other than CNMF

𝛼

algorithm, CNMF
𝛼𝑘

achieves 8.77 percent improvement in
average classification accuracy. For normalized mutual infor-
mation, CNMF

𝛼𝑘
achieves 2.29 percent improvement and

consistently outperforms the other algorithms.

6. Conclusion

In this paper, we present a generic constraint nonnegative
matrix factorization algorithm by imposing label informa-
tion as additional hard constraint to the 𝛼-divergence-NMF
algorithm. The proposed algorithm can be derived using
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Table 3: The comparison of classification accuracy rates on the Yale Database.

𝑘

Ac(𝑠
𝑖𝑙𝑖
) (%)

CNMF CNMF
𝛼=1

CNMF
𝛼=0.5

CNMF
𝛼=2

CNMF
𝛼𝑘

2 81.64 85.23 85.93 ± 0.65 84.18 ± 0.81 86.27 ± 2.46
3 68.48 76.91 77.14 ± 0.86 77.26 ± 0.42 79.01 ± 1.09
4 64.25 66.70 68.11 ± 0.67 66.12 ± 0.16 69.33 ± 2.23
5 65.82 67.71 69.14 ± 1.21 66.54 ± 1.01 70.57 ± 2.22
6 60.12 64.26 65.62 ± 0.94 63.70 ± 0.94 66.92 ± 1.41
7 59.25 62.47 63.97 ± 0.72 59.83 ± 0.38 65.23 ± 1.77
8 54.40 59.26 60.12 ± 0.31 56.76 ± 0.07 60.89 ± 1.28
9 54.85 57.30 58.08 ± 0.12 54.88 ± 0.14 58.98 ± 0.62
10 52.68 56.20 57.56 ± 0.03 53.83 ± 0.01 57.56 ± 0.73
Avg. 62.39 65.89 67.30 64.79 68.31

Table 4: The comparison of normalized mutual information on the Yale Database.

𝑘

Normalized mutual information (%)
CNMF CNMF

𝛼=1
CNMF

𝛼=0.5
CNMF

𝛼=2
CNMF

𝛼𝑘

2 48.99 59.66 59.73 ± 0.39 58.17 ± 0.17 61.11 ± 1.82
3 42.90 53.52 53.58 ± 0.73 52.75 ± 0.93 54.49 ± 1.74
4 47.80 53.60 53.66 ± 0.18 52.99 ± 0.65 54.58 ± 1.64
5 53.99 57.49 57.56 ± 0.07 56.21 ± 0.06 58.58 ± 2.32
6 50.63 55.88 56.15 ± 0.07 55.40 ± 0.08 57.62 ± 1.09
7 53.03 57.60 57.88 ± 0.22 57.27 ± 0.16 59.05 ± 1.89
8 50.83 56.52 56.93 ± 0.13 56.20 ± 0.13 58.98 ± 1.46
9 53.08 55.30 55.98 ± 0.73 54.81 ± 0.81 56.15 ± 1.20
10 52.84 56.73 57.43 ± 0.16 56.41 ± 0.41 58.30 ± 1.11
Avg. 50.45 56.26 56.54 55.58 57.65
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Figure 1: Classification performance on the ORL Database.
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Figure 2: Classification performance on the Yale Database.

(a)

(b)

(c)

Figure 3: Sample images used in YaleB Database. As shown in the three 2 × 13 montages, (a) is the original images, (b) is the gray images,
and (c) is the basis vectors learned by CNMF

𝛼𝑘
. Positive values are illustrated with white pixels.

Karush-Kuhn-Tucker conditions and presented alternative
of the algorithm using the projected gradient. The use of
the two methods guarantees the correctness of the algo-
rithm theoretically. The image representation learned by our
algorithm contains a parameter 𝛼. Since 𝛼-divergence is
a parametric discrepancy measure and the parameter 𝛼 is
associated with the characteristics of a learning machine, the

model distribution is more inclusive when 𝛼 goes to +∞ and
is more exclusive when 𝛼 approaches −∞. The selection of
the optimal value of 𝛼 plays a critical role in determining
the discriminative basis vectors. We provide a method to
select the parameters 𝛼 for our semisupervised CNMF

𝛼

algorithm. The variation of the 𝛼 is caused by both the
cardinalities of labeled samples in each category and the total
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Figure 4: Classification performance on the Caltech 101 Database.

Table 5: The comparison of classification accuracy rates on the Caltech 101 Database.

𝑘

Ac(𝑠
𝑖𝑙𝑖
) (%)

CNMF CNMF
𝛼=1

CNMF
𝛼=0.5

CNMF
𝛼=2

CNMF
𝛼𝑘

2 66.39 78.80 78.31 ± 1.69 80.10 ± 2.07 82.76 ± 3.56
3 60.91 69.98 68.77 ± 1.57 72.94 ± 1.51 73.59 ± 3.51
4 50.82 57.50 58.19 ± 1.98 56.28 ± 1.96 59.89 ± 2.82
5 50.83 53.67 53.71 ± 1.02 54.12 ± 1.44 55.06 ± 2.63
6 50.49 55.05 55.63 ± 0.89 58.04 ± 1.47 58.97 ± 1.97
7 46.09 51.12 50.04 ± 0.11 51.73 ± 0.25 52.36 ± 1.81
8 44.21 50.50 51.72 ± 0.51 48.37 ± 1.59 52.64 ± 1.52
9 41.34 46.58 47.85 ± 0.28 45.87 ± 0.30 49.54 ± 1.23
10 40.80 46.02 46.02 ± 0.05 45.76 ± 0.08 46.02 ± 0.26
Avg. 50.21 56.58 56.69 57.02 58.98

Table 6: The comparison of normalized mutual information on the Caltech 101 Database.

𝑘

Normalized mutual information (%)
CNMF CNMF

𝛼=1
CNMF

𝛼=0.5
CNMF

𝛼=2
CNMF

𝛼𝑘

2 21.05 38.17 38.20 ± 0.18 37.48 ± 0.21 40.08 ± 2.19
3 31.62 40.63 40.68 ± 0.15 40.05 ± 0.14 41.88 ± 1.24
4 27.60 34.36 34.41 ± 0.79 34.12 ± 0.91 36.41 ± 1.17
5 34.46 35.82 36.00 ± 0.99 35.42 ± 1.01 37.20 ± 1.78
6 34.85 38.97 39.16 ± 0.86 38.53 ± 1.11 39.64 ± 1.83
7 34.88 37.67 37.86 ± 0.47 37.47 ± 0.49 39.86 ± 2.58
8 32.63 37.43 37.71 ± 0.39 37.22 ± 0.42 37.91 ± 2.18
9 31.20 35.97 36.21 ± 0.60 35.86 ± 0.63 37.73 ± 0.67
10 31.21 35.71 36.06 ± 0.02 35.68 ± 0.03 37.48 ± 0.22
Avg. 31.05 37.19 37.37 36.87 38.69
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Table 7: The value of 𝛼 in 𝑘 categories.

𝑘 𝛼
1

𝛼
2

𝛼
3

𝛼
4

𝛼
5

𝛼
6

𝛼
7

𝛼
8

𝛼
9

𝛼
10

2 2.07 2.08 2.22 2.27 2.57 3.52 3.97 3.98 4.37 8.96
3 0.45 0.55 0.66 1.07 1.95 2.31 2.31 3.54 4.24 7.54
4 0.30 0.32 0.35 0.86 0.98 1.27 1.65 2.10 3.27 5.80
5 0.45 0.49 0.51 0.71 0.80 1.13 2.05 2.55 2.82 3.89
6 0.07 0.56 0.73 1.08 1.26 1.46 2.01 2.12 3.91 8.52
7 0.71 0.94 1.12 1.14 1.16 1.26 1.27 1.37 1.57 8.97
8 0.12 0.30 0.50 0.64 0.66 0.69 0.78 0.79 0.97 1.11
9 0.78 0.79 2.01 0.10 0.17 0.28 0.29 0.30 0.31 0.39
10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

samples. In the experiments, we apply the fixed parameters
𝛼 and 𝛼

𝑘
to analyze the classification accuracy on three

image databases.The experimental results have demonstrated
that the CNMF

𝛼𝑘
algorithm has best classification accuracy.

However, we can not get the cardinalities of labeled images
exactly in many real-word applications. Moreover, the value
of 𝛼 varies depending on data sets. It is still an open problem
how to select the optimal 𝛼 for a specific image data set.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (61375038), National Natural
Science Foundation of China (11401060), Zhejiang Provin-
cial Natural Science Foundation of China (LQ13A010023),
Key Scientific and Technological Project of Henan Province
(142102210010), and Key Research Project in Science and
Technology of the Education Department Henan Province
(14A520028, 14A520052).

References

[1] I. Biederman, “Recognition-by-components: a theory of human
image understanding,” Psychological Review, vol. 94, no. 2, pp.
115–147, 1987.

[2] S. Ullman, High-Level Vision: Object Recognition and Visual
Cognition, MIT Press, Cambridge, Mass, USA, 1996.

[3] P. Paatero and U. Tapper, “Positive matrix factorization: a non-
negative factormodel with optimal utilization of error estimates
of data values,” Environmetrics, vol. 5, no. 2, pp. 111–126, 1994.

[4] I. T. Jolliffe, Principle Component Analysis, Springer, Berlin,
Germany, 1986.

[5] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
Wiley-Interscience, New York, NY, USA, 2001.

[6] A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression, Kluwer Academic Publishers, 1992.

[7] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, no. 6755,
pp. 788–791, 1999.

[8] M. Chu, F. Diele, R. Plemmons, and S. Ragni, “Optimality,
computation, and interpretation of nonnegative matrix factor-
izations,” SIAM Journal on Matrix Analysis, pp. 4–8030, 2004.

[9] S. Z. Li, X. W. Hou, H. J. Zhang, and Q. S. Cheng, “Learning
spatially localized, parts-based representation,” inProceedings of
the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR ’01), pp. I207–I212, Kauai, Hawaii,
USA, December 2001.

[10] Y. Wang, Y. Jia, H. U. Changbo, and M. Turk, “Non-negative
matrix factorization framework for face recognition,” Interna-
tional Journal of Pattern Recognition and Artificial Intelligence,
vol. 19, no. 4, pp. 495–511, 2005.

[11] Y.Wang, Y. Jia, C.Hu, andM. Turk, “Fisher non-negativematrix
factorization for learning local features,” in Proceedings of the
Asian Conference on Computer Vision, Jeju Island, Republic of
Korea, 2004.

[12] J. H. Ahn, S. Kim, J. H. Oh, and S. Choi, “Multiple nonnegative-
matrix factorization of dynamic PET images,” in Proceedings of
the Asian Conference on Computer Vision, 2004.

[13] J. S. Lee, D. D. Lee, S. Choi, and D. S. Lee, “Application of n
onnegative matrix factorization to dynamic positron emission
tomography,” in Proceedings of the International Conference on
Independent Component Analysis and Blind Signal Separation,
pp. 629–632, San Diego, Calif, USA, 2001.

[14] H. Lee, A. Cichocki, and S. Choi, “Nonnegative matrix factor-
ization for motor imagery EEG classification,” in Proceedings
of the International Conference on Artificial Neural Networks,
Springer, Athens, Greece, 2006.

[15] H. Liu, Z. Wu, X. Li, D. Cai, and T. S. Huang, “Constrained
nonnegative matrix factorization for image representation,”
IEEE Transactions on Pattern Analysis andMachine Intelligence,
vol. 34, no. 7, pp. 1299–1311, 2012.

[16] A. Cichocki, H. Lee, Y.-D. Kim, and S. Choi, “Non-negative
matrix factorization with 𝛼-divergence,” Pattern Recognition
Letters, vol. 29, no. 9, pp. 1433–1440, 2008.

[17] L. K. Saul, F. Sha, and D. D. Lee, “Tatistical signal processing
with nonnegativity constraints,” Proceedings of EuroSpeech, vol.
2, pp. 1001–1004, 2003.

[18] P. M. Kim and B. Tidor, “Subsystem identification through
dimensionality reduction of large-scale gene expression data,”
Genome Research, vol. 13, no. 7, pp. 1706–1718, 2003.

[19] V. P. Pauca, J. Piper, and R. J. Plemmons, “Nonnegative matrix
factorization for spectral data analysis,” Linear Algebra and its
Applications, vol. 416, no. 1, pp. 29–47, 2006.

[20] P. Smaragdis and J. C. Brown, “Non-negative matrix factor-
ization for polyphonic music transcription,” in Proceedings of



12 Discrete Dynamics in Nature and Society

IEEEWorkshop onApplications of Signal Processing to Audio and
Acoustics, pp. 177–180, New Paltz, NY, USA, 2003.

[21] F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J. Plemmons,
“Document clustering using nonnegative matrix factorization,”
Information Processing andManagement, vol. 42, no. 2, pp. 373–
386, 2006.

[22] P. O. Hoyer, “Non-negativematrix factorization with sparseness
constraints,” Journal of Machine Learning Research, vol. 5, pp.
1457–1469, 2004.

[23] S. Choi, “Algorithms for orthogonal nonnegative matrix factor-
ization,” in Proceedings of the International Joint Conference on
Neural Networks, pp. 1828–1832, June 2008.

[24] A. Cichocki, R. Zdunek, and S. Amari, “Csiszar’s divergences
for nonnegativematrix factorization: family of new algorithms,”
in Proceedings of the International Conference on Independent
Component Analysis and Blind Signal Separation, Charleston,
SC, USA, 2006.

[25] A. Cichocki, R. Zdunek, and S.-I. Amari, “New algorithms
for non-negative matrix factorization in applications to blind
source separation,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP
’06), pp. V621–V624, Toulouse, France, May 2006.

[26] I. S. Dhillon and S. Sra, “Generalized nonnegative matrix
approximations with Bregman divergences,” in Advances in
Neural Information Processing Systems 8, pp. 283–290, MIT
Press, Cambridge, Mass, USA, 2006.

[27] A. Cichocki, S. Amari, and R. Zdunek, “Extended SMART algo-
rithms for non-negative matrix factorization,” in Proceedings of
the 8th International Conference on Artificial Intelligence and
Soft Computing, Zakopane, Poland, 2006.

[28] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,” Journal
of the Royal Statistical Society Series B: Methodological, vol. 39,
no. 1, pp. 1–38, 1977.

[29] L. Saul and F. Pereira, “Aggregate and mixed-order Markov
models for statistical language processing,” in Proceedings of
the 2nd Conference on Empirical Methods in Natural Language
Processing, C. Cardie and R. Weischedel, Eds., pp. 81–89, ACL
Press, 1997.
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