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Previous works on the dynamics of bucket brigades have mainly focused on linear production systems or tree-shaped assembly
systems with insignificant walk-back time, but this assumption is invalid for most city picking systems. We propose a two-truck
bucket brigade tree-shaped picking system when truck walk-back time is significant and analyze the dynamics of the system in
each region of the parameter space, showing that relatively complex picking systems can enjoy the benefit of self-balance with
minimal managerial intervention and provide insights and operating principles for the implementation and management of the
bucket brigade picking system.

1. Introduction

The term “bucket brigade” was coined by Bartholdi III and
Eisenstein [1] for the TSS line [2]. They provided the first
comprehensive analysis of the dynamics of such systems and
pointed out that if workers can be sequenced from the slowest
to the fastest along the production line, then there is a stable
fixed point at which the system will converge, independent
of the initial positions of the workers. Furthermore, bucket
brigade systems yield optimal throughput. Since then, the
bucket brigade has been intensively studied with the consid-
eration of stochastic processing time [3], high labor turnover
[4], significant walk-back time [5], undominated workers’
speeds [6], workers’ learning ability [7], and so forth. As a
highly effective and self-balanced system, the bucket brigade
has also been widely used in many real-life systems such as
production lines and order picking systems in distribution
centers [1, 4, 8–10].

So far, researches on bucket brigade systems have mainly
focused on continuously linear or U-shaped [11] production
or picking lines. Only Lim [12] and Bartholdi III et al. [13]
introduced the bucket brigade to complex assembly lines,
describing the assembly of productswith two subcomponents
as a tree-shaped assembly line, but their models did not take

the worker’s walk-back time into consideration because it
can be neglected since workers assemble products in just one
location, which may make sense when they assemble prod-
ucts on the same factory floor. There are, however, several
real-life systems in which worker’s walk-back time should not
be neglected, and the city picking system is a typical example.
Therefore, walk-back time might be significant when we
introduce the bucket brigade into the city picking system
because of the long distance of the picking route.

In this paper, we propose a bucket brigade tree-shaped
city picking system in which only two trucks pick items in
tree-shaped picking routes; trucks walk back, not instanta-
neously but at a constant velocity.We analyze the dynamics of
such a system and find that self-organization can be realized
in different situations. To the best of our knowledge, this
represents the first analysis of bucket brigades in such an
environment. Although the model we present in this paper
is simple, our results offer a basis for studying complex
systems with more trucks and complicated picking routes,
even networks. Given the widespread presence of assembly
and logistics networks, our work offers a very constructive
guide for implementing tree-shaped, even network-based,
bucket brigade systems. The paper is organized as follows. In
Section 2, we propose a two-truck bucket brigade tree-shaped
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(b) Picking system embedded in an equilateral triangle

Figure 1: A two-truck bucket brigade tree-shaped picking system.

picking system. In Section 3, we analyze the convergence of
the system. In Section 4, we present the system’s convergence
and stability simulations. Section 5 concludes.

2. Model

Because of the complexity of the analysis, we consider a
simple two-truck bucket brigade tree-shaped picking system,
and the tree is a simple “Y” shape as shown in Figure 1(a).The
tree consists of only three arcs, each of which corresponds to a
subpicking route. Subpicking routes 𝐿 → 𝐷 and 𝑅 → 𝐷 are
initiated at nodes 𝐿 and𝑅, respectively, and are joined at node
𝐷 to the depot 𝐸 by the subpicking route 𝐷 → 𝐸. The items
to be picked are uniformly distributed over subpicking routes
𝐿 → 𝐷,𝑅 → 𝐷, and𝐷 → 𝐸, respectively; all itemsmust be
picked and sent to depot 𝐸 by two trucks. Each new picking
task starts at the initial node (𝐿 or𝑅) and is completed at node
𝐸. Under the operation of a two-truck bucket brigade, both
trucks are sequenced from slower to faster at the same initial
node (𝐿 or𝑅) and start their picking task at their ownworking
velocity along the subpicking route according to the bucket
brigade rules. For simplicity, we denote the subpicking route
by the start node; that is, 𝐿, 𝑅, and 𝐷 represent subpicking
routes 𝐿 → 𝐷, 𝑅 → 𝐷, and𝐷 → 𝐸, respectively.

2.1. Assumption

Assumption 1. The picking task at each subpicking route is
deterministic and is spread continuously and uniformly over
the corresponding subpicking route.

Thus, the picking task on subpicking routes 𝐿, 𝑅, and 𝐷
can be represented by their length 𝑙, 𝑟, and 𝑑, respectively. To
simplify our analysis, we assume that the entire structure of
the picking routes is embedded in an equilateral triangle ABC
as described in Figure 1(b). Subpicking routes 𝐿, 𝑅, and𝐷 are
perpendicular to the edges AB, AC, and BC, respectively. It

can be shown easily that the sum of the lengths 𝑙, 𝑟, and 𝑑 is a
constant for the position of node𝐷 arbitrarily located within
the triangle. For simplicity, we normalize the total picking
task on the system to one, so that 𝑙 + 𝑟 + 𝑑 = 1.

Assumption 2. Each truck 𝑖 = 1, 2 is characterized by a work
velocity V

𝑖
and both trucks walk back with the same velocity

V
𝑟
; V
1
, V
2
, and V

𝑟
are fixed and constant over all subpicking

routes and satisfy V
1
< V
2
< V
𝑟
.

Assumption 3. Trucks must travel along the picking routes
and they are not allowed to pass each other.

Assumption 4. The trucks’ unproductive walk-back time
cannot be neglected.

Assumption 5. The handover time is negligible compared
with the picking time.

2.2. Rules. Let both trucks be numbered from slower to faster
1 and 2. Truck 1 is the predecessor of truck 2, and truck 2 is
the successor of truck 1. Since the picking routes in ourmodel
are tree-shaped, the events in our model are a little different
fromprevious linear bucket brigademodels. In order to adapt
the tree-shaped picking system to a linear bucket brigade
system, we need to serialize the tree-shaped picking routes
into a sequence of subpicking routes. According to Lim [12],
the tree-shaped picking routes in our model are serialized in
twoways:𝐿 → 𝑅 → 𝐷or𝑅 → 𝐿 → 𝐷. After serialization,
both trucks work in bucket brigade way according to the
following rules.

Forward. Pick your item moving from one subpicking route
to the next according to the serialized ordering. If you are the
last truck and complete a picking task or if your picked items
are taken over by your successor, then go Back.
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Back. If you are the first truck, then return to the first
subpicking route according to the serialized ordering and
start a new picking task and go Forward; otherwise, walk
back to your predecessor, take over its picked items, and go
Forward.

3. Convergence Analysis

Just like Lim [12], here, we also consider the case in which
node𝐷 is in the left part of the triangle shown in Figure 1(b);
that is, 𝑙 ≤ 𝑟. The analysis for the case 𝑙 > 𝑟 is similar. We
define the parameter:

𝑠 ≡
1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
2
+ 2/V
𝑟

(1)

to present the relative working time of the trucks, 0 < 𝑠 <

1/2. The tree-shaped picking system can be serialized into
different sequences depending on the values of 𝑠, 𝑙, and 𝑟.
Define the following four disjoint regions.

Region 1. 𝑠 < 𝑙.

Region 2. 𝑙 < 𝑠 < 𝑟.

Region 3. 𝑟 < 𝑠 < 𝑙 + 𝑟.

Region 4. 𝑠 > 𝑙 + 𝑟.

According to Lim [12], each region has different ways of
serializing the picking routes to make the two-truck bucket
brigade tree-shaped picking system balance.

Let 𝑥𝑘 represent the position of the 𝑘th hand-off on the
tree-shaped picking system in Figure 1(b); when 𝑥𝑘 ∈ [0, 𝑙],
𝑥
𝑘
∈ [𝑙, 𝑙 + 𝑟], and 𝑥𝑘 ∈ [𝑙 + 𝑟, 1], the hand-off position is

located on routes 𝐿, 𝑅, and 𝐷, respectively. At each iteration
𝑘, truck 1 hands items collected in 𝑘 period to truck 2 at
position 𝑥𝑘; then truck 1 returns to the first subpicking route
(according to the sequenced picking route) with velocity V

𝑟

to begin its 𝑘 + 1 period picking task, while truck 2 continues
collecting items on its 𝑘 period picking task. When truck 2
completes its 𝑘 period picking task, it goes back with velocity
V
𝑟
to receive items collected in 𝑘 + 1 period from truck 1 at

𝑥
𝑘+1. Different from Lim [12], the trucks’ walk-back time is

not insignificant and the synchronization between truck 1 and
truck 2 in subpicking routes is not a must here.

3.1. Region 1 (𝑠 < 𝑙). In Region 1, there are two different ways
to serialize the tree-shaped picking system to make the two-
truck bucket brigade picking system balance. Lemma 6 shows
the existence and uniqueness of a fixed point on the tree-
shaped picking system under sequence 𝐿 → 𝑅 → 𝐷.

Lemma 6. If the tree-shaped picking system is sequenced as
𝐿 → 𝑅 → 𝐷 in Region 1, then there exists a unique fixed
point on route 𝐿 and it is given by

𝑥
∗

𝐿
=

1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
2
+ 2/V
𝑟

. (2)

Proof. If the order of picking routes is sequenced as 𝐿 →

𝑅 → 𝐷, the fixed point 𝑥∗
𝐿
can be found by solving

𝑥
∗

𝐿

V
𝑟

+
𝑥
∗

𝐿

V
1

=
1 − 𝑥
∗

𝐿

V
2

+
1 − 𝑥
∗

𝐿

V
𝑟

, (3)

𝑥
∗

𝐿
= 𝑠 < 𝑙, so the fixed point is located on route 𝐿.

Lemma 7. If the tree-shaped picking system is sequenced as
𝐿 → 𝑅 → 𝐷 in Region 1 and

𝑥
0
∈ [max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙) , 𝑙] , (4)

then

𝑥
𝑘
∈ [max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙) , 𝑙] ,

𝑓𝑜𝑟 𝑘 = 1, 2, 3 . . . .

(5)

Proof. We first prove that if

𝑥
𝑘−1

∈ [max(0, 1 −
1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙) , 𝑙] , (6)

then

𝑥
𝑘
∈ [max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙) , 𝑙] . (7)

If the order of picking routes is sequenced as 𝐿 → 𝑅 → 𝐷,
we have

𝑥
𝑘−1

V
𝑟

+
𝑥
𝑘

V
1

=
1 − 𝑥
𝑘−1

V
2

+
1 − 𝑥
𝑘

V
𝑟

, (8)

𝑥
𝑘
= (1 − 𝑥

𝑘−1
) (
1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
𝑟

) . (9)

Case 1. If

1 −
1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙 ≥ 0,

𝑥
𝑘−1

∈ [1 −
1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙, 𝑙]

(10)

means

𝑥
𝑘
≤ [1 − (1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙)] (
1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
𝑟

) = 𝑙,

𝑥
𝑘
≥ (1 − 𝑙) (

1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
𝑟

) > 1 −
1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙.

(11)

The last inequality is because 𝑠 < 𝑙. Thus,

𝑥
𝑘
∈ [max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙) , 𝑙] . (12)
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Case 2. If

1 −
1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙 < 0 ⇒
1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
𝑟

< 𝑙,

𝑥
𝑘−1

∈ [0, 𝑙]

(13)

means

𝑥
𝑘
≤ (

1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
𝑟

) < 𝑙,

𝑥
𝑘
≥ (1 − 𝑙) (

1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
𝑟

) > 0.

(14)

Thus, 𝑥𝑘 ∈ [0, 𝑙]. Since 𝑘 is arbitrary, we conclude that if

𝑥
0
∈ [max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙) , 𝑙] , (15)

then

𝑥
𝑘
∈ [max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙) , 𝑙] ,

for 𝑘 = 1, 2, 3, . . . .
(16)

Lemma 7 means that if

𝑥
0
∈ [max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙) , 𝑙] , (17)

the two trucks’ hand-off locations 𝑥𝑘 are always on route 𝐿.

Lemma 8. If the tree-shaped picking system is sequenced as
𝐿 → 𝑅 → 𝐷 in Region 1 and

𝑥
0
∈ [max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙) , 𝑙] , (18)

then the two-truck bucket brigade picking system converges to
the fixed point 𝑥∗

𝐿
.

Proof. According to Lemma 7, if

𝑥
0
∈ [max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑙) , 𝑙] , (19)

then the hand-off location 𝑥𝑘 is always on route 𝐿. Let 𝑥𝑘 =
𝑥
∗

𝐿
+ 𝛿
𝑘. Since

𝑥
𝑘−1

V
𝑟

+
𝑥
𝑘

V
1

=
1 − 𝑥
𝑘−1

V
2

+
1 − 𝑥
𝑘

V
𝑟

,

𝑥
∗

𝐿
+ 𝛿
𝑘−1

V
𝑟

+
𝑥
∗

𝐿
+ 𝛿
𝑘

V
1

=

1 − (𝑥
∗

𝐿
+ 𝛿
𝑘−1
)

V
2

+

1 − (𝑥
∗

𝐿
+ 𝛿
𝑘
)

V
𝑟

,

𝛿
𝑘
= −𝛿
𝑘−1
(
1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
𝑟

) ,

𝛿
𝑘
= (−1)

𝑘
(
1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
𝑟

)

𝑘

𝛿
0
.

(20)

Since V
1
< V
2
, as 𝑘 → ∞, |𝛿𝑘| → 0 and 𝑥𝑘 → 𝑥

∗

𝐿
.

Lemma 9. If the tree-shaped picking system is sequenced as
𝑅 → 𝐿 → 𝐷 in Region 1, then there exists a unique fixed
point on route 𝑅 and it is given by

𝑥
∗

𝑅
=

1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
2
+ 2/V
𝑟

+ 𝑙. (21)

Proof. If the order of picking routes is sequenced as 𝑅 →

𝐿 → 𝐷, the fixed point 𝑥∗
𝑅
can be found by solving

𝑥
∗

𝑅
− 𝑙

V
1

+
𝑥
∗

𝑅
− 𝑙

V
𝑟

=
1 − (𝑥

∗

𝑅
− 𝑙)

V
2

+
1 − (𝑥

∗

𝑅
− 𝑙)

V
𝑟

, (22)

𝑥
∗

𝑅
= 𝑠+ 𝑙, 𝑙 < 𝑥∗

𝑅
< 𝑙 + 𝑟, so the fixed point is located on route

𝑅.

Lemma 10. If the tree-shaped picking system is sequenced as
𝑅 → 𝐿 → 𝐷 in Region 1 and

𝑥
0
∈ [𝑙 +max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑟) , 𝑙 + 𝑟] , (23)

then

𝑥
𝑘
∈

[
[
[

[

𝑙 +max(0, 1 −

1

V
1

+
1

V
𝑟

1

V
2

+
1

V
𝑟

𝑟) , 𝑙 + 𝑟

]
]
]

]

,

𝑓𝑜𝑟 𝑘 = 1, 2, 3, . . . .

(24)

Proof. The proof is the same as that in Lemma 7 except for
the initial position

𝑥
0
∈ [𝑙 +max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑟) , 𝑙 + 𝑟] . (25)

Lemma 10 shows that if

𝑥
0
∈ [𝑙 +max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑟) , 𝑙 + 𝑟] , (26)

the two trucks’ hand-off locations 𝑥𝑘 are always on route 𝑅.

Lemma 11. If the tree-shaped picking system is sequenced as
𝑅 → 𝐿 → 𝐷 in Region 1 and

𝑥
0
∈ [𝑙 +max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑟) , 𝑙 + 𝑟] , (27)

then the two-truck bucket brigade picking system converges to
the fixed point 𝑥∗

𝑅
.

Proof. The proof is the same as that in Lemma 8 except for
the initial position

𝑥
0
∈ [𝑙 +max(0, 1 −

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

𝑟) , 𝑙 + 𝑟] . (28)
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Figure 2: Period-2 orbit of the tree-shaped picking system.

3.2. Region 2 (𝑙 < 𝑠 < 𝑟). If 𝑙 < 𝑠 < 𝑟, the fixed point 𝑥∗
𝐿
on

route 𝐿 no longer exists; there is only one way to order the
picking routes to achieve balance: 𝑅 → 𝐿 → 𝐷.

Lemma 12. If the tree-shaped picking system is sequenced as
𝑅 → 𝐿 → 𝐷 in Region 2, then the bucket brigade converges
to a unique fixed point given by

𝑥
∗

𝑅
=

1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
2
+ 2/V
𝑟

+ 𝑙. (29)

Proof. The proof is the same as that in Lemmas 9 and 11.

3.3. Region 3 (𝑟 < 𝑠 < 𝑙 + 𝑟). In regions, there is no
ordering of picking routes in which the two-truck bucket
brigade converges to a fixed point. But a period-2 orbit can
be found if the order 𝐿 → 𝑅 → 𝐷 (𝑅 → 𝐿 → 𝐷) is
assigned to a period begun from node 𝐿(𝑅); then we can get
a period-2 orbit on the tree-shaped picking system.

When the picking system runs on period-2 orbit, the
hand-offs occur periodically at two fixed positions 𝑝

𝐿
and 𝑝

𝑅

on route 𝐿 and route 𝑅, respectively. Figure 2 shows these
hand-off positions. In Figure 2, the solid line represents the
picking route of truck 1, the dashed line represents the picking
route of truck 2, and the number beside the line represents
both trucks’ walking sequence when they work as a bucket
brigade. In Figure 2(a), the 𝑘th picking task is begun from
node 𝐿 and the picking system is sequenced as 𝐿 → 𝑅 →

𝐷, truck 2 first completes the picking task on route 𝐿 and
continues on route 𝑅 for 𝑘 period picking task.The 𝑘th hand-
off occurs when truck 2 receives items collected in 𝑘 period
from truck 1 at node 𝑝

𝑅
. After finishing 𝑘 period picking task,

truck 1 goes back to node 𝑅 to begin its 𝑘 + 1 period picking,
while truck 2 continues its 𝑘 period picking task.When truck
2 finishes the picking task on route 𝑅 for 𝑘 period, it goes to

route 𝐷. Meanwhile, truck 1 is on 𝑘 + 1 period picking task
on route 𝑅. Following the new order 𝑅 → 𝐿 → 𝐷 shown in
Figure 2(b), truck 1 finishes the picking task on route 𝑅 and
then goes to route 𝐿 to work on its 𝑘 + 1 period picking task
before truck 2 completes 𝑘 period picking task.

The (𝑘+1)th hand-off occurs when truck 2 receives items
collected in 𝑘+1 period from truck 1 at𝑝

𝐿
. After the hand-off,

truck 1 goes back to node𝐿 to initiate 𝑘+2 period picking task,
while truck 2 continues its 𝑘+1 period picking task. Following
the order 𝐿 → 𝑅 → 𝐷 again, truck 1 will finish the picking
task on route 𝐿 and go to route 𝑅 for 𝑘 + 2 period picking
task before truck 2 finishes its 𝑘 + 1 period picking task. The
(𝑘 + 2)th hand-off will be at 𝑝

𝑅
again. So, the hand-offs of

the two-truck picking system are repeatedly at two alternate
locations 𝑝

𝐿
and 𝑝

𝑅
.

Lemma 13. If the order of the tree-shaped picking system (𝐿 →
𝑅 → 𝐷 or 𝑅 → 𝐿 → 𝐷) is assigned to a period picking task
begun from node 𝐿(𝑅) in Region 3, then there exists a unique
period-2 orbit 𝑝

𝐿
and 𝑝

𝑅
, where 𝑝

𝐿
and 𝑝

𝑅
are on route 𝐿 and

route 𝑅, respectively, and they are given by

𝑝
∗

𝑅
=

1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
2
+ 2/V
𝑟

,

𝑝
∗

𝐿
=

1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
2
+ 2/V
𝑟

− 𝑟.

(30)

Proof. If the hand-offs occur periodically at 𝑝
𝐿
and 𝑝

𝑅
as

shown in Figure 2, 𝑝
𝐿
and 𝑝

𝑅
can be found by solving

𝑝
∗

𝑅
− 𝑙

V
𝑟

+
𝑟

V
1

+
𝑙

V
𝑟

+
𝑝
∗

𝐿

V
1

=
1 − 𝑝
∗

𝑅

V
2

+
1 − (𝑝

∗

𝐿
+ 𝑟)

V
𝑟

,

𝑝
∗

𝑅

V
1

+
𝑟

V
𝑟

+
𝑝
∗

𝐿

V
𝑟

=
1 − 𝑝
∗

𝑅

V
𝑟

+
1 − (𝑝

∗

𝐿
+ 𝑟)

V
2

.

(31)
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Furthermore, 𝑝∗
𝐿
= 𝑠 − 𝑟, 𝑝∗

𝑅
= 𝑠, and 𝑟 < 𝑠 < 𝑙 + 𝑟means that

0 < 𝑝
∗

𝐿
< 𝑙 and 𝑟 < 𝑝∗

𝑅
< 𝑙 + 𝑟. Thus, 𝑝∗

𝐿
is on route 𝐿 and 𝑝∗

𝑅

is on route 𝑅.

3.4. Region 4 (𝑠 > 𝑙 + 𝑟). When 𝑠 > 𝑙 + 𝑟 in Region 4, there
are two ways to order the picking routes: 𝐿 → 𝑅 → 𝐷 and
𝑅 → 𝐿 → 𝐷; both sequences of tree-shaped picking system
can lead to a fixed point on route𝐷.

Lemma 14. If the tree-shaped picking system is sequenced as
𝐿 → 𝑅 → 𝐷 or 𝑅 → 𝐿 → 𝐷 in Region 4, then there exists
a unique fixed point on route𝐷 and it is given by

𝑥
∗

𝐷
=

1/V
2
+ 1/V
𝑟

1/V
1
+ 1/V
2
+ 2/V
𝑟

. (32)

Proof. If the tree-shaped picking system is sequenced as 𝐿 →
𝑅 → 𝐷 or 𝑅 → 𝐿 → 𝐷, the fixed point 𝑥∗

𝐷
can be found

by solving

𝑥
∗

𝐷

V
1

+
𝑥
∗

𝐷

V
𝑟

=
1 − 𝑥
∗

𝐷

V
2

+
1 − 𝑥
∗

𝐷

V
𝑟

, (33)

𝑥
∗

𝐷
= 𝑠 > 𝑙 + 𝑟, so the fixed point is located on route𝐷.

Lemma 15. If the tree-shaped picking system is sequenced as
𝐿 → 𝑅 → 𝐷 or 𝑅 → 𝐿 → 𝐷 in Region 4 and

𝑥
0
∈ [𝑙 + 𝑟, 1 − (

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

) (𝑙 + 𝑟)] , (34)

then

𝑥
𝑘
∈ [𝑙 + 𝑟, 1− (

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

) (𝑙 + 𝑟)] , 𝑓𝑜𝑟 𝑘 = 1, 2, 3, . . . .

(35)

Proof. The proof is the same as that in Lemma 7, except for
the initial position

𝑥
0
∈ [𝑙 + 𝑟, 1 − (

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

) (𝑙 + 𝑟)] . (36)

Lemma 15 shows that if

𝑥
0
∈ [𝑙 + 𝑟, 1 − (

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

) (𝑙 + 𝑟)] , (37)

then the hand-off locations 𝑥𝑘 are always on route𝐷.

Lemma 16. If the tree-shaped picking system is sequenced as
𝐿 → 𝑅 → 𝐷 or 𝑅 → 𝐿 → 𝐷 in Region 4 and

𝑥
0
∈ [𝑙 + 𝑟, 1 − (

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

) (𝑙 + 𝑟)] , (38)

then the two-truck bucket brigade picking system converges to
the fixed point 𝑥∗

𝐷
.

Proof. The proof is the same as that in Lemma 8 except for
the initial position

𝑥
0
∈ [𝑙 + 𝑟, 1 − (

1/V
1
+ 1/V
𝑟

1/V
2
+ 1/V
𝑟

) (𝑙 + 𝑟)] . (39)

3.5. Summary. If the working and walk-back velocities of
two trucks are given, the convergence analysis described
in Sections 3.1 to 3.4 tells us when the two-truck bucket
brigade tree-shaped picking system balances: Region 1 has
two fixed points: one is on route 𝐿 and the other is on route𝑅.
Region 2 has two separate areas; the area on the left has a fixed
point on route 𝑅 when 𝑙 ≤ 𝑟 and the right area has a fixed
point on route 𝐿 when 𝑙 > 𝑟. Region 3 has a period-2 orbit
and the hand-offs occur on route 𝐿 and route 𝑅 alternately
and periodically; Region 4 only has one fixed point on route
𝐷. Because of the symmetry of the Y-shaped picking system,
the case 𝑙 > 𝑟 can also be found in Figure 1(b).

4. Simulation

4.1. Convergence Process Evolution. In all the simulations
below, we set V

1
= 1, V

2
= 1.5, and V

3
= 3, respectively,

and the convergence process of a two-truck bucket brigade
tree-shaped system is observed in two ways: hand-off time
evolution and hand-off position evolution. To show the hand-
off time evolution, we map hand-off location as a function of
hand-off time, in which the horizontal axis and vertical axis
represent the hand-off time and hand-off location at iteration
𝑘+1 of truck 𝑖 for 𝑖 = 1, 2, respectively. And the Poincaré map
is used to map the hand-off position evolution; the vertical
axis in the map is the hand-off position at iteration 𝑘 + 1 of
truck 𝑖 for 𝑖 = 1, 2 and the horizontal axis is their hand-off
position at iteration 𝑘; the red dashed line in the Poincarémap
shows the diagonal, and the solid line with arrows traces the
hand-off position evolution.

4.1.1. Region 1 (𝑠 < 𝑙 < 𝑟, 𝑙 = 0.45). In Region 1, if the picking
routes are sequenced as 𝐿 → 𝑅 → 𝐷, simulation results of
the convergence process are shown in Figure 3.

Figure 3(a) shows that the hand-off locations 𝑥𝑘 converge
quickly to a single point 𝑥∗

𝐿
= 0.4286 on the left subpicking

route 𝐿 → 𝐷. The hand-off position evolution in the
Poincaré map is shown in Figure 3(b) when the initial iterate
𝑥
1
= 0.9; the intersection of the diagonal with the Poincaré

map at a point 𝑥∗
𝐿
= 0.4286 indicates a fixed point on

subpicking route 𝐿 → 𝐷, which implies that truck 1 always
works from point 0 to 𝑥∗

𝐿
and truck 2 from 𝑥

∗

𝐿
to 1. Hence,

trucks always perform the same amount of picking task in
each picking period.

In Region 1, if the picking routes are sequenced as 𝑅 →

𝐿 → 𝐷, simulation results of the convergence process are
shown in Figure 4.

Figure 4(a) shows that the hand-off locations 𝑥𝑘 converge
quickly to a single point 𝑥∗

𝑅
= 0.8786 on the right subpicking

route 𝑅 → 𝐷. The hand-off position evolution in the
Poincaré map is shown in Figure 4(b) when the initial iterate
𝑥
1
= 0.8; the intersection of the diagonal with the Poincaré

map at a point 𝑥∗
𝑅
= 0.8786 indicates a fixed point on

subpicking route 𝑅 → 𝐷, which implies that truck 1 always
works from point 0 to 𝑥∗

𝑅
and truck 2 from 𝑥

∗

𝑅
to 1. Hence,

trucks always perform the same amount of tasks in each
picking period.
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Figure 3: Convergence process in Region 1 when the picking routes are sequenced as 𝐿 → 𝑅 → 𝐷.
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Figure 4: Convergence process in Region 1 when the picking routes are sequenced as 𝑅 → 𝐿 → 𝐷.

4.1.2. Region 2 (𝑙 < 𝑠 < 𝑟, 𝑙 = 0.4). In Region 2, the
picking routes can only be sequenced as 𝑅 → 𝐿 → 𝐷.
Simulation results of the convergence process in Region 2
when the picking routes are sequenced as 𝑅 → 𝐿 → 𝐷

are the same as those in Figure 4.

4.1.3. Region 3 (𝑟 < 𝑠 < 𝑙+𝑟, 𝑙 = 0.2; 𝑟 = 0.3). In Region 3, if
the picking routes are sequenced as (𝐿 → 𝑅 → 𝐷 or 𝑅 →

𝐿 → 𝐷) and assigned to a period picking task begun from
node 𝐿 (𝑅) accordingly, simulation results of the convergence
process are shown in Figure 5.

As shown in Figure 5(a), the hand-off locations 𝑥𝑘
eventually alternately converge to a period-2 orbit: 𝑃∗

𝐿
=

0.1286 and 𝑃∗
𝑅
= 0.4286. The Poincaré map in Figure 5(b)

converges to period-2 orbit when the initial iterate 𝑥1 =

0.3. Once the two-truck bucket brigade tree-shaped system
converges to the period-2 orbit, truck 2 takes over the picking
task from truck 1 at points 𝑃∗

𝐿
= 0.1286 and 𝑃∗

𝑅
= 0.4286

alternately.

4.1.4. Region 4 (𝑠 > 𝑙 + 𝑟). In Region 4, there is no difference
between the convergence process whether the picking routes
are sequenced as 𝐿 → 𝑅 → 𝐷 or 𝑅 → 𝐿 → 𝐷. Simulation
results of the convergence process are shown in Figure 6.

As shown in Figure 6(a), the hand-off locations 𝑥𝑘
converge quickly to a single point 𝑥∗

𝐷
= 0.4286 on subpicking

route 𝐷 → 𝐸. The hand-off position evolution in the
Poincaré map is shown in Figure 6(b) when the initial iterate
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Figure 5: Convergence process in Region 3.
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Figure 6: Convergence process in Region 4.

𝑥
1
= 0.9. The intersection of the diagonal with the Poincaré

map at a point 𝑥∗
𝐷

= 0.4286 indicates a fixed point on
subpicking route 𝐷 → 𝐸. The fixed point for the two-truck
bucket brigade tree-shaped picking system implies that truck
1 always works from point 0 to 𝑥∗

𝐷
and truck 2 from 𝑥

∗

𝐷
to

1. Hence, trucks always perform the same amount of tasks in
each picking period.

4.2. Factors Affecting Convergence. According to the lemmas
in Section 3, the range of 𝑥𝑘 is determined when initial
conditions (V

1
, V
2
, V
𝑟
, 𝑙, 𝑟, and 𝑑) are given. The question

that naturally comes to mind is whether the system’s initial
condition affects the behavior of the two-truck bucket brigade
tree-shaped picking system, so, in this section, we, therefore,
want to know how initial conditions affect the stable behavior
of the bucket brigade. We focus on two factors of initial

conditions: initial location 𝑥
1 and the working velocity

difference of two trucks. In order to observe the effect of
initial location on the system’s behavior, we simulate the
system’s behavior under different initial locations 𝑥1 and
different V

1
and V
2
, respectively. Simulation results are shown

in Figures 7 and 8, respectively.
Figure 7 tells us that the two-truck bucket brigade tree-

shaped picking system converges quickly to a single point
no matter where the initial node 𝑥1 is located. This implies
that the initial location of the trucks is irrelevant. More
precisely, the two-truck bucket brigade picking system always
converges to a fixed point no matter which node the trucks
start to work at.

Figure 8 tells us that although the two-truck bucket
brigade tree-shaped picking system can converge to a single
point when the conditions in each region hold, the working
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Figure 7: Effect of initial location on system’s stable behavior.

velocity difference plays a major role in the speed of the sys-
tem’s convergence process. The bigger the difference between
the two trucks’ working velocities is, the faster the two-truck
bucket brigade tree-shaped picking system converges.

4.3. Managerial Implication. Lemmas 6 to 16 in Section 3 and
simulation in Section 4 tell us that if two trucks follow the
bucket brigade rule in a tree-shaped picking system, the tree-
shaped picking system will always be self-organizing, which
means that significant managerial intervention regarding the
initial location is not necessary for effective operation of
the two-truck bucket brigade. But simulations in Section 4.2

tell us clearly that a picking system with large differences in
trucks’ working velocities can easily reach self-balance status,
which means that some managerial intervention is necessary
regarding the difference in the trucks’ velocity in order to
enhance the self-organization of the bucket brigade picking
system.

5. Conclusions and Further Work

The main contribution of this paper is to show how the idea
of the bucket brigade can be applied to tree-shaped picking
systems.We achieve this by conceptually converting the work
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Figure 8: Effect of working velocity difference on system’s stable behavior.

content of a tree-shaped picking system to a linear sequence
of work to which the adapted bucket brigade protocol can be
applied. We find that if two trucks follow the bucket brigade
rule in a tree-shaped picking system, the tree-shaped picking
system will always be self-organizing; that is, trucks hand
over picking items at a fixed point or at two fixed locations
that they visit periodically. Our work complements that of
Bartholdi III et al. [13] by introducing significant walk-back
time into a tree-shaped bucket brigade system and,moreover,
our analysis provides a way to model and understand bucket
brigade picking systems.

In this paper, the picking routes are assumed to be Y-
shaped. In actual situations, however, the picking route is
more complex than a Y-shaped tree; it can even be a network.
Thus, picking networks and 𝑛-trucks (𝑛 > 2) bucket brigade
picking systems could be considered in future research.
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