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In this paper we consider the existence, multiplicity, and nonexistence of positive periodic solutions for n-dimensional
nonautonomous functional differential system x(𝑡) = H(𝑡, x(𝑡)) − 𝜆B(𝑡)F(x(𝑡 − 𝜏(𝑡))), where ℎ

𝑖
are 𝜔-periodic in 𝑡 and there

exist 𝜔-periodic functions 𝛼
𝑖
, 𝛽
𝑖
∈ 𝐶(𝑅, 𝑅

+
) such that 𝛼

𝑖
(𝑡) ≤ (ℎ

𝑖
(𝑡, x)/𝑥

𝑖
) ≤ 𝛽

𝑖
(𝑡), ∫
𝜔

0
𝛼
𝑖
(𝑡)𝑑𝑡 > 0, for x ∈ 𝑅𝑛

+
all with 𝑥

𝑖
> 0, and

𝑡 ∈ 𝑅, lim
𝑥𝑖→0

+ (ℎ
𝑖
(𝑡, x)/𝑥

𝑖
) exist for 𝑡 ∈ 𝑅; 𝑏

𝑖
∈ 𝐶(𝑅, 𝑅

+
) are 𝜔-periodic functions and ∫𝜔

0
𝑏
𝑖
(𝑡)𝑑𝑡 > 0; 𝑓

𝑖
∈ 𝐶(𝑅𝑛

+
, 𝑅
+
), 𝑓
𝑖
(x) > 0

for ‖x‖ > 0; 𝜏 ∈ (𝑅, 𝑅) is an 𝜔-periodic function. We show that the system has multiple or no positive 𝜔-periodic solutions for
sufficiently large or small 𝜆 > 0, respectively.

1. Introduction

In this paper, we consider the first-order 𝑛-dimensional
nonautonomous functional differential system

x (𝑡) = H (𝑡, x (𝑡)) − 𝜆B (𝑡) F (x (𝑡 − 𝜏 (𝑡))) , (1)

where 𝜆 > 0 is a parameter;

x = [𝑥
1
, 𝑥
2
. . . , 𝑥
𝑛
]
⊤

,

B (𝑡) = diag [𝑏
1
(𝑡) , 𝑏
2
(𝑡) , . . . , 𝑏

𝑛
(𝑡)] ;

H (𝑡, x) = [ℎ
1
(𝑡, x) , ℎ

2
(𝑡, x) , . . . , ℎ

𝑛
(𝑡, x)]⊤,

F (x) = [𝑓
1
(x) , 𝑓

2
(x) , . . . , 𝑓

𝑛
(x)]⊤.

(2)

Let

𝑅 = (−∞, +∞) , 𝑅
+
= [0, +∞) , 𝑅

𝑛

+
=

𝑛

∏
𝑖=1

𝑅
+
,

(3)

and for any x = [𝑥
1
, 𝑥
2
. . . , 𝑥
𝑛
]
⊤
∈ 𝑅𝑛
+
, the norm of x is

defined as ‖x‖ = max
1≤𝑖≤𝑛

|𝑥
𝑖
|.

Throughout this paper, we use 𝑖 = 1, 2, . . . , 𝑛, unless
otherwise stated.

For the system (1), we assume that

(𝐻
1
) 𝜏 ∈ (𝑅, 𝑅) is an 𝜔-periodic function, 𝑏

𝑖
∈ 𝐶(𝑅, 𝑅

+
) are

𝜔-periodic functions, and

∫
𝜔

0

𝑏
𝑖
(𝑡) 𝑑𝑡 > 0; (4)

(𝐻
2
) 𝑓
𝑖
∈ 𝐶(𝑅𝑛

+
, 𝑅
+
), 𝑓
𝑖
(x) > 0 for ‖x‖ > 0; ℎ

𝑖
∈

𝐶(𝑅 × 𝑅𝑛
+
, 𝑅
+
), ℎ
𝑖
are 𝜔-periodic in 𝑡 and there exist

𝜔-periodic functions 𝛼
𝑖
, 𝛽
𝑖
∈ 𝐶(𝑅, 𝑅

+
) such that

𝛼
𝑖
(𝑡) ≤

ℎ
𝑖
(𝑡, x)
𝑥
𝑖

≤ 𝛽
𝑖
(𝑡) , ∫

𝜔

0

𝛼
𝑖
(𝑡) 𝑑𝑡 > 0,

∀x ∈ 𝑅𝑛
+
with 𝑥

𝑖
> 0, 𝑡 ∈ 𝑅.

(5)

In addition, lim
𝑥𝑖→0

+(ℎ
𝑖
(𝑡, x)/𝑥

𝑖
) exist for 𝑡 ∈ 𝑅.

We note that in (1) F(x)may have a singularity near x = 0;
that is,

lim
x→ 0+

𝑓
𝑖
(x) = ∞. (6)
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2 Discrete Dynamics in Nature and Society

As we well know, the system (1) is sufficiently general
to include particular mathematical models which describe
multiple population dynamics. Recently, due to the theo-
retical and practical significance, the existence of positive
periodic solution of some particular cases of periodic system
(1) has been extensively studied; see, for example, [1–15].
Cheng and Zhang [1], Kang and Cheng [2], Kang et al. [3],
Kang and Zhang [4], and Liu et al. [5] studied the existence,
multiplicity, and nonexistence of positive periodic solutions.
The existence of positive periodic solutions of the scalar
functional differential equation

𝑥


(𝑡) = 𝑎 (𝑡) 𝑔 (𝑥 (𝑡)) 𝑥 (𝑡) − 𝜆𝑏 (𝑡) 𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) (7)

has been studied byWang [6]. By employing behaviours of the
quotient 𝑓(𝑥)/𝑥 as 𝑥 → 0+ and 𝑥 → ∞, several interesting
results on the existence and nonexistence of positive periodic
solutions of (7) have been obtained. In [7], Weng and Sun
studied more general scalar periodic functional differential
equation

𝑥


(𝑡) = ℎ (𝑡, 𝑥) − 𝜆𝑏 (𝑡) 𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) , (8)

where the existence theorems of positive periodic solutions
of (8) are obtained by employing the behaviours of 𝑓(𝑥)/𝑥 at
any point 𝑥 ∈ (0, +∞) and 𝑥 → 0

+, 𝑥 → ∞. The result
in [7] generalized and improved those in [6]. O’Regan and
Wang [8] investigated the n-dimensional periodic system

x (𝑡) = A (𝑡) g (x (𝑡)) − 𝜆B (𝑡) F (x (𝑡 − 𝜏 (𝑡))) . (9)

By employing behaviours of 𝑓(x)/‖x‖ as ‖x‖ → 0+ and
‖x‖ → ∞, under quite general conditions, several existence
theorems of positive periodic solutions are proved.

A solution x = [𝑥
1
, 𝑥
2
. . . , 𝑥
𝑛
]
⊤
, 𝑡 ∈ 𝑅 of (1) is said to be

positive if its all components 𝑥
𝑖
(𝑡) are positive; x is said to be

𝜔-periodic (𝜔 > 0) if 𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡 + 𝜔), 𝑡 ∈ 𝑅.

2. Preliminary

Lemma 1 (see [9]). Let 𝐸 be a Banach space and 𝐾 a cone in
𝐸. For 𝑟 > 0, define 𝐾

𝑟
= {𝑢 ∈ 𝐾 : ‖𝑥‖ < 𝑟}. Assume that

𝑇 : 𝐾
𝑟
→ 𝐾 is completely continuous such that 𝑇𝑥 ̸= 𝑥 for

𝑥 ∈ 𝜕𝐾
𝑟
= {𝑢 ∈ 𝐾 : ‖𝑥‖ = 𝑟}.

(i) If ‖𝑇𝑥‖ ≥ ‖𝑥‖ for 𝑥 ∈ 𝜕𝐾
𝑟
, then

𝑖 (𝑇, 𝐾
𝑟
, 𝐾) = 0. (10)

(ii) If ‖𝑇𝑥‖ ≤ ‖𝑥‖ for 𝑥 ∈ 𝜕𝐾
𝑟
, then

𝑖 (𝑇, 𝐾
𝑟
, 𝐾) = 1. (11)

Lemma 2 (see [9, 10]). Let𝑋 be a Banach space and𝐾 a cone
in 𝑋. Assume Ω

1
, Ω
2
are open subsets of 𝑋 with 0 ∈ Ω

1
, Ω
1
⊂

Ω
2
. Let

𝑇 : 𝐾 ∩ (Ω
2
\ Ω
1
) → 𝐾 (12)

be a completely continuous operator such that one of the
following conditions is satisfied:

(a) ‖𝑇𝑦‖ ≤ ‖𝑦‖ for 𝑦 ∈ 𝐾 ∩ 𝜕Ω
1
and ‖𝑇𝑦‖ ≥ ‖𝑦‖ for

𝑦 ∈ 𝐾 ∩ 𝜕Ω
2
;

(b) ‖𝑇𝑦‖ ≥ ‖𝑦‖ for 𝑦 ∈ 𝐾 ∩ 𝜕Ω
1
and ‖𝑇𝑦‖ ≤ ‖𝑦‖ for

𝑦 ∈ 𝐾 ∩ 𝜕Ω
2
.

Then 𝑇 has at least one fixed point in 𝐾 ∩ (Ω
2
\ Ω
1
).

In order to apply Lemmas 1 and 2 to system (1), we take

𝑋 = {x (𝑡) : x (𝑡) ∈ 𝐶 (𝑅, 𝑅𝑛) , x (𝑡 + 𝜔) = x (𝑡) , 𝑡 ∈ 𝑅} , (13)
endowed with the norm ‖x‖ = max

1≤𝑖≤𝑛
|𝑥
𝑖
|
0
, where |𝑥

𝑖
|
0
=

sup
𝑡∈[0,𝜔]

|𝑥
𝑖
(𝑡)|; then𝑋 is a Banach space.

Define the operator

𝑇
𝜆
: 𝑋 → 𝑋 (14)

by

(𝑇
𝜆
x) (𝑡) = ((𝑇

𝜆
x)
1
(𝑡) , (𝑇

𝜆
x)
2
(𝑡) , . . . , (𝑇

𝜆
x)
𝑛
(𝑡))
⊤

, (15)

where

(𝑇
𝜆
x)
𝑖
(𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠, (16)

𝐺
𝑖
(𝑡, 𝑠) =

exp (− ∫𝑠
𝑡
(ℎ
𝑖
(𝜃, x (𝜃)) /𝑥

𝑖
(𝜃)) 𝑑𝜃)

1 − exp (− ∫𝜔
0
(ℎ
𝑖
(𝜃, x (𝜃)) /𝑥

𝑖
(𝜃)) 𝑑𝜃)

,

𝑡 ≤ 𝑠 ≤ 𝑡 + 𝜔.

(17)

Let 𝑚 = min
1≤𝑖≤𝑛

min
𝑡,𝑠∈[0,𝜔]

𝐺
𝑖
(𝑡, 𝑠) and 𝑀 =

max
1≤𝑖≤𝑛

max
𝑡,𝑠∈[0,𝜔]

𝐺
𝑖
(𝑡, 𝑠), clearly;

0 < 𝑚 ≤ 𝐺
𝑖
(𝑡, 𝑠) ≤ 𝑀, 𝑡 ≤ 𝑠 ≤ 𝑡 + 𝜔. (18)

Define a set by

𝐾

= {x (𝑡) = (𝑥
1
, 𝑥
2
. . . , 𝑥
𝑛
)
⊤

∈ 𝑋 : 𝑥
𝑖
(𝑡) ≥ 𝜎 ‖x‖ , 𝑡 ∈ [0, 𝜔]} ,

where 𝜎 = 𝑚
𝑀
.

(19)

We use the following notations.
Let 𝑟 > 0 be a constant, and x ∈ 𝐾, defining

Ω
𝑟
= {x ∈ 𝑋 : ‖x‖ < 𝑟} , 𝜕Ω

𝑟
= {x ∈ 𝑋 : ‖x‖ = 𝑟} ,

𝜌
𝜇

(𝑟) := max
1≤𝑖≤𝑛

sup
‖x‖=𝑟

𝑓
𝑖
(x)
‖x‖

, 𝜌
𝑙

(𝑟) := min
1≤𝑖≤𝑛

inf
‖x‖=𝑟

𝑓
𝑖
(x)
‖x‖

,

𝑓
0

𝑖
= lim
‖x‖→0+

𝑓
𝑖
(x)
‖x‖

, 𝑓
∞

𝑖
= lim
‖x‖→∞

𝑓
𝑖
(x)
‖x‖

,

F
0
= max
1≤𝑖≤𝑛

{𝑓
0

𝑖
} , F

∞
= max
1≤𝑖≤𝑛

{𝑓
∞

𝑖
} ,

𝐼
0
= number of zeros in the set {F

0
, F
∞
} ,

𝐼
∞
= number of infinities in the set {F

0
, F
∞
} ,

𝑏
𝜇
:= max
1≤𝑖≤𝑛

∫
𝜔

0

𝑏
𝑖
(𝑡) 𝑑𝑡, 𝑏

𝑙
:= min
1≤𝑖≤𝑛

∫
𝜔

0

𝑏
𝑖
(𝑡) 𝑑𝑡.

(20)
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Lemma 3. Assume that (𝐻
1
)-(𝐻
2
) hold; then 𝑇

𝜆
(𝐾) ⊂ 𝐾 and

𝑇
𝜆
: 𝐾 → 𝐾 is continuous and completely continuous.

Proof. In view of the definition of𝐾, for x ∈ 𝐾, we have

(𝑇
𝜆
x)
𝑖
(𝑡 + 𝜔) = 𝜆∫

𝑡+2𝜔

𝑡+𝜔

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

= 𝜆∫
𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡 + 𝜔, 𝑠 + 𝜔) 𝑏

𝑖
(𝑠 + 𝜔)

× 𝑓
𝑖
(x (𝑠 + 𝜔 − 𝜏 (𝑠 + 𝜔))) 𝑑𝑠

= 𝜆∫
𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

= (𝑇
𝜆
x)
𝑖
(𝑡) .

(21)

It is easy to see that ∫𝑡+𝜔
𝑡
𝑏
𝑖
(𝑠)𝑓
𝑖
(x(𝑠 − 𝜏(𝑠)))𝑑𝑠 is a constant

because of the periodicity of 𝑏
𝑖
(𝑡)𝑓
𝑖
(x(𝑡 − 𝜏(𝑡))).

Notice that, for x ∈ 𝐾 and 𝑡 ∈ [0, 𝜔],

(𝑇
𝜆
x)
𝑖
(𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

≥ 𝜆𝑚∫
𝑡+𝜔

𝑡

𝑏
𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

= 𝜆𝑚∫
𝜔

0

𝑏
𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

=
𝑚

𝑀
𝜆𝑀∫

𝜔

0

𝑏
𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

≥
𝑚

𝑀
max
𝑡∈[0,𝜔]

(𝑇𝜆x)𝑖 (𝑡)
 .

(22)

Thus 𝑇
𝜆
(𝐾) ⊂ 𝐾 and it is easy to show that 𝑇

𝜆
: 𝐾 → 𝐾 is

continuous and completely continuous.

Lemma4. Assume that (𝐻
1
)-(𝐻
2
) hold; then a function x(𝑡) ∈

𝐾 is a positive 𝜔-periodic solution of (1) if and only if 𝑇
𝜆
x = x,

x ∈ 𝐾.

Proof. If x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝐾 and 𝑇

𝜆
x = x, then

𝑥


𝑖
(𝑡) =

𝑑

𝑑𝑡
(𝜆∫
𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠)

≥ 𝜆𝐺
𝑖
(𝑡, 𝑡 + 𝜔) 𝑏

𝑖
(𝑡 + 𝜔) 𝑓

𝑖
(x (𝑡 + 𝜔 − 𝜏 (𝑡 + 𝜔)))

− 𝜆𝐺
𝑖
(𝑡, 𝑡) 𝑏

𝑖
(𝑡) 𝑓
𝑖
(x (𝑡 − 𝜏 (𝑡))) + ℎ𝑖 (𝑡, x)

𝑥
𝑖
(𝑡)

(𝑇
𝜆
x)
𝑖
(𝑡)

= 𝜆 [𝐺
𝑖
(𝑡, 𝑡 + 𝜔) − 𝐺

𝑖
(𝑡, 𝑡)] 𝑏

𝑖
(𝑡) 𝑓
𝑖
(x (𝑡 − 𝜏 (𝑡)))

+ ℎ
𝑖
(𝑡, x)

= ℎ
𝑖
(𝑡, x) − 𝜆𝑏

𝑖
(𝑡) 𝑓
𝑖
(x (𝑡 − 𝜏 (𝑡))) .

(23)

Thus x is a positive 𝜔-periodic solution of (1). On the other
hand, if x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is a positive 𝜔-periodic solution

of (1), then 𝑥
𝑖
(𝑡) = ℎ

𝑖
(𝑡, x) − 𝜆𝑏

𝑖
(𝑡)𝑓
𝑖
(x(𝑡 − 𝜏(𝑡))) and

(𝑇
𝜆
x)
𝑖
(𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

= ∫
𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) (ℎ

𝑖
(𝑠, x) − 𝑥

𝑖
(𝑠)) 𝑑𝑠

= ∫
𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) ℎ

𝑖
(𝑠, x) 𝑑𝑠 − ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑥



𝑖
(𝑠) 𝑑𝑠

= ∫
𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠)ℎ

𝑖
(𝑠, x)𝑑𝑠 − 𝐺

𝑖
(𝑡, 𝑠)𝑥

𝑖
(𝑠)

𝑡+𝜔

𝑡

− ∫
𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) ℎ

𝑖
(𝑠, x) 𝑑𝑠 = 𝑥

𝑖
(𝑡) .

(24)

Thus, 𝑇
𝜆
x = x; furthermore, in view of the proof of Lemma 3,

we also have 𝑥
𝑖
(𝑡) ≥ (𝑚/𝑀)max

𝑡∈[0,𝜔]
|(𝑇
𝜆
x)
𝑖
(𝑡)| for 𝑡 ∈ [0, 𝜔].

That is, x is a fixed point of 𝑇
𝜆
in 𝐾.

Lemma 5. Assume that (𝐻
1
)-(𝐻
2
) hold; for any 𝜂 > 0 and

x ∈ 𝐾, if there exists a component 𝑓
𝑖
of F such that 𝑓

𝑖
(x(𝑡)) ≥

𝑥
𝑖
(𝑡)𝜂, then

𝑇𝜆x
 ≥

𝜆𝜂𝑚2𝑏𝑙

𝑀
‖x‖ . (25)

Proof. Since x ∈ 𝐾 and 𝑓
𝑖
(x(𝑡)) ≥ 𝑥

𝑖
(𝑡)𝜂, we have

(𝑇
𝜆
x)
𝑖
(𝑡) = 𝜆∫

𝜔

0

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

≥ 𝜆𝑚∫
𝜔

0

𝑏
𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

≥ 𝜆𝜂𝑚∫
𝜔

0

𝑏
𝑖
(𝑠) 𝑥
𝑖
(𝑠 − 𝜏 (𝑠)) 𝑑𝑠

≥
𝜆𝜂𝑚2𝑏𝑙

𝑀
‖x‖ .

(26)

Thus ‖𝑇
𝜆
x‖ ≥ (𝜆𝜂𝑚2𝑏𝑙/𝑀)‖x‖. The proof is complete.

For each 𝑖 = 1, 2, . . . , 𝑛, let 𝑓(𝑟) : 𝑅
+
→ 𝑅

+
be the

function given by

𝑓
𝑖
(𝑟) = max {𝑓

𝑖
(x) : x ∈ 𝑅𝑛

+
, ‖x‖ ≤ 𝑟, 𝑡 ∈ [0, 𝜔]} . (27)

Let 𝑓0
𝑖
= lim
𝑟→0

(𝑓
𝑖
(𝑟)/𝑟) and 𝑓∞

𝑖
= lim
𝑟→∞

(𝑓
𝑖
(𝑟)/𝑟).

Lemma 6 (see [11]). Assume (𝐻
2
) holds. Then 𝑓0

𝑖
= 𝑓0
𝑖
and

𝑓∞
𝑖
= 𝑓∞
𝑖
.

Lemma 7. Assume that (𝐻
1
)-(𝐻
2
) hold and let 𝑟 > 0. If x ∈

𝜕Ω
𝑟
and there exists an 𝜖 > 0, such that 𝑓

𝑖
(𝑟) ≤ 𝜖𝑟 for 𝑡 ∈

[0, 𝜔], then
𝑇𝜆x

 ≤ 𝜆𝜖𝑀𝑏
𝜇

‖x‖ . (28)
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Proof. From the definition of 𝑇
𝜆
, for x ∈ 𝜕Ω

𝑟
, we have

(𝑇
𝜆
x)
𝑖
(𝑡) = ∫

𝜔

0

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

≤ 𝜆𝑀∫
𝜔

0

𝑏
𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

≤ 𝜆𝑀∫
𝜔

0

𝑏
𝑖
(𝑠) 𝑓
𝑖
(𝑟) 𝑑𝑠

≤ 𝜆𝜖𝑀𝑏
𝜇

‖x‖ .

(29)

That is, ‖𝑇
𝜆
x‖ ≤ 𝜆𝜖𝑀𝑏𝜇‖x‖. The proof is complete.

The following two lemmas are weak forms of Lemmas 5
and 7.

Lemma 8. Assume that (𝐻
1
)-(𝐻
2
) hold. If x ∈ 𝜕Ω

𝑟
, 𝑟 > 0,

then
𝑇𝜆x

 ≥ 𝜆𝑚𝑏
𝑙
�̂�
𝑟
, (30)

where �̂�
𝑟
= min{𝑓

𝑖
(x) : x ∈ 𝑅𝑛

+
, 𝑚𝑟/𝑀 ≤ ‖x‖ ≤ 𝑟}.

Lemma 9. Assume that (𝐻
1
)-(𝐻
2
) hold. If x ∈ 𝜕Ω

𝑟
, 𝑟 > 0,

then
𝑇𝜆x

 ≤ 𝜆𝑀𝑏
𝜇
�̂� (𝑟) , (31)

where �̂�
𝑟
= max{𝑓

𝑖
(x) : x ∈ 𝑅𝑛

+
, ‖x‖ ≤ 𝑟}.

3. The Main Results

Theorem 10. Assume that (𝐻
1
)-(𝐻
2
) hold and there exist

positive constants 𝑟
1
and 𝑟
2
with 𝑟

1
< 𝑟
2
such that

𝑚𝑏
𝑙
𝜌
𝑙
(𝑟
2
) > 𝑀𝑏

𝜇
𝜌
𝜇
(𝑟
1
) ; (32)

then for
1

𝑚𝑏𝑙𝜌𝑙 (𝑟
2
)
≤ 𝜆 ≤

1

𝑀𝑏𝜇𝜌𝜇 (𝑟
1
)
, (33)

the system (1) has at least a positive 𝜔-periodic solution x(𝑡)
satisfying 𝑟

1
≤ ‖x‖ ≤ 𝑟

2
.

Proof. From (32) for 𝜆 satisfying (33) we have that

𝜆𝑚𝑏
𝑙
𝜌
𝑙
(𝑟
2
) ≥ 1, 𝜆𝑀𝑏

𝜇
𝜌
𝜇
(𝑟
1
) < 1, (34)

or

𝜆𝑚𝑏
𝑙
𝜌
𝑙
(𝑟
2
) > 1, 𝜆𝑀𝑏

𝑢
𝜌
𝜇
(𝑟
1
) ≤ 1. (35)

Let x ∈ 𝐾 and ‖x‖ = 𝑟
1
; by (16) and (34), we have

(𝑇
𝜆
x)
𝑖
(𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

≤ 𝜆𝑀∫
𝑡+𝜔

𝑡

𝑏
𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

≤ 𝜆𝑀∫
𝑡+𝜔

𝑡

𝑏
𝑖
(𝑠)
𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠)))
‖x‖

‖x‖ 𝑑𝑠

≤ 𝜆𝑀𝑏
𝜇
𝜌
𝜇
(𝑟
1
) ‖x‖ ≤ ‖x‖ .

(36)

That is, ‖𝑇
𝜆
x
𝑖
‖ ≤ ‖x‖. This implies that ‖𝑇

𝜆
x‖ ≤ ‖x‖ for x ∈

𝐾 ∩ 𝜕Ω
𝑟1
.

If x ∈ 𝐾 and ‖x‖ = 𝑟
2
, by (16) and (35), we have

(𝑇
𝜆
x)
𝑖
(𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑠) 𝑏

𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

≥ 𝜆𝑚∫
𝑡+𝜔

𝑡

𝑏
𝑖
(𝑠) 𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠))) 𝑑𝑠

≥ 𝜆𝑚∫
𝑡+𝜔

𝑡

𝑏
𝑖
(𝑠)
𝑓
𝑖
(x (𝑠 − 𝜏 (𝑠)))
‖x‖

‖x‖ 𝑑𝑠

≥ 𝜆𝑚𝑏
𝑙
𝜌
𝑙
(𝑟
2
) ‖x‖ ≥ ‖x‖ .

(37)

This implies that ‖𝑇
𝜆
x‖ ≥ ‖x‖ for x ∈ 𝐾 ∩ 𝜕Ω

𝑟2
. By

Lemma 2(a), 𝑇
𝜆
has a fixed point in𝐾∩ (Ω

𝑟2
\Ω
𝑟1
). It follows

from Lemma 2 that (1) has an 𝜔-periodic solution x with
𝑟
1
≤ ‖x‖ ≤ 𝑟

2
. The proof is complete.

Theorem 11. Assume that (𝐻
1
)-(𝐻
2
) hold and there exist

positive constants 𝑟
1
and 𝑟
2
with 𝑟

1
< 𝑟
2
such that

𝑚𝑏
𝑙
𝜌
𝑙
(𝑟
1
) > 𝑀𝑏

𝜇
𝜌
𝜇
(𝑟
2
) ; (38)

then for

1

𝑚𝑏𝑙𝜌𝑙 (𝑟
1
)
≤ 𝜆 ≤

1

𝑀𝑏𝜇𝜌𝜇 (𝑟
2
)
, (39)

the system (1) has at least a positive 𝜔-periodic solution x(𝑡)
satisfying 𝑟

1
≤ ‖x‖ ≤ 𝑟

2
.

Proof. The proof of Theorem 11 is similar to that of
Theorem 10, so we omit it. The proof is complete.

Theorem 12. Assume that (𝐻
1
)-(𝐻
2
) hold.

(a) If 𝐼
0
= 1 or 𝐼

0
= 2, then (1) has 𝐼

0
positive 𝜔-periodic

solution(s) for 𝜆 > 1/𝑚𝑏𝑙�̂�
1
> 0.

(b) If 𝐼
∞
= 1 or 𝐼

∞
= 2, then (1) has 𝐼

∞
positive𝜔-periodic

solution(s) for 0 < 𝜆 < 1/𝑀𝑏𝜇�̂�
1
.

(c) If 𝐼
0
= 0 or 𝐼

∞
= 0, then (1) has no positive 𝜔-

periodic solution for sufficiently large or small 𝜆 > 0,
respectively.

Proof. (a) Choose a number 𝑟
1
= 1. By Lemma 8we infer that

there exists 𝜆
0
= 1/𝑚𝑏𝑙�̂�

1
> 0 such that

𝑇𝜆 (x)
 ≥ ‖x‖ for x ∈ 𝜕Ω

𝑟1
, 𝜆 > 𝜆

0
. (40)

If F
0
= 0, this implies that 𝑓0

𝑖
= 0. It follows from

Lemma 6 that𝑓0
𝑖
= 0; therefore, we choose 0 < 𝑟

2
< 𝑟
1
so that

𝑓
𝑖
(𝑟
2
) ≤ 𝜖𝑟

2
, where the constant 𝜖 > 0 satisfies 𝜆𝜖𝑀𝑏𝜇 < 1.

By Lemma 7, it follows that
𝑇𝜆x

 ≤ 𝜆𝜖𝑀𝑏
𝜇

‖x‖ < ‖x‖ , for x ∈ 𝜕Ω
𝑟2
, 𝑡 ∈ [0, 𝜔] ;

(41)
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it follows from Lemma 1 that

𝑖 (𝑇
𝜆
, Ω
𝑟1
, 𝐾) = 0, 𝑖 (𝑇

𝜆
, Ω
𝑟2
, 𝐾) = 1. (42)

Thus 𝑖(𝑇
𝜆
, Ω
𝑟1
\ Ω
𝑟2
, 𝐾) = −1, which implies 𝑇

𝜆
has a fixed

point inΩ
𝑟1
\Ω
𝑟2
, which is positive 𝜔-periodic solution of (1)

for 𝜆 > 𝜆
0
.

If F
∞
= 0, then 𝑓∞

𝑖
= 0. It follows from Lemma 6

that 𝑓∞
𝑖

= 0. Therefore, we choose 𝑟
3
> 2𝑟
1
such that

𝑓
𝑖
(𝑡, 𝑟
3
) ≤ 𝜖𝑟

3
, where the constant 𝜖 > 0 satisfies 𝜆𝜖𝑀𝑏𝜇 < 1.

By Lemma 7, it follows that
𝑇𝜆x

 ≤ 𝜆𝜖𝑀𝑏
𝜇

‖x‖ < ‖x‖ , for x ∈ 𝜕Ω
𝑟3
, 𝑡 ∈ [0, 𝜔] ;

(43)

it follows from Lemma 1 that

𝑖 (𝑇
𝜆
, Ω
𝑟1
, 𝐾) = 0, 𝑖 (𝑇

𝜆
, Ω
𝑟3
, 𝐾) = 1; (44)

thus 𝑖(𝑇
𝜆
, Ω
𝑟3
\Ω
𝑟1
, 𝐾) = 1, which implies𝑇

𝜆
has a fixed point

in Ω
𝑟3
\ Ω
𝑟1
, which is positive 𝜔-periodic solution of (1) for

𝜆 > 𝜆
0
.

If F
0
= F
∞
= 0, it is easy to see from the above proof that

𝑇
𝜆
has fixed points x

1
inΩ
𝑟1
\Ω
𝑟2
and x
2
inΩ
𝑟3
\Ω
𝑟1
such that

𝑟
2
<
x1
 < 𝑟1 <

x2
 < 𝑟3. (45)

Consequently, (1) has two positive 𝜔-periodic solutions for
𝜆 > 𝜆

0
.

(b) Choose a number 𝑟
1
= 1; by Lemma 9 we infer that

there exists a 𝜆
0
= 1/𝑀𝑏𝜇�̂�

1
> 0 such that

𝑇𝜆 (x)
 < ‖x‖ for x ∈ 𝜕Ω

𝑟1
, 0 < 𝜆 < 𝜆

0
. (46)

If F
0
= ∞, there exists a component 𝑓

𝑖
such that 𝑓0

𝑖
= ∞.

Therefore there is a positive number 𝑟
2
< 𝑟
1
such that

𝑓
𝑖
(x) ≥ 𝜂 ‖x‖ , for ‖x‖ ≤ 𝑟

2
, 𝑡 ∈ [0, 𝜔] , (47)

where the constant 𝜂 > 0 satisfies 𝜆𝜂𝑚2𝑏𝑙𝑀 > 1. Lemma 5
implies that
𝑇𝜆x

 ≥ 𝜆𝜂𝑀𝑏
𝜇

‖x‖ > ‖x‖ , for x ∈ 𝜕Ω
𝑟2
, 𝑡 ∈ [0, 𝜔] .

(48)

It follows from Lemma 1 that

𝑖 (𝑇
𝜆
, Ω
𝑟1
, 𝐾) = 1, 𝑖 (𝑇

𝜆
, Ω
𝑟2
, 𝐾) = 0. (49)

Thus 𝑖(𝑇
𝜆
, Ω
𝑟1
\Ω
𝑟2
, 𝐾) = 1which implies𝑇

𝜆
has a fixed point

in Ω
𝑟1
\ Ω
𝑟2
, which is positive 𝜔-periodic solution of (1) for

0 < 𝜆 < 𝜆
0
.

If F
∞
= ∞, there exists a component 𝑓

𝑖
such that 𝑓∞

𝑖
=

∞. Therefore there is a positive number �̂� such that

𝑓
𝑖
(x) ≥ 𝜂 ‖x‖ , for ‖x‖ ≥ �̂�, (50)

where the constant 𝜂 > 0 satisfies 𝜆𝜂𝑚2𝑏𝑙𝑀 > 1. Let 𝑟
3
=

max{2𝑟
1
,𝑀�̂�/𝑚}; if x ∈ 𝜕Ω

𝑟3
, then

min
𝑡∈[0,𝜔]

𝑥
𝑖
(𝑡) ≥

𝑚

𝑀
‖x‖ = 𝑚

𝑀
𝑟
3
≥ �̂�. (51)

Hence,

𝑓
𝑖
(x) ≥ 𝜂𝑥

𝑖
(𝑡) . (52)

Again, it follows from Lemma 5 that
𝑇𝜆x

 ≥ 𝜆𝜂𝑀𝑏
𝜇

‖x‖ > ‖x‖ , for x ∈ 𝜕Ω
𝑟3
, 𝑡 ∈ [0, 𝜔] .

(53)

It follows from Lemma 1 that

𝑖 (𝑇
𝜆
, Ω
𝑟1
, 𝐾) = 1, 𝑖 (𝑇

𝜆
, Ω
𝑟3
, 𝐾) = 0. (54)

Thus 𝑖(𝑇
𝜆
, Ω
𝑟3
\ Ω
𝑟1
, 𝐾) = −1, which implies 𝑇

𝜆
has a fixed

point inΩ
𝑟3
\Ω
𝑟1
, which is positive 𝜔-periodic solution of (1)

for 0 < 𝜆 < 𝜆
0
.

If F
0
= F
∞
= ∞, it is easy to see from the above proof that

𝑇
𝜆
has fixed points x

1
inΩ
𝑟1
\Ω
𝑟2
and x
2
inΩ
𝑟3
\Ω
𝑟1
such that

𝑟
2
<
x1
 < 𝑟1 <

x2
 < 𝑟3. (55)

Consequently, (1) has two positive 𝜔-periodic solutions for
0 < 𝜆 < 𝜆

0
.

(c) If 𝐼
0
= 0, then F

0
> 0 and F

∞
> 0; there exist two

components 𝑓
𝑖
and 𝑓

𝑗
such that

𝑓
0

𝑖
> 0, 𝑓

∞

𝑖
> 0. (56)

It is easy to show (see [11]) that positive numbers 𝜂, 𝑟
1
exist

such that

𝑓
𝑖
(x) ≥ 𝜂 ‖x‖ , ‖x‖ ≤ 𝑟

1
, (57)

𝑓
𝑗
(x) ≥ 𝜂 ‖x‖ , ‖x‖ ≥ 𝑚

𝑀
𝑟
1
. (58)

Assume y(𝑡) = [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
] is a positive 𝜔-periodic

solution of (1), we will show that this leads to a contradiction
for 𝜆 > 𝜆

0
= 𝑀/𝜂𝑚2𝑏𝑙. In fact, if ‖y‖ ≤ 𝑟

1
, (57) implies that

𝑓
𝑖
(y) ≥ 𝜂𝑦

𝑖
(𝑡) , for 𝑡 ∈ [0, 𝜔] . (59)

On the other hand, if ‖y‖ > 𝑟
1
, then

min
𝑡∈[0,𝜔]

𝑦
𝑖
(𝑡) ≥ 𝜎

y
 ≥ 𝜎𝑟1, (60)

which together with (58), implies that

𝑓
𝑗
(y) ≥ 𝜂𝑦

𝑗
(𝑡) , for 𝑡 ∈ [0, 𝜔] . (61)

Since 𝑇
𝜆
(y) = y(𝑡), for 𝑡 ∈ [0, 𝜔], it follows from Lemma 5

that, for 𝜆 > 𝜆
0
,

y
 =

𝑇𝜆 (y)
 ≥

𝜆𝜂𝑚2𝑏𝑙

𝑀

y
 >

y
 ,

(62)

which is a contradiction.
If 𝐼
∞
= 0, then F

0
< ∞ and F

∞
< ∞; there exist two

components 𝑓
𝑖
and 𝑓

𝑗
such that 𝑓0

𝑖
< ∞ and 𝑓∞

𝑗
< ∞. It is

easy to show (see [11]) that positive numbers 𝜖 exist such that

𝑓
𝑖
(x) ≤ 𝜖 ‖x‖ . (63)
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Assume that y(𝑡) = [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
] is a positive 𝜔-periodic

solution of (1); we will show that this leads to a contradiction
for 0 < 𝜆 < 𝜆

0
= 1/𝜖𝑀𝑏𝜇. In fact, for 0 < 𝜆 < 𝜆

0
, since

𝑇
𝜆
(y) = y(𝑡), we find

y
 =

𝑇𝜆 (y)
 ≤ 𝜆𝜖𝑀𝑏

𝜇 y
 <

y
 , (64)

which is a contradiction. The proof is complete.

Theorem 13 is a direct consequence of the proof of
Theorem 12(c). Under the conditions of Theorem 13, we are
able to give explicit intervals of 𝜆 such that (1) has no positive
𝜔-periodic solution.

Theorem 13. Assume that (𝐻
1
)-(𝐻
2
) hold.

(a) If there is a 𝑐
1
> 0 such that𝑓

𝑖
(x) ≥ 𝑐

1
‖x‖, x ∈ 𝑅𝑛

+
, then

there exists a 𝜆
0
= 𝑀/𝑚2𝑐

1
𝑏𝑙 such that, for all 𝜆 > 𝜆

0
,

(1) has no positive 𝜔-periodic solution.
(b) If there is a 𝑐

2
> 0 such that𝑓

𝑖
(x) ≤ 𝑐

2
‖x‖, x ∈ 𝑅𝑛

+
, then

there exists a 𝜆
0
= 1/𝑀𝑐

2
𝑏𝜇 such that, for all 0 < 𝜆 <

𝜆
0
, (1) has no positive 𝜔-periodic solution.

Theorem 14. Assume that (𝐻
1
)-(𝐻
2
) hold and 𝐼

0
= 𝐼
∞
= 0. If

𝑀

max {F
0
, F
∞
}𝑚2𝑏𝑙

< 𝜆 <
1

min {F
0
, F
∞
}𝑀𝑏𝜇

, (65)

then (1) has a positive 𝜔-periodic solution.

Proof. (a) If F
∞
> F
0
, then there exist two components 𝑓

𝑖

and 𝑓
𝑗
such that 𝑓0

𝑖
< 𝑓∞
𝑗
. It is easy to see that there exists an

0 < 𝜖 < 𝑓∞
𝑗

such that

𝑀

𝑚2𝑏𝑙 (𝑓∞
𝑗
− 𝜖)

< 𝜆 <
1

𝑀𝑏𝜇 (𝑓0
𝑖
+ 𝜖)

. (66)

Now, turning to 𝑓0
𝑖
and 𝑓∞

𝑗
, there is an 𝑟

1
> 0 such that

𝑓
𝑖
(x) ≤ (𝑓0

𝑖
+ 𝜖) ‖x‖ , for 0 < ‖x‖ < 𝑟

1
. (67)

Thus

𝑓
𝑖
(x) ≤ (𝑓0

𝑖
+ 𝜖) ‖x‖ , for x ∈ 𝜕Ω

𝑟1
, 𝑡 ∈ [0, 𝜔] . (68)

We have by Lemma 7 that

𝑇𝜆x
 ≤ 𝜆 (𝑓

0

𝑖
+ 𝜖)𝑀𝑏

𝜇

‖x‖ < ‖x‖ ,

for x ∈ 𝜕Ω
𝑟1
, 𝑡 ∈ [0, 𝜔] .

(69)

On the other hand, there is an �̂� > 𝑟
1
such that

𝑓
𝑗
(x) ≥ (𝑓∞

𝑗
− 𝜖) ‖x‖ , for ‖x‖ ≥ �̂�. (70)

Let 𝑟
2
= max{2𝑟

1
, 𝑚�̂�/𝑀}. It follows that

𝑥
𝑖
(𝑡) ≥

𝑚

𝑀
‖x‖ ≥ �̂�, for x ∈ 𝜕Ω

𝑟2
, 𝑡 ∈ [0, 𝜔] . (71)

Thus 𝑓
𝑖
(x) ≤ (𝑓∞

𝑗
−𝜖)‖x‖, for x ∈ 𝜕Ω

𝑟2
and 𝑡 ∈ [0, 𝜔]. In view

of Lemma 7, we have

𝑇𝜆x
 ≥ 𝜆 (𝑓

∞

𝑗
− 𝜖)

𝑚2𝑏𝑙

𝑀
‖x‖ > ‖x‖ ,

for x ∈ 𝜕Ω
𝑟2
, 𝑡 ∈ [0, 𝜔] .

(72)

It follows from Lemma 1 that

𝑖 (𝑇
𝜆
, Ω
𝑟1
, 𝐾) = 1, 𝑖 (𝑇

𝜆
, Ω
𝑟2
, 𝐾) = 0. (73)

Thus 𝑖(𝑇
𝜆
, Ω
𝑟2
\ Ω
𝑟1
, 𝐾) = −1. Hence, 𝑇

𝜆
has a fixed point in

Ω
𝑟2
\Ω
𝑟1
. Consequently, (1) has a positive𝜔-periodic solution.

(b) If F
∞
> F
0
. The remaining part of the proof is similar

to that of Theorem 14(a); therefore it is omitted. The proof is
complete.

4. Remarks

Remark 15. Based on the condition𝐻2 of [8], we may obtain
the inequality sequence of

𝑙𝑎
𝑖
(𝑡) ≤ 𝐴 (𝑡) 𝐺 (x) ≤ 𝐿𝑎

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛. (74)

Comparatively, in terms of condition of𝐻
1
presented in this

paper, we have the inequality sequence of

𝛼
𝑖
(𝑡) 𝑥
𝑖
≤ ℎ
𝑖
(𝑡, x) ≤ 𝛽

𝑖
(𝑡) 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛; (75)

it is clear that result of this paper can be applied to even more
wider domain. Additionally, an extra requirement of

0 < 𝑙 < 𝐺 (x) < 𝐿, (76)

included in𝐻2 of [8], is not demanded here.
For example, when letting

𝐻(𝑡, x) = 𝐴 (𝑡) 𝐺 (x) = [𝑎1 (𝑡) 0

0 𝑎
2
(𝑡)
] [
(2 + sin𝑥

1
) 𝑥
1

(2 + cos𝑥
2
) 𝑥
2

]

(77)

and then

𝐺 (x) = [(2 + sin𝑥1) 𝑥1
(2 + cos𝑥

2
) 𝑥
2

] , (78)

we can obtain the formula of
ℎ
1
(𝑡, x) = 𝑎

1
(𝑡) (2 + sin𝑥

1
) 𝑥
1
,

ℎ
2
(𝑡, x) = 𝑎

2
(𝑡) (2 + cos𝑥

2
) 𝑥
2
.

(79)

According to condition 𝐻
1
, the formulas would be further

achieved as

𝑎
1
(𝑡) ≤

ℎ
1
(𝑡, x)
𝑥
1

=
𝑎
1
(𝑡) (2 + sin𝑥

1
) 𝑥
1

𝑥
1

≤ 3𝑎
1
(𝑡) ,

𝑎
2
(𝑡) ≤

ℎ
2
(𝑡, x)
𝑥
2

=
𝑎
2
(𝑡) (2 + cos𝑥

2
) 𝑥
2

𝑥
2

≤ 3𝑎
2
(𝑡) .

(80)

However, there do not exist 𝑙 > 0 such that

0 < 𝑙 < 𝑔
1
(𝑥
1
) = (2 + sin𝑥

1
) 𝑥
1
. (81)

Therefore, function of 𝐻(𝑡, x) = 𝐴(𝑡)𝐺(x) cannot satisfy the
conditions proposed in [8].



Discrete Dynamics in Nature and Society 7

Remark 16. The technique of proof of theorems in this paper
differs from that of theorems in [8]. What is more, the
condition ofTheorems 10 and 11 is obviouslyweaker here than
proposed in [8].

Remark 17. In this paper the application scope of Theorems
12–14 is relatively wider than that of Theorems 1.1–1.3 in [6],
respectively.
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