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This paper studies the pricing problem of American options using a nonparametric entropy approach. First, we derive a
general expression for recovering the risk-neutral moments of underlying asset return and then incorporate them into the
maximum entropy framework as constraints. Second, by solving this constrained entropy problem, we obtain a discrete risk-
neutral (martingale) distribution as the unique pricing measure. Third, the optimal exercise strategies are achieved via the least-
squares Monte Carlo algorithm and consequently the pricing algorithm of American options is obtained. Finally, we conduct the
comparative analysis based on simulations and IBM option contracts. The results demonstrate that this nonparametric entropy
approach yields reasonably accurate prices for American options and produces smaller pricing errors compared to other competing
methods.

1. Introduction

According to modern asset pricing theory, the value of any
asset can be calculated as the expectation under the risk-
neutral measure of discounted future cash flows. One of the
challenging tasks in applying modern asset pricing theory to
value options is to find an appropriate risk-neutral pricing
measure. The maximum entropy principle is regarded as
a reasonable criterion for determining an appropriate risk-
neutral pricing measure (see, e.g., Frittelli [1] and Stutzer [2])
because it maximizes the use of prior knowledge in obtaining
the posterior distribution,while beingmaximally uninforma-
tive about missing or unknown information (Jaynes [3]).

Stutzer [2] is the first to propose a nonparametric entropy
valuation method, named the canonical valuation method,
for valuing European options. This method does not need
to make any preassumption for the underlying asset and
relies only upon historical underlying price data. In this
nonparametric pricing method, the physical distribution is
transformed to a posterior distribution under the princi-
ple of the maximum entropy framework by imposing the

martingale constraint. Because of the martingale constraint,
this posterior distribution can be considered as a risk-
neutral distribution (RND) of the underlying asset return
and is then used to price the European options. The entropy
valuation approach relies more on the information contained
in market prices and less on normative assumptions. Due to
this appealing feature, the entropy pricing method has been
extended to price American options. Liu [4] proposed a so-
called canonical least-squares Monte Carlo (CLM) method
for pricing American options which uses Stutzer’s framework
to get the canonical distribution as pricing measure and
determines the optimal exercise strategy via least-squares
Monte Carlo algorithm (Longstaff and Schwartz [5]). Due
to the sole martingale constraint used in CLM method,
however, a problem arises if the martingale constraint does
not sufficiently restrict the feasible set of measures to enable
the entropy pricingmeasure to be close enough to the correct
martingale measure.

Stutzer suggests that adding additional constraints forc-
ing a subset of options to be priced correctly which would
shrink the feasible set more tightly around the correct
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martingale measure. Following this, Alcock and Auerswald
[6] incorporate the option price constraint, that is, choosing
an option following certain criteria and forcing it to be
priced correctly, into the entropy framework, in empirically
pricing American options.This extended method utilizes the
information individually and only the information contained
in that specific option is extracted and incorporated into the
entropy framework. Thus, it could only be accurate to price
the option with the same characteristics such as the same
strike price and the same time to expiration. Therefore, more
option price constraints have to be put into the framework in
order to incorporate more information for obtaining a better
estimate of RND. But it may be computationally impossible
due to the well-known problem that Jacobianmatrix required
in the estimation of the RND (see (12) and (13)) is singular
or perhaps ill-conditioned (Agmon et al. [7] and Buchen
and Kelly [8]), as the number of option price constraints
increase.

It is well known that option prices contain information
about market participants’ perceptions of the distribution of
the underlying asset1. Hence, information from the option
market that characterizes the asset return distribution such
as volatility, skewness, and kurtosis could also be consid-
ered as additional constraints and incorporated into the
entropy framework. Indeed the moments can accurately
characterize the shape of the underlying distribution, for
instance, a normal distribution can be identified using the
first- and second-order moments. The mentioned entropy-
based valuation approaches above ignore the significance
of inferring the RND by using more useful informa-
tion from option data and do not create any informa-
tive constraint about the moments of the underlying asset
returns.

Due to those described above, this paper introduces
an ideally extended entropy method, named the risk-
neutral moments-constrained entropic least-squares method
(RMEL), by incorporating the risk-neutralmoments (RNMs)
as constraints for pricing American options. It is simple,
general, and suitable for pricing most type of options such as
path-dependent options. The key component that differen-
tiates the RMEL method to the methods discussed above is
the way that the information contained in option markets is
exploited and utilized for recovering the risk-neutral pricing
measure. As a result, our approach allows us to learn much
more about the shape of RND.This proposed RMEL method
does not need to impose preassumptions on either themarket
structure (e.g., completeness) or the process of underlying
asset price, further, extracting moments are model-free and
forward-looking. In addition, our approach can flexibly
deal with the issues of dividends and time-varying interest
rates.

Our valuation method proceeds in three stages. First,
we estimate the noncentral RNMs of the underlying asset
return from a set of American options based on the formulas
we derive using a characteristic function. These RNMs not
only guarantee the discounted price process of the underlying
asset to be a martingale but also take the effects of the
volatility smile, as well as the skewness and kurtosis of the
asset returns, into account when generating a risk-neutral

distribution. Second, we transform the physical distribution
to the RND by maximizing the entropy value subject to
RNM constraints estimated in the first stage. As there is
no closed-form solution, we use the Nelder-Mead simplex
numerical method to estimate the RND. We then generate
the risk-neutral underlying price paths drawn directly from
the estimated RND. Third, the value of American option is
calculated by incorporating the least-squares Monte Carlo
(LSM) algorithm to determine an optimal exercise strategy
and then averaging the discounted expected payoffs along
every path. As the generated paths are under the risk-
neutral measure, the discount rate is the same as the risk-free
rate.

We evaluate the usefulness of our method and com-
pare its performance in a number of ways with that of
Liu [4] in the same simulation setting, and with that of
Liu [4] and Alcock and Auerswald [6] as well as other
benchmarks using IBM option contracts. The simulation
results suggest that, with simulated returns from geometric
Brownian motion (GBM), RMEL approach produces very
similar prices for calls and puts as those of Black-Scholes and
finite difference and outperforms themethod of Liu [4] under
the simulated environment. The empirical investigation also
demonstrates that our valuation approach generates smaller
pricing errors than those of Liu [4], Alcock and Auer-
swald [6], and other benchmark methods for pricing IBM
options.

The remainder of this paper is organized as follows.
Section 2 presents our entropy valuation framework with
detailed procedures. Sections 3 and 4 compare our valuation
technique with other approaches in a simulated environment
and using IBM options, respectively. Section 5 presents our
conclusions and remarks.

2. RNMs-Constrained Entropy
Valuation Method

We present the risk-neutral moments-constrained entropic
least-squares valuation approach by employing the RNMs
constraints under the entropy pricing framework to price
American options. First, the RNMs are estimated using a
set of call options based on the formulas we derive via a
characteristic function. We then replace the single martin-
gale constraint in the entropic pricing framework with the
estimated RNMs to generate a better estimate of the RND
that takes into account not only the mean of the distribution
but also its entire shape. Note that our first and second RNM
constraints ensure the martingale property and consider the
volatility smile effect. Given the RND, an independent ran-
dom sample of future underlying returns is drawn to generate
risk neutral price paths. Potential exercise points for Ameri-
can options are then determined along every sample path via
the LSM algorithm proposed by Longstaff and Schwartz [5].
Finally, option prices are computed as the expectation of the
discounted payoffs along the risk-neutral underlying paths.
Further details of our approach are discussed in the following
sections.
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2.1. Recovering RNMs from the Option Market. To estimate
a RND of underlying asset returns more accurately,
we incorporate RNMs as constraints into an entropic
pricing framework. We recover RNMs from the option
market, since it is well established in the literature that
the option market contains useful information about the
future return distributions of underlying assets2. In this
way, volatility smile, which is commonly observed from
the option market and skewness and excess kurtosis,
can be effectively reflected in the estimation of the
RND.

We first introduce some notations. Denote the price of the
underlying asset at time 𝑡 by 𝑆

𝑡
. Let the 𝜏-period asset gross

return at time 𝑡 be given by the price relative, 𝑅
𝑡,𝜏

= 𝑆
𝑡+𝜏
/𝑆
𝑡
,

and let the 𝜏-period 𝑗th-order RNM at time 𝑡, 𝑚
𝑡,𝜏
(𝑗), be

defined as 𝑚
𝑡,𝜏
(𝑗) = 𝐸

𝜋
∗([log(𝑅

𝑡,𝜏
)]
𝑗
), where the symbol 𝐸

𝜋
∗

represents the expectation operator under the risk-neutral
probability measure 𝜋∗. Here, 𝜏 can be any appropriate time
period such as a day or an hour. A special case is where
𝜏 is the period from time 𝑡 to the option expiration time
𝑇. In this case of 𝜏 = (𝑇 − 𝑡), the 𝑗th-order RNM at
time 𝑡 can be expressed as 𝑚

𝑡,𝑇−𝑡
(𝑗) = 𝐸

𝜋
∗([log(𝑅

𝑡,𝑇−𝑡
)]
𝑗
).

The relation between 𝑚
𝑡,𝜏
(𝑗) and 𝑚

𝑡,𝑇−𝑡
(𝑗) is given in

Theorem 3.
According to Bakshi et al. [9], 𝑚

𝑡,𝑇−𝑡
(𝑗) (𝑗 = 1, 2, 3, 4)

can be recovered from a set of cross-sectional out-of-the-
money (OTM) European options. The following lemma
holds.

Lemma 1. Under the martingale pricing measures 𝜋
∗,

𝑚
𝑡,𝑇−𝑡

(𝑗) can be recovered from the market prices of OTM
European calls and put as follows.

The (𝑇 − 𝑡)-period first-order RNM𝑚
𝑡,𝑇−𝑡

(1) is given by

𝑚
𝑡,𝑇−𝑡

(1) = 𝑒
(𝑟−𝑞)(𝑇−𝑡)

− 𝑒
𝑟(𝑇−𝑡)

[∫

∞

𝑆
𝑡

1

𝐾
2
𝐶
𝐸

𝑡
(𝑇; 𝐾) 𝑑𝐾

+∫

𝑆
𝑡

0

1

𝐾
2
𝑃
𝐸

𝑡
(𝑇;𝐾) 𝑑𝐾] − 1.

(1)

The (𝑇 − 𝑡)-period 𝑗th-order RNM 𝑚
𝑡,𝑇−1

(𝑗) (𝑗 ≥ 2) is
given by

𝑚
𝑡,𝑇−𝑡

(𝑗) = 𝑗𝑒
𝑟(𝑇−𝑡)

[∫

∞

𝑆
𝑡

(𝑗 − 1) − ln (𝐾/𝑆
𝑡
)

𝐾
2

×[ln(𝐾
𝑆
𝑡

)]

(𝑗−2)

𝐶
𝐸

𝑡
(𝑇;𝐾) 𝑑𝐾]

+ 𝑗𝑒
𝑟(𝑇−𝑡)

[∫

𝑆
𝑡

0

(𝑗 − 1) − ln (𝐾/𝑆
𝑡
)

𝐾
2

×[ln(𝐾
𝑆
𝑡

)]

(𝑗−2)

𝑃
𝐸

𝑡
(𝑇;𝐾) 𝑑𝐾] ,

(2)

where 𝐶𝐸
𝑡
(𝑇;𝐾) and 𝑃𝐸

𝑡
(𝑇;𝐾) are the prices of European call

and put options at time 𝑡 with expiration time 𝑇 and strike
price 𝐾, 𝑟 is the continuously compounded risk-free interest
rate matching time to the option expiration, and 𝑞 is the
continuously compounded dividend yield. Both 𝑟 and 𝑞 are
annualized and assumed to be constant over time.

Proof. Provided in Appendix A 3.

Lemma 1 provides formulas to extract the first four
moments, which are related to the mean, volatility, skewness,
and kurtosis of the risk-neutral return density from a set
of OTM European calls and puts. We intend to recover the
RNMs using American calls supposed not to be exercised
prior to expiration4 and denote the price of American call
option with expiration𝑇 and strike price𝐾 by𝐶𝐴

𝑡
(𝑇;𝐾); then

we have the following.

Corollary 2. When the call options are not being exercised
prior to expiration, 𝑚

𝑡,𝑇−𝑡
(𝑗) can be recovered from American

calls.
The (𝑇 − 𝑡)-period first-order RNM𝑚

𝑡,𝑇−𝑡
(1) is

𝑚
𝑡,𝑇−𝑡

(1) = 𝑒
(𝑟−𝑞)(𝑇−𝑡)

− 𝑒
𝑟(𝑇−𝑡)

[∫

∞

𝑆
𝑡

1

𝐾
2
𝐶
𝐴

𝑡
(𝑇;𝐾) 𝑑𝐾]

− 𝑒
𝑟(𝑇−𝑡)

[∫

𝑆
𝑡

0

1

𝐾
2
[𝐶
𝐴

𝑡
(𝑇;𝐾) + 𝐾𝑒

−𝑟(𝑇−𝑡)

−𝑆
𝑡
𝑒
−𝑞(𝑇−𝑡)

] 𝑑𝐾] − 1.

(3)

The (𝑇−𝑡)-period 𝑗th-order RNM𝑚
𝑡,𝑇−𝑡

(𝑗) (𝑗 ≥ 2) is given
by

𝑚
𝑡,𝑇−𝑡

(𝑗)

= 𝑗𝑒
𝑟(𝑇−𝑡)

× [∫

∞

𝑆
𝑡

(𝑗 − 1) − ln (𝐾/𝑆
𝑡
)

𝐾
2

×[ln(𝐾
𝑆
𝑡

)]

(𝑗−2)

𝐶
𝐴

𝑡
(𝑇;𝐾) 𝑑𝐾]

+ 𝑗𝑒
𝑟(𝑇−𝑡)

× [∫

𝑆
𝑡

0

(𝑗 − 1) − ln (𝐾/𝑆
𝑡
)

𝐾
2

[ln(𝐾
𝑆
𝑡

)]

(𝑗−2)

× [𝐶
𝐴

𝑡
(𝑇;𝐾) + 𝐾𝑒

−𝑟(𝑇−𝑡)

−𝑆
𝑡
𝑒
−𝑞(𝑇−𝑡)

] 𝑑𝐾] .

(4)

As a special case, when the American option is written on
nondividend-paying asset,
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The (𝑇 − 𝑡)-period first-order RNM𝑚
𝑡,𝑇−𝑡

(1) is then

𝑚
𝑡,𝑇−𝑡

(1) = 𝑒
𝑟(𝑇−𝑡)

[1 − ∫

∞

𝑆
𝑡

1

𝐾
2
𝐶
𝐴

𝑡
(𝑇;𝐾) 𝑑𝐾]

− 𝑒
𝑟(𝑇−𝑡)

[∫

𝑆
𝑡

0

1

𝐾
2
[𝐶
𝐴

𝑡
(𝑇;𝐾) + 𝐾𝑒

−𝑟(𝑇−𝑡)

−𝑆
𝑡
] 𝑑𝐾] − 1.

(5)

The (𝑇− 𝑡)-period jth-order RNM𝑚
𝑡,𝑇−𝑡

(𝑗) (𝑗 ≥ 2) is then

𝑚
𝑡,𝑇−𝑡

(𝑗)

= 𝑗𝑒
𝑟(𝑇−𝑡)

[∫

∞

𝑆
𝑡

(𝑗 − 1) − ln (𝐾/𝑆
𝑡
)

𝐾
2

×[ln(𝐾
𝑆
𝑡

)]

(𝑗−2)

𝐶
𝐴

𝑡
(𝑇;𝐾) 𝑑𝐾]

+ 𝑗𝑒
𝑟(𝑇−𝑡)

[∫

𝑆
𝑡

0

(𝑗 − 1) − ln (𝐾/𝑆
𝑡
)

𝐾
2

[ln(𝐾
𝑆
𝑡

)]

(𝑗−2)

× [𝐶
𝐴

𝑡
(𝑇;𝐾) + 𝐾𝑒

−𝑟(𝑇−𝑡)
− 𝑆
𝑡
] 𝑑𝐾] .

(6)

The condition of not exercising the calls early in
Corollary 2 is moderate and easy to satisfy, especially for
OTM or at-the-money (ATM) American calls, since the
strike price is greater than (or equal to) the stock price and
the dividend rate is not greater than the interest rate in
most cases5. Practically, one can choose deeply OTM Amer-
ican calls because they are unlikely to be exercised before
expiration6.

For the relation between𝑚
𝑡,𝜏
(𝑗) and𝑚

𝑡,𝑇−𝑡
(𝑗), the follow-

ing theorem holds.

Theorem 3. Under the martingale pricing measures 𝜋∗ and
the assumption that the 𝜏-period returns are independently
and identically distributed, the first four RNMs of log(𝑅

𝑡,𝜏
),

𝑚
𝑡,𝜏
(𝑗) = 𝐸

𝜋
∗([log(𝑅

𝑡,𝜏
)]
𝑗
) (𝑗 = 1, 2, 3, 4) are given by

𝑚
𝑡,𝜏
(1) =

1

𝑁
𝑚
𝑡,𝑇−𝑡

(1) , (7)

𝑚
𝑡,𝜏
(2) =

1

𝑁
[(

1

𝑁
− 1) [𝑚

𝑡,𝑇−𝑡
(1)]
2

+ 𝑚
𝑡,𝑇−𝑡

(2)] , (8)

𝑚
𝑡,𝜏
(3) =

1

𝑁
[(

1

𝑁
− 1)(

1

𝑁
− 2)𝑚

𝑡,𝑇−𝑡
(1)

+ 3 (
1

𝑁
− 1)𝑚

𝑡,𝑇−𝑡
(1)𝑚
𝑡,𝑇−𝑡

(2)

+𝑚
𝑡,𝑇−𝑡

(3) ] ,

(9)

𝑚
𝑡,𝜏
(4) =

1

𝑁
[(

1

𝑁
− 1)(

1

𝑁
− 2)(

1

𝑁
− 3) [𝑚

𝑡,𝑇−𝑡
(1)]
4

+ 6 (
1

𝑁
− 1)(

1

𝑁
− 2)

× [𝑚
𝑡,𝑇−𝑡

(1)]
2

𝑚
𝑡,𝑇−𝑡

(2)

+ 3 (
1

𝑁
− 1) [𝑚

𝑡,𝑇−𝑡
(2)]
2

+ 4 (
1

𝑁
− 1)𝑚

𝑡,𝑇−𝑡
(1)𝑚
𝑡,𝑇−𝑡

(3)

+𝑚
𝑡,𝑇−𝑡

(4) ] ,

(10)

where 𝑁 is the number of the 𝜏-period intervals from 𝑡 to 𝑇;
that is,𝑁 = (𝑇 − 𝑡)/𝜏.

Proof. The proof is given in Appendix B.

The right-hand sides of (5)-(6) show that the RNMs are
the integrals of option prices over a range of strike prices
[0, 𝑆
𝑡
) and [𝑆

𝑡
,∞) with two singular points 0 and ∞. Given

a continuum of strike prices over the intervals, calculating
the integrals using a numerical method is straightforward.
However, only a finite number of traded options with discrete
strike prices are available in a real market. Hence, we employ
amore practical and effective curve-fittingmethod7 to handle
the issue of option availability (see Appendix C.2 for details)
and use the trapezoidal numerical method8 to numerically
evaluate the integral (see Appendix C.1).

2.2. Recovering the RND within the Entropic Pricing Frame-
work. To estimate an RND for option valuation, we use
the maximum entropy framework with risk-neutral moment
constraints. We initially assign equal probabilities to each
possible future price (or gross return) of the underlying
asset; that is, we assume the prior empirical asset returns
are uniformly distributed. In the discrete case, we denote
the empirical probability 𝜋

𝑖
= 1/𝐼, 𝑖 = 1, 2, . . . , 𝐼, where

𝐼 is the number of return realizations. We then incorporate
the constraints of RNMs recovered from options into the
entropic pricing framework. The issue of estimating the risk-
neutral (equivalent martingale) measure 𝜋

∗ reduces to a
constrained optimization problem following the Kullback-
Leibler information criterion9:

�̂�
∗
= arg
𝜋
∗

𝑖
>0

min
𝐼

∑

𝑖=1

𝜋
∗

𝑖
log(

𝜋
∗

𝑖

𝜋
𝑖

) ,

s.t.
{{{{

{{{{

{

𝐼

∑

𝑖=1

𝜋
∗

𝑖
[log (𝑅

𝑡−(𝐼−𝑖+1)𝜏,𝜏
)]
𝑗

= 𝑚
𝑡,𝜏
(𝑗) ,

𝑗 = 0, 1, 2, . . . , 𝐽

𝑚
𝑡,𝜏
(0) = 1,

(11)

where 𝜋∗
𝑖
denotes the risk-neutral (martingale) probability of

the underlying asset’s gross return from time 𝑡− (𝐼− 𝑖+1)𝜏 to
𝑡 − (𝐼 − 𝑖)𝜏 and 𝑅

𝑡−(𝐼−𝑖+1)𝜏,𝜏
and𝑚

𝑡,𝜏
(𝑗) are the RNMs serving
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as constraints10. This valuation framework with RNM con-
straints subsumes the typical canonical valuation approach
(e.g., Stutzer [2] and Liu [4]).The optimal solution �̂�∗

𝑖
is given

as

�̂�
∗

𝑖
=

exp (∑𝐽
𝑗=1

𝜆
∗

𝑗
[log (𝑅

𝑡−(𝐼−𝑖+1)𝜏,𝜏
)]
𝑗

)

∑
𝐼

𝑖=1
exp (∑𝐽

𝑗=1
𝜆
∗

𝑗
[log (𝑅

𝑡−(𝐼−𝑖+1)𝜏,𝜏
)]
𝑗

)

, (12)

where the Lagrange multiplier vector 𝜆∗ = (𝜆
∗

1
, 𝜆
∗

2
, . . . , 𝜆

∗

𝐽
)

is obtained by solving the following convex optimization
problem11:

𝜆
∗
= arg
𝜆
1
,𝜆2,...,𝜆

𝐽

min
𝐼

∑

𝑖=1

exp(
𝐽

∑

𝑗=1

𝜆
𝑗
[(log𝑅

𝑡−(𝐼−𝑖+1)𝜏,𝜏
)
𝑗

−𝑚
𝑡,𝜏
(𝑗) ]) .

(13)

2.3. Risk-Neutral Price Paths and Optimal Exercise Strategy.
With the risk-neutral distribution �̂�

∗
= (�̂�

∗

1
, �̂�
∗

2
, . . . , �̂�

∗

𝐼
)

given in (12), the independent random sample of future
gross returns can be drawn from the set of historical gross
returns. Risk-neutral price paths for the underlying asset
are then generated. Specifically, starting with time 𝑡, each
historical return 𝑅

𝑡−(𝐼−𝑖+1)𝜏,𝜏
is associated with a risk-neutral

probability �̂�∗
𝑖
(𝑖 = 1, 2, . . . , 𝐼). Then a sample of 𝑁 returns

(�̃�
𝑡,𝜏
, �̃�
𝑡+𝜏,𝜏

, . . . , �̃�
𝑡+(𝑁−1)𝜏,𝜏

), where 𝑁 = (𝑇 − 𝑡)/𝜏, as
previously defined, is randomly drawn from the above risk-
neutral distribution employing the inverse transformmethod
(Brandmiarte [10, pp. 230–232]). A risk-neutral price path is
then generated.We repeat this procedure𝑀 times and obtain
𝑀 risk-neutral price paths as

𝑆
(𝑘)

𝑡+𝜏
= 𝑆
𝑡
�̃�
(𝑘)

𝑡,𝜏
, 𝑆
(𝑘)

𝑡+2𝜏
= 𝑆
𝑡
�̃�
(𝑘)

𝑡,𝜏
�̃�
(𝑘)

𝑡+𝜏,𝜏
, . . . , 𝑆

(𝑘)

𝑁

= 𝑆
𝑡

𝑁

∏

𝑛=1

�̃�
(𝑘)

𝑡+(𝑛−1)𝜏,𝜏
, (𝑘 = 1, 2, . . . ,𝑀) ,

(14)

where �̃�(𝑘)
𝑡+(𝑛−1)𝜏,𝜏

is the 𝑛th random sample of the gross return
along the 𝑘th underlying path.

Next, we determine the optimal exercise strategy for
each of the risk-neutral paths. This study utilizes the LSM
algorithm of Longstaff and Schwartz [5] to determine the
optimal strategy for an American option over𝑀 underlying
price paths. Since the LSM algorithm directly uses sample
paths simulated under a risk-neutral measure, averaging the
payoffs of all paths yields the final payoff of the option.

The LSM algorithm consists of three steps: approximating
the holding value, comparing the holding value with the
immediate exercise value, and averaging the resulting payoffs
of all paths (for full details of the LSM algorithm, see [5]).
The crucial feature of the LSM algorithm lies in estimating
the continuously holding value by a linear combination of
simple basis functions at each early exercise point along each
path. As recommended by Longstaff and Schwartz [5] and

Stentoft [11]12, the set of Legendre polynomial basis functions
{1, 2(𝑆

𝑡
𝑛

/𝐾) − 1, 6(𝑆
𝑡
𝑛

/𝐾)
2
− 6(𝑆

𝑡
𝑛

/𝐾) + 1} is adopted to
implement the LSM algorithm in this paper, where 𝑆

𝑡
𝑛

is the
underlying asset price at potential exercise time 𝑡

𝑛
, where

𝑡
𝑛
= 𝑡 + 𝑛𝜏 for 𝑛 = 1, 2, . . . , 𝑁.

2.4. Option Pricing Algorithm. With the optimal exercise
strategy for each of the𝑀 underlying paths, an American call
or put option expiring at time 𝑇 with a strike price 𝐾 can be
valued as

For a Call, 𝐶𝐴
𝑡
(𝑇;𝐾)

=
1

𝑀

𝑀

∑

𝑘=1

𝑒
−𝑟(𝑡
(𝑘)

𝑛
−𝑡)max(0, 𝑆

𝑡

𝑛
(𝑘)

∏

𝑛=1

�̃�
(𝑘)

𝑡+(𝑛−1)𝜏,𝜏
− 𝐾) ,

For a Put, 𝑃𝐴
𝑡
(𝑇; 𝐾)

=
1

𝑀

𝑀

∑

𝑘=1

𝑒
−𝑟(𝑡
(𝑘)

𝑛
−𝑡)max(0,𝐾 − 𝑆

𝑡

𝑛
(𝑘)

∏

𝑛=1

�̃�
(𝑘)

𝑡+(𝑛−1)𝜏,𝜏
) ,

(15)

where 𝑡
(𝑘)

𝑛
= 𝑡 + 𝑛

(𝑘)
𝜏 is the optimal exercise time of

sample path 𝑘 based on the LSM algorithm. Note that, as
described above, the option price is given as the average of the
discounted payoff because the set of drawn samples is already
risk-neutral.

3. Simulation Testing

In this section, we test the pricing accuracy of our RMEL
method based on simulated data by benchmarking against
the methods of Black-Scholes for pricing American calls13
and Crank-Nicolson finite difference (FD) for pricing Ameri-
can puts.We also investigate the pricing errors of ourmethod
and that of Liu [4] (Liu10)14. We simulate a sample of daily
asset returns from a geometric Brownian motion (GBM) as
well as a sample of American call and put options on this
asset. With these two samples, we analyze the pricing accu-
racy with more details specified in the following subsections.

As a proof of concept, for the American calls, the RMEL
approach should give the correct results as the Black-Scholes
formula does when the underlying price process is modeled
by GBM. For the American puts, the prices from RMEL
should also be quite close to those from the method of FD.
In addition, the RMEL method should work independently
of the underlying growth rate in the GBMmodel.

3.1. Initial Setting. For ease of comparison, the parameters
from Liu [4] are used in this simulation as follows.

(i) Valuation date 𝑡: January 1, 2007

(ii) Expiration date 𝑇: January 1, 2008

(iii) Strike price𝐾: 40
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(iv) Risk-free interest rate 𝑟: 6%
(v) Volatility 𝜎: 40%
(vi) Dividend yield 𝑞: 0%.

3.2. Samples of Returns and Options. We simulate a sample
of gross returns in which the underlying asset price 𝑆

𝑡
is

assumed to follow a GBM:

𝑑𝑆
𝑡
= (𝜇 − 𝑞) 𝑆

𝑡
𝑑𝑡 + 𝜎𝑆

𝑡
𝑑𝜔
𝑡
, (16)

where 𝜇 is the drift term and 𝜔
𝑡
is the standard Wiener pro-

cess. Under this assumption, the continuously compounded
𝜏-year gross return is log-normally distributed and given by

𝑅
𝑡,𝜏
= exp((𝜇 − 𝑞 − 𝜎

2

2
) 𝜏 + 𝜎√𝜏𝜖) , (17)

where 𝜖 is standard normal.
According to (17) and with the parameter values above,

we generate 365 daily gross returns15 for both the risk-neutral
case (𝜇 = 𝑟 = 6%) and the unrealistic case of a growth of 𝜇 =
100% and treat them as historical returns of 𝑅

𝑡−(𝐼−𝑖+1)𝜏,𝜏
(𝑖 =

1, 2, . . . , 𝐼; 𝐼 = 365; 𝜏 = 1 day), as previously defined in
Section 2.2.

For the purpose of option valuation, we need a sample
of American call and put options for this simulation exper-
iment. To enable comparison, the same options as those in
Liu10 with different underlying prices are used here. The
value of underlying price 𝑆

𝑡
varies from 36 to 44 with a

2-point increment (i.e., 36, 38, 40, 42, and 44) and other
values of 𝐾, 𝑟, 𝜎, 𝑡, 𝑇, and 𝑞 are fixed as those given
above. Given that 𝑞 = 0, it is never optimal to exercise
an American call early on a nondividend-paying underlying
asset. Hence, the value of the above American call options
can be calculated using the Black-Scholes formula. For the
American puts, we calculate their values using the widely-
usedCrank-Nicolson FDmethod using an 800×800 grid.The
sample of call and put options is treated as the traded options
and their values are considered to be the “true” market
prices.

In addition to the above options to be priced, we also need
to generate a sample of call options in order to estimate the
RNMs. Apparently this sample is different from the sample of
calls used above for the valuation purpose. In the simulation
experiment, we need to estimate a set of RNMs for each of
the options to be valued. Even though the theoretical values
of 𝑚
𝑡,𝑇−𝑡

(𝑗) are independent of 𝑆
𝑡
(see, (19)), their estimates

using option data are a function of 𝑆
𝑡
(see (5)–(8)). Recall

that for the valuation purpose, we take five calls and five puts
with different asset prices in the experiment. When the asset
prices are different, the estimates of the RNMs may not be
exactly the same. Accordingly, we generate eight samples of
call options to estimate the RNMs and then the RND for each
of the given asset prices. Hence, the options with the given
asset price are valued based on their corresponding RND. In
each of eight samples for a given asset price, there are four
call options being in the money (ITM), that is, their strike
prices being lower than the asset price, and four being out

of the money (OTM), that is, their strike prices higher. More
specifically, the strike prices for asset price 36, 38, 40, 42, and
44 are (16, 22, 28, 34, 40, 46, 52, 58), (18, 24, 30, 36, 42, 48, 54,
60), (20, 26, 32, 38, 44, 50, 56, 62), (22, 28, 34, 40, 46, 52, 58,
64), and (24, 30, 36, 42, 48, 54, 60, 66), respectively.

3.3. Estimation of RNMs and RNDs. The mathematical form
of the risk-neutral probability distribution �̂�∗

𝑖
in (12) depends

on the number 𝐽 of the RNM constraints 𝑚
𝑡,𝜏
(𝑗) (𝑗 =

0, 1, 2, . . . , 𝐽). For example, if 𝐽 is zero, no constraint is
imposed and the distribution �̂�

∗

𝑖
is uniform. Under the

assumption of GBM, �̂�∗
𝑖
is normally distributed and can be

exactly characterized by its first and secondmoments. Hence,
we use the first two moments as constraints for deriving the
RND and only estimate𝑚

𝑡,𝜏
(1) and𝑚

𝑡,𝜏
(2).

We first use the generated 8 call options specified in
Section 3.2 to calculate 𝑚

𝑡,𝑇−𝑡
(1) and 𝑚

𝑡,𝑇−𝑡
(2) based on

Corollary 2 and then convert them to 𝑚
𝑡,𝜏
(1) and 𝑚

𝑡,𝜏
(2)

according to Theorem 3 as discussed in Section 2.1. Two
issues involved in the integrals in Corollary 2 need to be
addressed. For any traded option with a specified maturity
in the real market, the number of available strike prices (or
option prices) is finite. The first issue therefore concerns
the limited availability of strike prices (or option prices). To
solve this problem, we use a curve-fitting method to generate
“implied” options with a range of strike prices. We first
calculate implied volatilities using the Black-Scholes formula
based on the simulated (or market-available) call options.
These implied volatilities are then used to form a fitted
function of the volatility surface via the cubic splinesmethod.
Given the fitted function of the volatility surface, we can find
the required volatilities and plug them into the Black-Scholes
formula to obtain the “implied” call option prices.The details
are in Appendix C.2. The second issue is the calculation
of the integrals on the right hand side of (5) and (6). A
numerical integration is carried out using the trapezoidal
method, with the integration intervals split into𝑚 = 80 equal
subintervals. The technical details of calculating the RNMs
are given in Appendix C.1 and also outlined in footnotes 7
and 8.

Through the procedure specified above, we use only 8
options that are usually available in a real market16 to obtain
the RNMs (𝑚

𝑡,𝜏
(1) and 𝑚

𝑡,𝜏
(2)). We can calculate the true

(theoretical) values for the first two moments in a risk-
neutral world based on the above GBM. As is well-known,
the solution for the above GBM in a risk-neutral world is

log (𝑅
𝑡,𝜏
) = (𝑟 − 𝑞 −

𝜎
2

2
) 𝜏 + 𝜎√𝜏𝜖, (18)

where 𝜖 is a standard normal random variable. Then the
theoretical values, denoted as𝑚

𝑡,𝑇−𝑡
(𝑗)

true
= 𝐸([log(𝑅

𝑡,𝑇−𝑡
)]
𝑗
)

for the (𝑇 − 𝑡)-period return and𝑚
𝑡,𝜏
(𝑗)

true
= 𝐸([log(𝑅

𝑡,𝜏
)]
𝑗
)
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for the 𝜏-period return (𝑗 = 1, 2), can be easily calculated as
follows:

𝑚
𝑡,𝑇−𝑡

(1)
true

= (𝑟 − 𝑞 −
𝜎
2

2
) (𝑇 − 𝑡) ,

𝑚
𝑡,𝜏
(1)

true
= (𝑟 − 𝑞 −

𝜎
2

2
) 𝜏,

𝑚
𝑡,𝑇−𝑡

(2)
true

= [(𝑟 − 𝑞 −
𝜎
2

2
) (𝑇 − 𝑡)]

2

+ 𝜎
2
(𝑇 − 𝑡) ,

𝑚
𝑡,𝜏
(2)

true
= [(𝑟 − 𝑞 −

𝜎
2

2
) 𝜏]

2

+ 𝜎
2
𝜏.

(19)

Since there are multiple underlying asset prices in the
experiment, we extract the RNMs for each underlying price.
Table 1 reports the estimates of RNMs and their theoretical
values.

Table 1 shows that the RNM estimates are nearly the
same as their theoretical values. This demonstrates that eight
options can effectively capture the shape of distribution of the
underlying asset returns. Furthermore, the estimated RNMs
are almost indistinguishable for both moments, even though
the underlying prices are different. This indicates that the
two moments obtained are exactly “risk-neutral” and are not
related to the current asset price. It can be seen again from
(19) that the RNMs are only determined by interest rate and
volatility and not by the underlying asset price.

In addition to the estimated RNMs, we also need to
simulate return series following (17) for recovering the RND
according to (12) and (13). In this experiment, we simulate two
series of 365 returns; that is, 𝑅

𝑡−(365−𝑖+1)𝜏,𝜏
(𝑖 = 1, 2, . . . , 365)

for growth rates of 𝜇 = 6% and 100%, respectively, and
other parameters at values of 𝜎 = 40%, 𝑇 − 𝑡 = 1, and
𝜏 = 1/365. Thus, two corresponding RNDs of �̂�∗(1) =

(�̂�
∗(1)

1
, �̂�
∗(1)

2
, . . . , �̂�

∗(1)

365
) and �̂�∗(2) = (�̂�

∗(2)

1
, �̂�
∗(2)

2
, . . . , �̂�

∗(2)

365
) are

recovered.

3.4. Pricing Results and Comparison Analysis. This section
first presents the pricing results and then compares themwith
the “true” values. Tables 2 and 3 report the estimated prices
of American calls and puts using the RMEL method and the
method of Liu10.

Tables 2 and 3 report that the estimated prices of the
RMEL method are fairly close to the “true” prices for both
growth rates across a range of asset prices, especially for put
options. The absolute differences between the RMEL and the
Black-Scholes formula are all below 1%; see columns four and
six in Table 2. Even below 0.32% for put options, see columns
four and six in Table 3. It appears that the RMEL method is
comparable to the Black-Scholes formula for American calls
and to the FD method for American puts. Furthermore, for
each price estimate in both growth rates of 6% and 100%,
two pricing errors are so small that the difference between
two estimates is slight. This finding again illustrates that the
RMEL method is actually independent of the growth rate.

Taking the absolute difference between the estimated
value from a method and the “true” value as a measure for

judging price deviation, the absolute difference from our
method is a little bit higher than that from Liu10 for both call
and put options when the asset price is 42, as well as for call
optionswith the 6%growth ratewhen the asset price is 38, but
the difference is still slight since the absolute differences are
so small. Fortunately and importantly, all the other absolute
differences from RMEL are lower and even much smaller
than those from Liu10. This suggests that the magnitudes of
the pricing error resulting from RMEL method are, overall,
smaller than those from Liu10.

In brief, these results indicate that both American calls
and puts can be priced rather accurately by our RMEL
approach in the simulated market, and this method provides
better precision than the method of Liu10. It should also
be noted that, there is no discernible relation between the
accuracy of pricing and moneyness17.

4. Comparison Based on IBM Option Data

4.1. Data Descriptions. We collected daily data of IBM call
and put options from the website http://finance.yahoo.com/.
The data cover July 31, 2008 through January 30, 2009 for a
total of 127 trading days. After filtering18, 4430 calls and 4430
put options remain with the time to maturity being 16 to 357
days.The closing price of IBM stock is treated as the underly-
ing price and here the discrete dividends (paid quarterly) are
taken into consideration. Depending on the valuation date,
the dividend payment dates are assumed to be on August 6,
2008 andNovember 6, 2008, and the corresponding quarterly
dividends are actually $0.5 according to the downloaded data.
Table 4 briefly describes the filtered data of IBM calls and
puts.

The daily US Treasury yield curve rate from one month
to 30 years for each valuation date is used or interpolated lin-
early for any particular time tomaturity as the corresponding
continuous, constant risk-free interest rate.The yield curve is
obtained directly from the website of the US Department of
the Treasury, http://www.treasury.gov/resource-center/data-
chart-center/interest-rates/Pages/default.aspx.

4.2. ValuationMethods. Theempirical results for ourmethod
indicate that the third and fourthmoments are highly linearly
dependent of the first two moments. This implies that the
third and fourth moments can be expressed as a linear
combination of the first twomoments.The linear dependence
could result in an ill-conditioned problem when solving the
optimization problem, that is, (11). Mathematically, if the
matrix [(log (𝑅

𝑡−(𝐼−𝑖+1)𝜏,𝜏
)
𝑗
)]
𝐽×𝐼

is not a full rank, the Lagrange
multipliers cannot be uniquely determined (Agmon et al.
[7]). Consequently, many risk-neutral probabilities equal
zero.This problem actually appears many times while pricing
IBM options. Here is an example of options with trading date
of July 31, 2008, stock price of $127.98, and time to maturity
of 78 days. In the case of three moment constraints, 176
out of 260 calculated risk-neutral probabilities are nonzero;
in the case of four moment constraints, only 74 among
260 are nonzero, whereas all the probabilities are positive
when using the first two moment constraints. Hence, in our
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Table 1: Recovered moments and their theoretical values for a range of initial underlying prices (𝑆
𝑡
= 36, 38, 40, 42, 44) in the simulation.

Underlying price 36 38 40 42 44
1st order moment −0.0200 −0.0200 −0.0200 −0.0200 −0.0200
(𝑚
𝑡,𝑇−𝑡

(1)) −0.0200 −0.0200 −0.0200 −0.0200 −0.0200
2nd order moment 0.1605 0.1605 0.1605 0.1604 0.1604
(𝑚
𝑡,𝑇−𝑡

(2)) 0.1604 0.1604 0.1604 0.1604 0.1604
Note: the first two moment estimates for log(𝑅

𝑡,𝑇−𝑡
) with each of the underlying prices (𝑆

𝑡
) are compared to their corresponding theoretical values under the

GBM, calculated by (19) with the parameters 𝑟 = 0.06, 𝜎 = 40%, 𝑞 = 0, 𝑇 − 𝑡 = 1.
These moments are recovered using only 8 call options discussed in Section 3.2. For both moments, the top row reports the estimated values, and the bottom
row reports the theoretical (true) values.

Table 2: Averaged prices of American call options for a range of asset prices (𝑆
𝑡
= 36, 38, 40, 42, 44; 𝐾 = 40).

Method↓ Asset price 𝑆
𝑡

Black-Scholes
formula 𝐶

𝑡

Growth rate
𝜇 = 6%

Difference (%)
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 V𝑎𝑙𝑢𝑒 − 𝐶

𝑡

𝐶
𝑡

Growth rate
𝜇 = 100%

Difference (%)
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 V𝑎𝑙𝑢𝑒 − 𝐶

𝑡

𝐶
𝑡

RMEL

36 5.041 5.013 −0.555 5.029 −0.238
38 6.164 6.123 −0.665 6.151 −0.211
40 7.389 7.357 −0.433 7.376 −0.176
42 8.708 8.653 −0.632 8.679 −0.333
44 10.112 10.065 −0.465 10.092 −0.198

Liu10

36 5.041 5.076 0.694 5.074 0.655
38 6.164 6.186 0.357 6.201 0.600
40 7.389 7.426 0.501 7.458 0.934
42 8.708 8.730 0.253 8.723 0.172
44 10.112 10.169 0.564 10.158 0.455

Note: the numbers in the first two columns represent, respectively, asset prices and the corresponding true Black-Scholes prices (as the underlying asset pays
no dividend). Columns 3 and 5 report the price estimates with the growth rates of 6% and 100% for the two methods, and each reported value represents an
estimate for a particular combination of growth rate and asset price. The values reported in columns 4 and 6 are the corresponding difference between the
estimated and the “true” Black-Scholes prices, respectively. The difference is calculated by dividing the estimated price minus the Black-Scholes price by the
Black-Scholes price. For both RMEL and Liu10, each reported price estimate is the average of the prices over three independent simulations. In each simulation,
100,000 risk-neutral price paths are generated and each path is divided into 𝑃 = 73 exercise opportunities.

Table 3: Averaged prices of American puts for a range of asset prices (𝑆
𝑡
= 36, 38, 40, 42, 44; 𝐾 = 40).

Method↓ Asset price 𝑆
𝑡

Crank-Nicolson
FD Formula 𝑃

𝑡

Growth rate
𝜇 = 6%

Difference (%)
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑V𝑎𝑙𝑢𝑒 − 𝑃

𝑡

𝑃
𝑡

Growth rate
𝜇 = 100%

Difference (%)
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑V𝑎𝑙𝑢𝑒 − 𝑃

𝑡

𝑃
𝑡

RMEL

36 7.109 7.094 −0.211 7.091 −0.253
38 6.154 6.139 −0.244 6.145 −0.146
40 5.318 5.305 −0.244 5.301 −0.320
42 4.588 4.575 −0.283 4.575 −0.283
44 3.953 3.941 −0.304 3.945 −0.202

Liu10

36 7.109 7.145 0.506 7.138 0.407
38 6.154 6.195 0.666 6.167 0.211
40 5.318 5.364 0.865 5.360 0.789
42 4.588 4.596 0.174 4.598 0.217
44 3.953 3.992 0.987 3.980 0.683

Note: the reported numbers in the first two columns represent, respectively, the asset prices and the corresponding “true” prices calculated using the Crank-
Nicolson finite difference (800 × 800 Grid) (𝑟 = 0.06). Columns 3 and 5 report the price estimates with the growth rates of 6% and 100% for the two methods.
Each reported value represents an estimate of option price for a particular combination of growth rate and asset price. The values reported in Columns 4 and
6 are the corresponding difference between the estimated price and the Crank-Nicolson finite difference prices, respectively. The difference is calculated by
dividing the estimated price minus the “true” price of the Crank-Nicolson finite difference by the Crank-Nicolson finite difference price. For both RMEL and
Liu10, each price estimate is the average of the values over three independent simulations. Each of the simulations generates 100,000 sample price paths and
each path is divided into 73 potential exercise opportunities.
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Table 4: Data description of IBM calls and puts.

Mean Standard deviation Minimum Maximum

Call

Number of options 4430
Market prices 13.653 14.245 0.075 69.550

Moneyness 𝑆
𝑡
/𝐾 1.077 0.329 0.514 2.292

Expiration 119.008 71.886 16 357

Put

Number of options 4430
Market prices 13.614 15.188 0.075 75.200

Moneyness 𝐾/𝑆
𝑡

1.010 0.283 0.436 1.946
Expiration 119.008 71.886 16 357

Note: the call and put prices here are the midvalues of the bid-ask quotations. Moneyness is defined as the IBM stock closing price divided by the strike price,
𝑆
𝑡
/𝐾, for call options and the strike price divided by the closing price,𝐾/𝑆

𝑡
, for put options. The time to expiration is measured in days.

empirical investigation, only the first twomoment constraints
are incorporated into our pricing framework to price IBM
options.

The empirical investigation involves four pricing meth-
ods. For IBM call options, our RMEL method with two
moment constraints, the method of Liu10 without moment
constraint, and Alcock and Auerswald [6] (AA10) with
option-constraint, and, for IBMputs, the Crank-Nicolson FD
(FD). It should be pointed out here that due to the fact that
the IBM stock pays discrete dividends, the factor 𝑒−𝑞(𝑇−𝑡) in
(3)-(4) would be replaced with (1 − 𝐷/𝑆

𝑡
) when calculating

the RNMs, that is, (7)-(8), where 𝐷 is the present value of
dividend payments at time 𝑡.

For each reported price, three independent Monte Carlo
runs are carried out and the resultant prices are averaged as
option prices. Each simulation generates 10,000 risk-neutral
price paths, with each path made up of one-day gross returns
sampled from the risk-neutral measure. The simulated risk-
neutral stock price for every path on the exdividend date is
reduced exactly by the dividend amount, and the previous
260 daily closing prices are used to calculate the historical
gross returns. Each path is further divided into a number of
potential exercise steps according to the following rule. If the
number of days to expiration is less than 50, the size of the
step is set to one day; otherwise, the number of days in one
step is an integer part of the number of days to expiration
divided by 50, while the last step can cover fewer days than
the remaining ones.The least-squares algorithm uses the first
two terms of the Legendre polynomial plus a constant term,
{1, 2(𝑆

𝑡
/𝐾) − 1, 6(𝑆

𝑡
/𝐾)
2
− 6(𝑆
𝑡
/𝐾) + 1}, as basis functions.

For integral calculations, each of the integration intervals
[𝑆
𝑡
, 𝐾max], [𝐾max, 𝐾∞], [𝐾,𝐾min], and [𝐾min, 𝑆𝑡] is split into

𝑚 = 80 nonoverlapping intervals of equal length.
With regard to the AA10method, we use the same criteria

as those in AA10 to choose an option as the constraint. For
pricing a call option, a prior day observed call option with
the same strike price and the same expiration is taken, when
pricing a put, the preferred constraint is a prior day observed
call option with the same expiration date and moneyness
closest to 1.0, and if no adequate option can be found on
the day prior, the 𝑖th call option with trading date of 𝑡

𝑖
and

maturity of 𝑇
𝑖
traded in the previous five days with time to

maturity equal to max
𝑇
𝑗
−𝑡
𝑗
≤𝑇−𝑡

(𝑇
𝑖
− 𝑡
𝑖
) andmoneyness closest

to 1.0 is chosen as the constraint.
Finally, for the FD method, since the stock grid is fixed

in the backward induction of finite difference, the option
value on the exdividend date is adjusted downward by
using quadratic interpolation to reflect the effect of dividend
payments and thus corresponds to the option value for
the dividend-adjusted stock price. If the dividend-adjusted
stock price is less than the second lowest stock price on the
grid, however, the corresponding option value is set to the
option value for the lowest stock price in the grid and no
interpolation is carried out. In addition, volatility is calculated
as the standard deviations of the daily returns multiplied by
square root of 252, based on the previous 260 daily IBM stock
closing prices. A default grid of one-day time step and a grid
of stock price spacing of Δ(ln 𝑆) = 𝜎√3𝜏 as suggested in Hull
[12, pp.443] are used.

4.3. Empirical Results. The valuation results are summarized
and compared using 12 categories of moneyness and time to
expiration. Four levels of moneyness are given as: less than
0.85 (i.e, DOTM), from 0.85 to 1.00 (i.e., OTM), from 1.00
to 1.15 (i.e., in-the-money, ITM), and greater than 1.15 (i.e.,
DITM). There are three groups of time to expiration: from
16 to 60 days (short term), from 61 to 160 days (medium
term), and from 161 to 357 days (long term). In addition, the
following frequently-used loss measures are used to analyze
the pricing errors: the mean percentage error (MPE), the
mean square error (MSE), and the mean absolute percentage
error (MAPE)19.

Tables 5 and 6 summarize the pricing results from
different valuation methods corresponding to either call or
put options, and the number of options is also shown for each
category.

Several observations of pricing errors between IBM calls
and puts using RMEL method can be made. First, the RMEL
pricing error is distributedmore evenly for calls; for example,
the MAPE is around 15% to 20% over 12 categories for calls,
while theMAPEof puts generally decreases dramatically with
moneyness. Table 6 shows that the MAPE of RMEL is much
less than 10% for the ITM and DITM cases but basically
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Table 5: MPE, MSE, andMAPE of IBM call price estimates compared to IBMmarket prices for a range of moneyness and time to expiration.

Moneyness (𝑆
𝑡
/𝐾)

Expiration 16–60 (short) 61–160 (medium) 161–357 (long)
Method RMEL Liu10 AA10 RMEL Liu10 AA10 RMEL Liu10 AA10

𝑆
𝑡
/𝐾 < 0.85

(DOTM)

Count 199 480 529
MPE (%) −5.352 −14.208 6.214 −3.508 −3.931 −7.035 −6.035 −7.932 −12.136
MSE 1.823 5.636 1.402 1.489 4.785 2.902 1.806 4.757 6.238

MAPE (%) 14.735 26.291 21.035 15.225 35.138 20.186 15.132 32.248 17.301

𝑆
𝑡
/𝐾 ∈ [0.85, 1.00)

(OTM)

Count 371 304 290
MPE (%) −5.130 2.620 5.326 −4.919 −4.634 −18.325 −5.726 −4.482 −20.648
MSE 1.290 4.064 1.824 1.164 4.060 3.028 1.357 4.814 4.039

MAPE (%) 19.868 44.545 23.894 16.825 35.937 27.682 19.781 42.443 26.026

𝑆
𝑡
/𝐾 ∈ [1.00, 1.15)

(ITM)

Count 289 248 202
MPE (%) −3.044 −2.307 −6.563 −4.688 −2.794 −19.542 −0.831 1.652 −23.249
MSE 1.314 3.906 3.358 0.873 3.046 8.065 1.106 3.495 16.548

MAPE (%) 17.060 34.599 18.175 18.988 38.985 25.338 20.091 41.227 28.065

𝑆
𝑡
/𝐾 ≥ 1.15

(DITM)

Count 434 670 414
MPE (%) −2.181 −3.637 −4.212 −2.846 −7.860 −9.542 −5.096 −8.887 −11.254
MSE 1.386 4.290 2.921 1.189 3.915 8.621 0.725 3.085 15.245

MAPE (%) 15.663 37.031 13.984 15.690 31.904 15.938 18.616 38.707 19.351
Note: each cell represents a particular combination ofmoneyness and time to expiration.Three independent simulations are carried out, while 10,000underlying
price paths are generated in each simulation. The first row reports the number of call options with the corresponding combination of moneyness and time to
expiration. The remaining rows show the statistic results of the MPE, RMSE, and MAPE for each combination. The total number of options analysed is 4430,
the lowest moneyness is 79.66/155 = 0.514, the highest moneyness is 91.66/40 = 2.292, and the time to expiration is in between 16 and 357 days.

Table 6: MPE, MSE, andMAPE of IBM put price estimates compared to IBMmarket prices for a range of moneyness and time to expiration.

Moneyness (𝐾/𝑆
𝑡
)
Expiration 16–60 (short) 61–160 (medium) 161–357 (long)
Method RMEL Liu10 AA10 FD RMEL Liu10 AA10 FD RMEL Liu10 AA10 FD

𝐾/𝑆
𝑡
< 0.85

(DOTM)

Count 372 618 374
MPE (%) −46.223 −78.924 −82.536 −88.694 −30.291 −53.189 −51.623 −89.083 −4.054 0.899 −40.284 −75.498
MSE 0.057 0.439 1.206 0.634 0.115 0.754 2.064 1.945 0.826 2.397 2.203 3.219

MAPE (%) 49.451 79.437 82.735 96.226 36.683 60.518 59.137 89.083 24.695 47.858 45.735 75.498

𝐾/𝑆
𝑡
∈ [0.85, 1.00)

(OTM)

Count 351 299 241
MPE (%) −2.021 −15.641 −21.253 −28.855 −0.688 4.292 −5.382 −28.834 −0.183 9.063 −8.15 −24.484
MSE 0.127 1.150 1.851 2.526 0.521 2.712 2.685 4.631 5.193 11.681 5.346 5.218

MAPE (%) 10.390 37.253 37.564 48.761 11.254 33.690 30.258 31.554 24.518 46.614 25.458 24.711

𝐾/𝑆
𝑡
∈ [1.00, 1.15)

(ITM)

Count 331 262 254
MPE (%) 0.389 0.817 −3.358 9.457 −0.960 −4.337 −1.861 −1.856 −7.996 −9.825 −7.658 −4.303
MSE 0.202 0.405 1.513 3.625 0.328 1.928 2.358 3.182 2.748 7.835 5.865 3.856

MAPE (%) 3.336 5.780 5.632 17.023 3.470 9.756 5.861 12.354 9.309 18.275 10.843 10.473

𝐾/𝑆
𝑡
≥ 1.15

(DITM)

Count 239 523 566
MPE (%) −0.566 −0.571 −0.865 5.747 −0.662 −1.706 −0.952 2.997 −2.372 −3.535 −2.536 2.041
MSE 0.226 0.172 1.263 2.547 0.489 0.727 1.213 1.924 1.118 2.098 2.253 2.040

MAPE (%) 1.589 1.822 1.832 5.899 1.845 2.250 1.925 3.928 2.623 3.811 3.531 3.624
Note: each reported value is for a particular combination of moneyness and time to expiration. Three independent simulations are carried out, while 10,000
underlying price paths are generated in each simulation.The first row reports the number of put options with the corresponding combination ofmoneyness and
time to expiration. The remaining rows show the statistic results of the MPE, RMSE, and MAPE for each combination. The total number of options analyzed
is 4430, the lowest moneyness is 40/91.66 = 0.436, the highest moneyness is 155/79.66 = 1.946, and the time to expiration is in between 16 and 357 days.
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increases with time to expiration. Second, from Tables 5 and
6, based on the MPE, IBM calls are overall underpriced by
the RMEL method as are IBM puts, with the exception of the
case of ITM and short term to expiration. Third, the RMEL
method overall outperforms methods of AA10.

Table 5 compares IBM calls priced by our methods
RMEL, Liu10, and AA10. The method of RMEL shows a
negative pricing bias in all combinations of moneyness and
time to expiration, whereas Liu10 produces a positive bias
when the option is OTM-short or ITM-long and AA10 also
has two positive bias in the cases of DITM-short and ITM-
short. Second, for each category, the RMELmethod performs
better than other methods by the important error measure
MAPE although the MAPE for the RMEL method is a little
bit large (over 10%), for example, the MAPE from the RMEL
method is nearly a half that from Liu10 in each category.
Third, compared to the method AA10, using the measure
MAPE, the errors from RMEL are overall smaller especially
when option is OTM or DOTM. Finally, the methods of
RMEL and AA10 apparently perform much better than
Liu10 because the method of Liu10 has not used any other
constraint except the necessary martingale constraint.

For IBM puts, in addition to two methods above, the
benchmark valuation method FD here is also compared with
RMEL. First, as reported in Table 6, RMELmethod produces
a negative bias in 12 categories, with the exception of ITM-
short; AA10 exhibit all negative bias; Liu10 has 4 positive bias
in the cases of DOTM-long, OTM-long, OTM-medium, and
ITM-short; and FD has 4 positive bias for all DITM options
and ITM-short options. It is understandable for the methods
of RMEL, Liu10, and AA10 to produce negative bias in most
of 12 categories since the least-squares algorithm provides
lower bounds for American puts. Second, the magnitude
of pricing error decreases with moneyness for all methods.
Third, FD is fairly accurate and outperforms Liu10 for the
ITM-long and DITM-long cases. These results are consistent
with market behaviour, since the market seems to have
placed a premium on OTM puts ever since the 1987 market
crash. Fortunately, RMEL performs much better than FD,
even in the cases of ITM-long and DITM-long. In addition,
RMEL absolutely dominates Liu10 since Liu10 has no other
constraint. Compared to AA10, from the measure MAPE,
RMEL outperforms AA10 in all categories. Furthermore, all
theMAPE errors fromRMEL are below 10% for both the ITM
and DITM cases, even reaching 1.589% for DITM-short. For
other cases over 10%, it is understandable and acceptable if
considering the reasons below, in the IBM option data, the
price for DOTM puts is very low and the bid-ask spread is
relatively quite large especially for DOTM-short options.

In summary, the empirical results again illustrate that
the RMEL method produces much smaller pricing errors
than Liu10 and overall outperforms method of AA10 for
IBM call options. The RMEL method is more stable for
IBM call options from the measure MPE and can effectively
estimate call prices with a reasonable pricing error. For IBM
puts, the magnitudes of the pricing bias from RMEL and
AA10 are much lower than those from both Liu10 and FD
methods and RMEL is better than AA10. The RMEL method
also produces more accurate values for IBM puts, especially

when the put option is ITM or DITM. Empirical analysis
suggests that on the whole, RMEL outperforms Liu10, AA10,
and FD. Meanwhile, it should be pointed out that the RNM
constraints used in RMEL method and the option constraint
in AA10 actually contain some more useful information so
that both methods greatly outperform the method of Liu10.

5. Conclusion

Thispaper introduces an ideally extendedRNMs-constrained
entropic least-squares valuation method which improves
the nonparametric valuation technique to price American
options. Our RMEL approach uses the RNMs recovered from
a much smaller set of option data as constraints to generate
a better estimate of RND as the pricing measure and then
incorporates it into tractableMonte Carlo techniques to price
American options.

The RNMs in our valuation approach can be estimated
using several call options, and we derive the general expres-
sion for extracting the RNMs.These RNMs play a significant
role in deriving a better RND, owing to their ability for
capturing market information without imposing any under-
lying structural assumption. Compared with other existing
entropic valuationmethods, this is an outstanding feature for
the RMEL method.

With the extracted RNMs as constraints, we establish
the RNMs-constrained entropy valuation framework and by
solving this RNMs-constrained entropy problem, we obtain
a discrete risk-neutral distribution as the unique pricing
measure. Finally, the optimal exercise strategies are also
achieved via the least-squares Monte Carlo algorithm and
consequently the pricing algorithm of American options are
obtained.

We evaluate the usefulness of our method and compare
its performance in simulation environments in a number of
ways with the method of Liu [4], who extends the canonical
valuation to price American options. First, the results of
extracting RNMs suggest that our moment estimates match
rather well with the theoretical values in simulation experi-
ments. Second, the estimated prices using the RMELmethod
are fairly close to the “true” prices for American call and put
options in the cases of both growth rates. Consistent with
the finding of Gray and Newman [13], all price estimates are
less than the “true” prices for both call and put options. But
the method of Liu10 method persistently exhibits a positive
bias. Furthermore, the price bias of the RMEL method is
more stable for two growth rates. By comparing the absolute
difference between the estimated and “true” prices, the overall
accuracy of our approach is higher than that of Liu10 and
particularly dominant in pricing American puts. Finally, it is
not unreasonable to imagine that the RMELmethod nests the
method of Liu10 as special cases. We also empirically test our
valuation approach and compare its performance with the
methods of Liu10, AA10, and FD using the IBM options data.
The results show that the pricing bias by our RMEL approach
is lower than that by the method of AA10 for almost all the
levels of moneyness and time to maturity, and the methods
of RMEL and AA10 largely outperform the Liu10 and FD
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methods, whether for call options or put options. For IBM
calls, the pricing errors of the RMELmethod equal nearly half
of that of Liu10 and the RMEL method outperforms AA10.
With regard to IBM put option valuation, Liu10 performs
much better than the FD when the time to maturity is short,
whereas the FD outperforms Liu10 across moneyness with
longmaturity, but their results including those fromAA10 are
worse than that of RMEL method. Meanwhile, our method
significantly dominates Liu10 and FDmethods, especially for
ITM and DITM; the RMEL method can price put options
very well with a rather high accuracy. In brief, all the results
suggest again that our approach performs well and much
better than some benchmark approaches.

In summary, to generate a better estimate of the risk-
neutral distribution of the underlying assets for pricing
American options, an entropy valuation with moment con-
straints that can be easily constructed using a small num-
ber of options is developed and tested in simulations and
with IBM option data. We demonstrate that our method
prices American options quite well and outperforms several
benchmarks and nonparametric approaches. In principle,
the RMEL method can be applied in any other artificial
circumstances and real markets due to its ability to effectively
capture information in the option market to generate a
better estimate of the risk-neutral measure. Also the RMEL
approach is applicable to other path-dependent options.
Further work is required to investigate the relation between
the number of the RNM constraints and pricing accuracy,
and another direction is to address the numerical solution
problem when more moment constraints are incorporated
into the valuation framework.

Appendices

A. Proof of Lemma 1

Let (Ω, 𝐹
𝑡
, 𝜋
∗
) be the probability space over time interval

[𝑡, 𝑇] with filtration 𝐹
𝑡
and let Φ

𝑅
𝑡,𝑇−𝑡

(𝑥) = 𝐸
𝜋
∗(𝑒
𝑖𝑥 log(𝑅

𝑡,𝑇−𝑡
)
)

be the characteristic function of the underlying asset return
log(𝑅
𝑡,𝑇−𝑡

), where log(𝑅
𝑡,𝑇−𝑡

) ≡ log(𝑆
𝑇
/𝑆
𝑡
) and 𝑆

𝑡
is known at

time 𝑡; 𝑖 is the imaginary unit under the martingale measure
𝜋
∗. We begin with deriving the analytic form of Φ

𝑅
𝑡,𝑇−𝑡

(𝑥).
Defining a twice-continuously differentiable function

with respect to 𝑆
𝑇
,

𝑓 (𝑆
𝑇
) = 𝑒
𝑖𝑥 log(𝑆

𝑇
/𝑆
𝑡
)
. (A.1)

By the second-order version of Taylor’s Theorem with
integral remainder (e.g., Dudley [14, pp.522]), we have
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By definition, Φ
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Under no arbitrage condition,Φ
𝑅
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(𝑥) can be further given
by
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Given (A.4), the 𝑗th order RNM, 𝑚
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B. Proof of Theorem 3

Denote the characteristic functions of the (𝑇 − 𝑡)-period
return, log(𝑅
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), respectively. Then, by the
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assumption that the 𝜏-period returns are independent under
the risk-neutral measure �̂�∗,
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(𝑥)]

𝑑𝑥

𝑥=0

=
1

𝑖

1

𝑁
{[Φ
𝑅
𝑡,𝑇−𝑡

(𝑥)]
(1/𝑁)−1

}

𝑥=0

𝑑[Φ
𝑅
𝑡,𝑇−𝑡

(𝑥)]

𝑑𝑥

𝑥=0

=

𝑚
𝑡,𝑇−𝑡

(1)

𝑁
.

(B.2)

Repeating the above differentiation procedures, the
remaining formulas for 𝑚

𝑡,𝜏
(1), 𝑚

𝑡,𝜏
(2), 𝑚

𝑡,𝜏
(3), and 𝑚

𝑡,𝜏
(4)

are immediately obtained.

C. Calculation of Integrals for Moments

Consider

𝑚
𝑡,𝑇−𝑡

(1) = 𝑒
(𝑟−𝑞)(𝑇−𝑡)

− 𝑒
𝑟(𝑇−𝑡)

[∫

∞

𝑆
𝑡

1

𝐾
2
𝐶
𝐴

𝑡
(𝑇;𝐾) 𝑑𝐾

+∫

𝑆
𝑡

0

1

𝐾
2
𝑃
𝑡
(𝑇;𝐾) 𝑑𝐾] − 1,

𝑚
𝑡,𝑇−𝑡

(2) = 2𝑒
𝑟(𝑇−𝑡)

[∫

∞

𝑆
𝑡

1 − ln (𝐾/𝑆
𝑡
)

𝐾
2

𝐶
𝐴

𝑡
(𝑇;𝐾) 𝑑𝐾

+∫

𝑆
𝑡

0

1 − ln (𝐾/𝑆
𝑡
)

𝐾
2

𝑃
𝑡
(𝑇;𝐾) 𝑑𝐾] ,

(C.1)

where 𝑃
𝑡
(𝑇;𝐾) = 𝐶

𝐴

𝑡
(𝑇;𝐾) + 𝐾𝑒

−𝑟(𝑇−𝑡)
− 𝑆
𝑡
𝑒
−𝑞(𝑇−𝑡).

We only discuss the calculation of the integrals
in the first-order moment: ∫

∞

𝑆
𝑡

(1/𝐾
2
)𝐶
𝐴

𝑡
(𝑇; 𝐾)𝑑𝐾 and

∫
𝑆
𝑡

0
(1/𝐾
2
)𝑃
𝑡
(𝑇;𝐾)𝑑𝐾. The remaining integrals appearing in

other moment equations can be solved analogously.

C.1. Calculation of Integrals

C.1.1. ∫∞
𝑆
𝑡

(1/𝐾
2
)𝐶
𝐴

𝑡
(𝑇;𝐾)𝑑𝐾. First, the interval of this inte-

gration [𝑆
𝑡
,∞) is divided into three subintervals: [𝑆

𝑡
, 𝐾max],

[𝐾max, 𝐾∞), and [𝐾
∞
,∞), where 𝐾max is the maximum

available strike price in the given data, whereas 𝐾
∞

is a
much larger number so that a call option with strike prices
in [𝐾
∞
,∞) is valueless. This study sets𝐾

∞
equal to 5𝐾max.

Second, a numerical integration method, the trapezoidal
rule, is employed to compute the integrals with the first two
intervals:

∫

𝐾max

𝑆
𝑡

1

𝐾
2
𝐶
𝐴

𝑡
(𝑇;𝐾) 𝑑𝐾

≈
1

2
[

𝑚

∑

𝑖=1

(
1

𝐾
2

𝑖−1

𝐶
𝐴

𝑡
(𝑇;𝐾
𝑖−1
) +

1

𝐾
2

𝑖

𝐶
𝐴

𝑡
(𝑇;𝐾
𝑖
))Δ𝐾] ,

(C.2)

where Δ𝐾 = (𝐾max − 𝑆𝑡)/𝑚, 𝐾
𝑖
= 𝑆
𝑡
+ 𝑖Δ𝐾, for 𝑖 ∈ [0,𝑚]. 𝑚

denotes the number of nonoverlapped subintervals of equal
length and𝑚 = 80 in this study20.

In a similar spirit, the integral with the second subinterval
is given as

∫

𝐾
∞

𝐾max

1

𝐾
2
𝐶
𝐴

𝑡
(𝑇;𝐾) 𝑑𝐾

≈
1

2
[

𝑚

∑

𝑖=1

(
1

𝐾
2

𝑖−1

𝐶
𝐴

𝑡
(𝑇;𝐾


𝑖−1
) +

1

𝐾
2

𝑖

𝐶
𝐴

𝑡
(𝑇;𝐾


𝑖
))Δ𝐾


] ,

(C.3)

whereΔ𝐾 = (𝐾
∞
−𝐾max)/𝑚,𝐾

𝑖
= 𝐾max+𝑖Δ𝐾

 for 𝑖 ∈ [0,𝑚].
Given the negligible integrand in interval [𝐾

∞
,∞), we

obtain

∫

∞

𝑆
𝑡

1

𝐾
2
𝐶
𝐴

𝑡
(𝑇;𝐾) 𝑑𝐾

≈
1

2
[

𝑚

∑

𝑖=1

(
1

𝐾
2

𝑖−1

𝐶
𝐴

𝑡
(𝑇;𝐾
𝑖−1
) +

1

𝐾
2

𝑖

𝐶
𝐴

𝑡
(𝑇;𝐾
𝑖
))Δ𝐾]

+
1

2
[

𝑚

∑

𝑖=1

(
1

𝐾
2

𝑖−1

𝐶
𝐴

𝑡
(𝑇;𝐾


𝑖−1
) +

1

𝐾
2

𝑖

𝐶
𝐴

𝑡
(𝑇;𝐾


𝑖
))Δ𝐾


] .

(C.4)

C.1.2. ∫𝑆𝑡
0
(1/𝐾
2
)𝑃
𝑡
(𝑇;𝐾)𝑑𝐾. This integral can be computed

by repeating the above steps. Note that the three subintervals
are [0, 𝐾

0
], [𝐾
0
, 𝐾min], and [𝐾min, 𝑆𝑡], where 𝐾min is the

minimum available strike price in the given data, whereas𝐾
0

is a very smaller number so that a put optionwith strike prices
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in [0, 𝐾
0
] is valueless. In this study, 𝐾

0
is set to the value of

0.2𝐾min. We then have

∫

𝑆
𝑡

0

(
1

𝐾
2
)𝑃
𝑡
(𝑇;𝐾) 𝑑𝐾

≈
1

2
[

𝑚

∑

𝑖=1

(
1

𝐾
2

𝑖−1

𝑃
𝑡
(𝑇;𝐾
𝑖−1
) +

1

𝐾
2

𝑖

𝑃
𝑡
(𝑇;𝐾
𝑖
))Δ𝐾]

+
1

2
[

𝑚

∑

𝑖=1

(
1

𝐾
2

𝑖−1

𝑃
𝑡
(𝑇;𝐾


𝑖−1
) +

1

𝐾
2

𝑖

𝑃
𝑡
(𝑇;𝐾


𝑖
))Δ𝐾


] ,

(C.5)

where Δ𝐾 = (𝐾min − 𝐾
0
)/𝑚, Δ𝐾 = (𝑆

𝑡
− 𝐾min)/𝑚, 𝐾

𝑖
=

𝐾
0
+ 𝑖Δ𝐾, and𝐾

𝑖
= 𝐾min + 𝑖Δ𝐾

 for 𝑖 ∈ [0,𝑚].

C.2. Curving-Fitting for Unavailable Option Prices. As shown
from the above integrals, the required strike prices are
beyond the range of the available data. The option prices
corresponding to such strike prices need to be inferred from
the given option prices. A curve-fitting method is adapted to
handle this restriction by first constructing a set of implied
volatilities and then inferring the required set of option
prices. The operational steps are as follows.

(1) Calculate implied volatilities using the Black-Scholes
formula based on the given set of option (either
simulated or observed from the market) with trading
date 𝑡 and expiry date 𝑇 21.

(2) Use a cubic spline function to interpolate the implied
volatilities and infer implied volatilities at 𝐾

𝑖
and

𝐾


𝑖
located in [𝑆

𝑡
, 𝐾max] or [𝐾min, 𝑆𝑡] from the fitted

function.
(3) Inversely map the inferred volatilities, again using the

Black-Scholes formula, to obtain the required option
prices 𝐶𝐴

𝑡
(𝑇;𝐾), 𝐶𝐴

𝑡
(𝑇; 𝐾

), 𝑃
𝑡
(𝑇;𝐾), and 𝑃

𝑡
(𝑇;𝐾

)

over the intervals of [𝑆
0
, 𝐾max] and [𝐾min, 𝑆𝑡].

(4) Apply two implied volatilities at the truncated end-
points 𝐾

0
and 𝐾

∞
to the intervals [𝐾max, 𝐾∞] and

[𝐾
0
, 𝐾min] to extrapolate the option prices.

Recall that in the simulation experiment, we generate a
sample of 8 call options to estimate the RNMs. The other
options required by calculating the integrals are referred to
by the method discussed above.
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Endnotes

1. See, for example, Jarrow and Rudd [15], Bahra [16], Aı̈t-
Sahalia and Lo [17], and Jackwerth [18] for a comprehen-
sive review. See, for example, Bates [19], Grundy [20],
Jackwerth and Rubinstein [21], Melick andThomas [22],
Bakshi and Madan [23], Britten-Jones and Neuberger
[24], Bakshi et al. [9], Jiang and Tian [25], Kang and Kim
[26], Chang et al. [27], and Diavatopoulos et al. [28] for
methodologies and application issues.

2. For example, Kang and Kim [26] report that option
prices exactly reflectmarket expectations of abnormal or
rare future asset market events and return distributions.
Jiang and Tian [25] show that the implied volatility
simply from OTM European call options subsumes all
information contained in Black-Scholes implied volatil-
ity and past realized volatility (Chiras andManaster [29]
and Day and Lewis [30]).

3. Bakshi et al. [9] use a Taylor expansion to obtain the
expressions for the first four moments, which can be
proved and extended by using the characteristic function
instead.

4. In this study, the underlying asset is set to pay no
dividend in the simulation experiments and in the
empirical section, any IBM call options violating the
principle of not exercising early (see footnote 18) are
removed. So the call options in both cases cannot be
exercised early.

5. In the simulations, 𝑞 = 0. In the empirical investigation,
we find that almost all the IBM options satisfy the
condition of discrete dividends.

6. Many empirical investigations (e.g., Zivney [31] and
Poteshman and Serbin [32]) show that call options with
such low moneyness (𝑆

𝑡
/𝐾) are not being exercised

before expiration in most cases. Broadie et al. [33] show
empirically that for American calls of OEX 100 index
options, most of the early exercises occur during the last
few days prior to the expiration month only when the
moneyness is close to 1.

7. Note that the idea of fitting option prices is suggested,
in particular, by Jiang and Tian [25], who provide
the theoretical bounds on truncation errors. In our
study, the interval of integration [0, 𝑆

𝑡
] is split into

two subintervals, [0, 𝐾min] and [𝐾min, 𝑆𝑡], and the other
interval [𝑆

𝑡
, +∞) is split into [𝑆

𝑡
, 𝐾max] and [𝐾max, +∞),

where 𝐾min is the minimum value of strike price and
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𝐾max is the maximum value. For the integrals over
the intervals [𝐾min, 𝑆𝑡] and [𝑆

𝑡
, 𝐾max], we use a cubic

spline function to interpolate the implied volatilities to
obtain the fitted option prices. In addition, we use two
constants (endpoint implied volatilities) to extrapolate
the option prices for the other two intervals beyond the
available range. The extrapolation is truncated at the
strike points, denoted as 𝐾

0
and 𝐾

∞
. The first (second)

truncation point is very small (large), say, close to zero
(an arbitrary large number), so that the corresponding
options 𝐶𝐴 (𝑇;𝐾) (𝑃 (𝑇;𝐾)) with strike prices in the
interval [0, 𝐾

0
] ((𝐾
∞
, +∞)) are valueless. The integrals

over the corresponding intervals therefore tend to be
zero. For further details, see Appendix C.2.

8. When approximating the integrals using a numerical
integration method, two types of Riemann integral sum
are utilized. Specifically, Riemann sums of the left end-
points as well as the right endpoints are first calculated,
and their average is then used as an approximation of
the required integral. In this study, each of the intervals
involved in integration is divided into a number𝑚 (e.g.,
𝑚 = 80) of equidistant subintervals (see Appendix C.1
for details).

9. When the empirical distribution is uniform, the
Kullback-Leibler information criterion (Kullback and
Leibler [34]) is equivalent to the principle of maximum
entropy.

10. Note that 𝑅
𝑡−(𝐼−𝑖+1)𝜏,𝜏

are the historical returns. We
recover the RNMs using option data at time 𝑡 and
estimate the RND using the 𝜏-period historical returns
starting at time 𝑡 − 𝐼𝜏 up to time 𝑡.

11. In our article, 𝜆∗ is calculated via the Nelder-Mead
simplex search method by setting the initial value 𝜆

0

equal to the optimal value 𝜆
∗

0
obtained using quasi-

Newton method. That is, 𝜆∗
0
is first computed via quasi-

Newtonmethod, by setting initial value to be zero vector
and then used as an initial value when calculating 𝜆∗.
Theoretically, Nelder-Mead simplex search method is
more stable, while the frequently used quasi-Newton
method is faster. For discussion about the solution, see
Agmon et al. [7] and Mead and Papanicolaou [35].

12. Note that the asset prices in the basis functions should
be normalized by the strike price to avoid numerical
scaling issues. Moreover, to balance computational time
and precision, Stentoft [11] suggests that the Legendre
polynomial family with two or three simple polynomial
basis functions seems to work better and is computa-
tionally less demanding than other orthogonal polyno-
mial families, such as the Laguerre family proposed by
Longstaff and Schwartz [5].

13. The dividend is not considered here for the impartiality
of comparison.

14. In this simulation experiment, we just compare RMEL
method with that of Liu [4] which has no other con-
straint, since the results not reported here show that
RMEL method performs similarly to the methods of

Alcock and Auerswald [6]. The reason for this might
be due to that the simulation setting is based on the
GBMprocess so that theoretically the constraints used in
those two methods can determine the same risk-neutral
distribution for the underlying asset’s return.

15. Here 𝐼 = 365 is used as did in Liu [4]; we can also choose
𝐼 more than 365. The idea is to use the information as
recent as possible. If 𝐼 is too large, for example, over
70,000 historical time series data are required for obtain-
ing the RND in Alcock and Auerswald [6], practically
the data from the real market may be outdated or they
may be infeasible to be collected.

16. In our empirical investigation discussed in Section 4, the
minimum number of options with different strike prices
is 8 (with trading date August 21, 2008 and expiration
date September 19, 2008) and the maximum number is
22 (e.g., options with trading date December 16, 2008
and expiration date April 17, 2009). Further, Buchen and
Kelly [8] suggest that it is sufficient even if the number is
3 in their study.

17. Moneyness is defined to be 𝑆
𝑡
/𝐾 for call options and

𝐾/𝑆
𝑡
for put options.

18. Several filters are applied to the sample of data prior
to conducting our empirical analysis. First, data with
market prices less than $0.05 are excluded. Second, the
prices of put (call) options should theoretically increase
(decrease) with strike prices. Data violating this rule are
discarded. Third, any call options violating the principle
of not exercising early (𝐷

𝑖
≤ 𝐾[1− 𝑒

−𝑟(𝑡
𝑖+1
−𝑡
𝑖
)
]), where𝐷

𝑖

is the dividend payment at time 𝑡
𝑖
, see Hull [12, pp.299-

300], are omitted. Fourth, call options with negative
implied Black-Scholes volatility are removed from the
sample.

19. In this paper, the MPE is calculated by dividing the
estimated price minus the “true” price by the “true”
price and multiplying by 100. It is then averaged over
𝑛 = 800 independent simulations and is given as
(1/𝑛)∑

𝑛

𝑖=1
[(𝑐

estimated
𝑖

− 𝑐
true

) /𝑐
true

]×100.TheMSE is cal-
culated by themean-squared difference between the esti-
mated price and the “true” price over all the simulations:
(1/𝑛)∑

𝑛

𝑖=1
(𝑐

estimated
𝑖

− 𝑐
true

)
2

.TheMAPE is calculated by
dividing the absolute difference between the estimated
price and the “true” price by the “true” price and multi-
plying by 100. It is then averaged over all the simulations
and is given as (1/𝑛)∑𝑛

𝑖=1
(|𝑐

estimated
𝑖

− 𝑐
true

|/𝑐
true

) × 100.

20. A value of 𝑚 = 80 here is sufficiently large to obtain
an accurate approximation of the required integrals
(also see Jiang and Tian [25], for another example). We
facilitate a comparison by setting that 𝑚 = 50 and find
no significant difference.

21. Note that the Black-Scholes formula here is merely used
as a tool to build a smooth nonlinear relation between
volatility and option prices.
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