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In light of the recently emphasized studies on risk evaluation of crashes, accident counts under specific transportation facilities are
adopted to reflect the chance of crash occurrence. The current study introduces more comprehensive measure with the supplement
information of accidental harmfulness into the expression of accident risks which are also named Accident Hazard Index (AHI)
in the following context. Before the statistical analysis, datasets from various sources are integrated under a GIS platform and the
corresponding procedures are presented as an illustrated example for similar analysis. Then, a quasi-Poisson regression model is
suggested for analyses and the results show that the model is appropriate for dealing with overdispersed count data and several key
explanatory variables were found to have significant impact on the estimation of AHI. In addition, the effect of weight on different

severity levels of accidents is examined and the selection of the weight is also discussed.

1. Introduction

Aggregated accident analyses for certain transportation facil-
ities including road segments, intersections, and recently
emphasized traffic analysis zones (TAZs) have been thor-
oughly studied in the forms of accident frequency and
accident rates [1, 2]. The major approach in those studies
is to use regression models to make connections between
number of accidents and attributes of these facilities, such
as geometric and traffic characteristics of road segments and
socioeconomic and demographic properties of TAZs. Past
studies can readily consider many aspects of accident data
as well as deal with some critical issues. For example, the
earlier models based on the Poisson distribution actually rely
on the nature of the Poisson process of accident occurrence
[3], the negative binomial distribution improves the Poisson
model by introducing the consideration of overdispersed data
[4] and later more advanced zero-inflated models involve
the specification of excessive zero counts [5] into the model.
It is no doubt that these advanced models have discovered
the nature of accident counts in different respects. However,
for the purposes of traffic safety evaluation, the value of
accident frequency or accident rate is less informative to

reflect the magnitude of accident risks because it cannot take
the severity attributes of each accident into account.

Generally, a comprehensive risk function for safety eval-
uation should be able to measure the expected harmfulness
of each accident and some practical analysis [6] raises such
consideration for risk analyses. Such risk function actually
contains two sources of information, namely, the chance
of accident occurrence and harmfulness of each accident.
Nevertheless, most previous studies neglect the severity
information in measuring safety risks, and the exception
would be several multivariate analyses in which a predefined
distributional form of accident frequency for different levels
of severity is adopted [7-9]. These multivariate models pro-
vide inference on the correlative relationships among acci-
dent frequencies for different severity levels, but they also
cannot provide a single risk measurement for the purpose
of safety evaluations. Towards this end, one of the objectives
of this study seeks to define a single risk measure that can
comprehensively capture the compound effect of accident
occurrence and harmfulness on AHI.

Under this circumstance, this study also seeks to find
appropriate regression models for predication and inference
of AHI. With the consideration of possible overdispersion



on data, a quasi-likelihood model [10-12] is adopted as it
provides a semiparametric method to estimate the mean
value of interested parameters and hence it is a more nature
approach for risk predications because less distributional
assumptions are required. The suggested model can provide
an important alternative to the frequently used negative
binomial model. In addition, the quasi-Poisson model has
been found to be more accurate for certain count data than
the negative binomial models [13]. Besides, it is also necessary
to present the procedure of data integration of this study as
an example for similar analyses in the future. In fact, such
analysis requires multiple data inputs [14] including accident
data, traffic system data, road segments data, and traffic flow
data from various sources.

In sum, one of the major objectives of this study is to
identify a comprehensive measure for safety evaluation in
terms of accident risks, namely, the Accident Hazard Index
(AHI) in the following context. With such consideration, this
study also tries to contribute a statistical analysis through
the quasi-Poisson likelihood model which is suggested as a
nature way to deal with overdispersed count data. The results
will be analyzed by variables with significant coefficients and
the effects of these variables on AHI are also illustrated. This
study provides an alternative method to analyze the accident
risk, in which the weight crash rate for different level of
severity is used instead of the traditional analysis on the single
value of crash rate. In addition, the selection of the value of
weight is also presented as an indication to similar analyses.

2. Methods

2.1. Datasets. This research will focus on predication and
inference on the Accident Hazard Index for road segments
and the used accident data was collected in Pikes Peak
Area, Colorado, USA, during the period from July 2006 to
December 2010. In order to aggregate these accidents for road
segments in this area, as well as to incorporate several key
variables for regression, another dataset of road segments
is also used in this study. The data describe each accident
in terms of its severity, time of accident, locations, and so
forth. The supplemental datasets describe the road traffic
and geometric characteristics including variables such as the
length of road segments, average annual daily traffic (AADT),
ownership of the road segments, and number of through
lanes. The traffic and roadway data is obtained from Colorado
Department of Transportation (CDOT). The accident dataset
is obtained from the Department of Revenue (DOR) and
coded into GIS database by the Pikes Peak Area Council
of Government (PPACG). With the location information of
each accident, GIS platform can be used as a tool to integrate
the two sources of data [15].

For demonstrative purposes, Figure 1 presents a sam-
ple area, which contains the road network map and the
corresponding accidents. In this area, a road segment is
highlighted and it can be used to illustrate the procedure
for data integration. Through GIS platforms, the important
step is to map accidents to the road segments to which they
belong. Because accidents majorly occurred at either road
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segments or intersections, the first step is to remove those
accidents that occurred at intersections and a convenient
approach considers an area with radius of 200 ft from the
center of each intersection. Then for the remaining accidents,
a 150 ft buffer size of double sides for road segments is
used to consider the actual range of road segment and the
observation error of location of accidents during the data
collections. In addition, accidents occurred in ramps and
parking lots are also excluded during the process.

Then with the constructed one-to-one corresponding
mapping relationship between accidents and road segments,
accidents for each road segment are aggregated by their
severity levels. In this study, two levels of severity, namely,
fatal-injury accidents and property-damage-only accidents,
are considered. The distributions of accident counts by
each level of severity are presented in Figure 2. Moreover
several explanatory variables such as intersection density
of road segments, urban/rural location, and ownership are
considered in the following analysis. Table 1 provides the
basic descriptive statistics for explanatory variables and the
exposure variable.

2.2. The Definition of Accident Hazard Index (AHI). In order
to measure accident risks with compound information of
the likelihood of accident occurrence and corresponding
harmfulness of each accident, a more general form for the
Accident Hazard Index is presented as follows:

t

I I
=wE(NT)+(1—w)E(NT),

where A is the AHI that is expressed by the expected value of
the weighted crash rates in terms of two severity levels. The
measure is believed to have the ability to reflect the magnitude
of accident risks for the purposes of safety evaluations as
well as black spot diagnostics for road segments. N” is the
total number of fatal-injury accidents and N is the total
number of property-damage-only accidents. w is the weight
associated with fatal-injury accidents, which is ranging from
0.5 to 1 as a reflection of the relative importance of fatal-
injury accidents in the analysis, and ¢ is the exposure variable
usually the vehicle mile traveled (VMT). Further, if w = 0.5,
all types of accidents are treated equally and hence A will
be proportional to crash rate and if w = 1, the property-
damage-only accidents will be ignored.

In fact, it is true that fatal-injury accidents are usually
accompanied with property damage. However, the crucial
point to distinguish between the two types of accidents
is that the property-damage-only accidents are defined to
be accidents that are not fatal or injury-involved. Under
such situation, even though fatal-injury accidents are usually
associated with property damage, it can be assigned larger
weight than property-damage-only accidents because it is
reasonable to assume that the situation of fatal or injury-
involved accident is more harmful than the situation of
property-damage-only accident. As a result, the weighting

I I
A:E[wN +(1-w)N ]

)
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FIGURE 2: Histogram of accident counts.

TABLE 1: Descriptive characteristic for key variables.

Variables Mean Std. Dev. Min. Max.

The exposure variable (Offset)

Vehicle miles traveled 11.760 48.236 0.037 797.400
Explanatory variables

Intersection density 2.321 1.878 0 12.255
Road segment in rural areas 189 0 1
Road segment in urban areas 794 0 1
Ownership at state or federal levels 139 0 1
Ownership at other levels 844 0 1
Number of through lanes less and equal to 2 661 0 1
Number of through lanes greater than 2 322 0 1
Not on a designated truck route 893 0 1
Designated truck route 90 0 1
Annual average daily traffic 7523 40 53700
Pavement condition rating 2.997 0.737 1 5
Pavement type at low level 442 0 1
Pavement type at high level 541 0 1
Percent average daily trucks 2.400 2.477 1 17




process is meaningful to reflect the relative harmfulness of
the two different types of accidents and therefore provide AHI
as a more comprehensive and precise criterion indicating the
overall losses from all types of accidents during the safety
evaluations.

2.3. The Quasi-Poisson Approach. Accident Hazard Index in
fact is the weighted expected value of two crash rates as
defined above. It can be determined through the regression
of N/t and N /t. As a result, the current study suggests
quasi-likelihood models as an alternative to the traditional
Poisson and negative binomial regression models since quasi-
likelihood framework does not require a predefined distribu-
tional form of the responses and hence may produce more
nature and accurate results [13]. In quasi-Poisson model,
the variance is assumed to be the mean multiplied by a
dispersion parameter. Therefore, the quasi-Poisson model
is capable of considering overdispersed data, which is a
common characteristic in accident counts. For assumed i.i.d.
accident frequency N;,N,,...,N,, on road segments, y; is
the corresponding mean value such that

Hi :E(Nl) (2)

In the following analysis, a log link function will be used.
If t; is denoted as the accident exposure measure for road
segment i, the logarithm of t; will be an offset term with fixed
coeflicient of one under the log link function as follows:

9 () = log () = x; Blog (t,). (3)

Instead of assumptions on the distributions, quasi-

likelihood models only require specification of the rela-

tionship between mean and variance [16]. And the quasi-

Poisson model adopts the relationship from the Poisson

distribution such that the variance is related to mean only by
a multiplication of the dispersion parameter ¢ as follows:

Var (N;) = ¢V () = o, (4)

where N; is the number of accidents for certain type of
severity and V(y;) is the so-called variance function in a
generalized linear model (GLM) setting. The quasi-score
function q(y;, n;, ¢) is the first-order derivative of the log-
likelihood function which is the same definition from the
traditional score function. For the quasi-Poisson model, its
score function for a single observation i is
1, b)) = oW ni_‘“i’

e ®) = 5~ o ®
where n; is the sample value for number of accidents in
road segment i. Therefore, the quasi-likelihood function
Q(p;> 1;, ¢) for sample i can be written in the following form:

Hi Hi nl — S
Qusmog) = | alsmg)ds= [ " Zds (o
and the quasi-likelihood function for all sample is the

summation of quasi-likelihood function for each observation
as follows:

Qung) = Yl =3 [

—ds.  (7)
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The estimated parameters will try to maximize the value
of Q(y, n, ¢) and the estimation equation is in the following
system of equations:

a _m n— i %_
Zq(“"”” % > ( ” >aﬁ‘°’ ®)

i=1

which is equivalent to

Z (m; — ) x; = 0. )
in1

And, in terms of regression parameters f3 and exposure
variable t, the system of equations is also as follows:

™

Il
—

[n,- —t; exp (xlTﬁ)] x; = 0. (10)

1

In addition, the dispersion parameter ¢ can be estimated
by the Pearson estimator in the following equation:

1 & (- )
. an
2 i

- m-p& i

Therefore, the Accident Hazard Index for road segment i
can be formulated in the following form in this study:

[wNiI+(1—w)NiH]
A, =E
£
I i}
—wE(z\tr)+(1—w)E<]\; ) (12)

= wexp (X;Tﬁ) + (1 - w)exp (X;FS) ,

where f is the vector of regression parameters for fatal-injury
accidents and 6 is the corresponding parameters for property-
damage-only accidents.

3. Results and Discussion

The model is constructed by the function of generalized
linear models in R. Based on the above model specification,
parameters of B and & are estimated by the quasi-Poisson
model and the results are presented in Table 2, which includes
only statistically significant effects (variable selection is based
on backward elimination with a 0.05 significance level to
stay). Interestingly, the individual impact of each covari-
ate is largely consistent between fatal-injury accidents and
property-damage-only accidents with a slight exception that
several variables do not show evident impact on 8 but on 8.
Road segments show different risk levels between rural
and urban locations in terms of the crash rate of fatal-injury
accidents. The model indicates that rural road segments are
more likely to be involved in fatal-injury accidents. Even the
effect of rural location is controversial [17], it is also worth to
mention that one possible reason is that the driving speed is
usually high and hence more likely to involve more serious
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TABLE 2: Estimation results for the quasi-Poisson models.

Coefficients for parameters

Fatal-injury (f)

Property-damage-only (&)

Coeflicient t stat. Coeflicient t stat.

Explanatory variables

Intercept —-2.533 -17.383 -0.713 -3.839

Road segment in rural areas”

Road segment in urban areas -0.393 -2.844 # #

Intersection density 0.100 5.922 0.130 11.310

Ownership at state or federal levels”

Ownership at other levels 0.275 1.974 0.441 3.991

Pavement condition rating # # -0.100 -2.141

Percent average daily trucks -0.083 -4.305 -0.085 -5.071
Dispersion parameter

¢ 3.096 16.415

# Indicates that the coefficient is statistically insignificant.
*Reference categories.

accidents like fatal or injury ones. Several previous studies
also indicate that in rural areas there are higher death rates
compared to urban areas due to excessive speeding [18] and
special rural driving cultures [19].

Intersection density is defined by the number of inter-
sections along the road segments per mile. The positive
coeflicient shows that intersection density is an unsafe factor
that may introduce more chances for both fatal-injury and
property-damage-only accidents to occur. Even though the
samples of accidents occurred at intersections have been
excluded in this study, the remaining accidents that occurred
at the road segments are also affected by these intersec-
tions and are possibly due to the complicated upstream or
downstream traffic flows near intersections. Specifically, the
increased demand of waving and lane change actions when
the vehicle approaches or leaves intersections will lead to
complicated traffic flow situations as well as conflictions
between vehicles and hence may contribute to more risk of
accidents.

As mentioned, positive coeflicient is an indication of high
risk for accidents and another unsafe factor is the ownership
of road segments. This study will distinguish the ownership of
road segments in terms of state/federal roads or roads owned
by other levels of governments. Therefore, the coefficient
indicates that road segments under the ownership of state
or federal level will produce small AHI for accidents with
all other variables being fixed. It is plausible that state or
federal roads may receive better considerations from the road
design to traffic operation and gain safer conditions than
roads owned by town or municipal governments.

Presence of trucks is not an unsafe factor for road safety
evaluation as the truck drivers are well trained [20] and
hence more professional and cautious during driving than the
drivers of passenger vehicles. The coefficient on the percent
average daily truck is negative which means the appearance
of truck is a safe factor.

Annual average daily traffic consistently associates with
the occurrence of all types of accidents and the coefficients
indicate that road segments with larger AADT may lead to

fewer risks. One of the possible reasons is that the operation
speed is usually low for large AADT and may provide
safer environment for driving. In addition, better pavement
condition will also lead to fewer risks by negatively affecting
the occurrence of property-damage-only accidents.

The dispersion parameters ¢ are estimated by the Pearson
estimator and a value greater than one indicates that overdis-
persion exists for the count data. For fatal-injury accident and
property-damage-only accidents, the dispersion parameters
are estimated and 3.096 and 16.415 are the results, respectively.
Therefore, the count data is overdispersed in this analysis and
the quasi-Poisson is appropriate under such consideration.

With the estimated coefficients of § and 8, the risk can
be estimated by its mean expression. The harmfulness weight
w is used to reflect magnitude of losses that resulted from
fatal-injury accidents relative to the property-damage-only
accidents. So naturally, w should be greater than 0.5 and there
could be many approaches on choosing a particular w. In
the simplest way, it can be determined by past experiences
[6] or the subjective impression on the harmful levels of
fatal-injury accidents over property-damage-only accidents.
Another criterion for determining w could use the relative
ratio between averaged insurance claimed value of fatal-
injury accidents and property-damage-only accidents. For
the safety evaluation purposes, the ranks of risks of all road
segments are sufficient instead of the absolute numerical
values of risks. Figure 3 therefore plots the risk ranks
between two different choices of w to indicate the variation
on the evaluated risk levels with respect to the choice of
w. Specifically, w = 0.5 is used as the base case, which
represents the equal importance of the two types of accidents
in evaluation, to compare with several other choices of w.

The correlative relationships between two resulted ranks
under difference choice of w can reflect the influence of the
value of w on risk ranks of all road segments. In Figure 3, an
off-diagonal line indicates that the risk ranks are consistent
between two choices of w, whereas the fact that more points
away from this line means more variations of risk ranks
under different w. Therefore, it is clear that the risk ranks of
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AHI exhibit evident discrepancy if w is close to one and the
dramatic discrepancy occurred when w is greater than 0.8.
Thus, the harmfulness of accidents actually could be better
considered for the selection of w > 0.8 as illistrated in the
plot.

4. Summary and Conclusions

At the planninglevel, all transportation system characteristics
and road traffic characteristics are important indicators
which may in turn influence the roadway accident risks.
The whole framework of the safety analysis at the planning
level requires connections between transportation planning
outputs and the accident risk evaluation criteria. Correspond-
ingly, some of the explanatory variables in the regression
models of crash counts will be used as the bridge between
transportation planning and safety evaluations of planned
roadway. The contribution of this paper on transportation
safety planning is the developed risk evaluation models which
are important preliminary works for the safety analysis at the
planning level even though it is not a direct study towards
safety planning.

Towards this end, this study provides a statistical anal-
ysis on a comprehensive measure which is also called the
Accident Hazard Index (AHI) on accident risks. AHI is
suggested as a compound value of accident frequency and
corresponding harmfulness of each accident. In order to
consider the overdispersed nature of the accident data, a
quasi-Poisson model is proposed to connect the accident rate
to several key explanatory variables. The data is integrated
from several sources through the GIS platform and an clear
procedure for data processing is also presented as an example
for similar studies. With the aggregated accident counts
on road segments, the regression model is estimated and
several variables are found to have significant impact on the
estimation of accident risks. For example, the intersection
density has negative contributions for reducing risks, whereas
AADT affects it in the opposite direction. Besides, the weight
on fatal-injury accident also affects the estimated AHI and the
influence can be illustrated by the changes of ranks of AHI in
terms of changes of weight and the plot indicates that a value
of w > 0.8 is suggested for the consideration of harmfulness
of fatal or injury accidents.

This work is believed to be an important first step toward
a comprehensive risk analysis of traffic accidents. In addition,
there are several important avenues for further research. First,
it is necessary to find regression models for the accident
risks as a whole such that the relationship between different
types of accidents can be considered. Second, the nature of
excessive zero count of accidents would be taken into account
in the model as an important supplement for the traditional
quasi-likelihood models.
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