
Research Article
Correlation and Spectral Properties of
a Coupled Nonlinear Dynamical System in the Context of
Numerical Weather Prediction and Climate Modeling

Sergei Soldatenko1 and Denis Chichkine2

1 Centre for Australian Weather and Climate Research, 700 Collins Street, Docklands, VIC 3008, Australia
2 University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1

Correspondence should be addressed to Sergei Soldatenko; s.soldatenko@bom.gov.au

Received 20 February 2014; Accepted 19 September 2014; Published 12 October 2014

Academic Editor: Firdaus Udwadia

Copyright © 2014 S. Soldatenko and D. Chichkine. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Complex dynamical processes occurring in the earth’s climate system are strongly nonlinear and exhibit wave-like oscillations
within broad time-space spectrum. One way to imitate essential features of such processes is using a coupled nonlinear dynamical
system, obtained by coupling two versions of the well-known Lorenz (1963) model with distinct time scales that differ by a certain
time-scale factor. This dynamical system is frequently applied for studying various aspects of atmospheric and climate dynamics,
as well as for estimating the effectiveness of numerical algorithms and techniques used in numerical weather prediction, data
assimilation, and climate simulation. This paper examines basic dynamic, correlative, and spectral properties of this system and
quantifies the influence of the coupling strength on power spectrum densities, spectrograms, and autocorrelation functions.

1. Introduction

Numerical weather prediction (NWP) and climate simula-
tion are among the most interesting and important problems
facing the world today. Dynamical processes occurring in
the earth’s climate system have turbulent nature and exhibit
wave-like oscillations within broad time-space spectrum and,
therefore, are characterized by strong nonlinearity [1, 2]. The
earth’s climate system is a complex system that consists of the
atmosphere, ocean, lithosphere, cryosphere, and biosphere
subsystems. Each of these components has unique dynamics
and physics and is characterised by specific time-space
spectrum of motions, characteristic time, internal variability,
and other properties [3–6].

NWP and climate simulation focus on processes with
very different time scales and, more importantly, pursue
very different objectives [7–9]. NWP is a typical initial value
problem aiming to predict, as precisely as possible, the
future state of the atmosphere taking into account current
(initial) weather conditions. To date, due to fundamental

limits to the predictability of the atmospheric processes, the
practical importance of NWP is limited to a time horizon
of 7–10 days. Errors in the NWP are primarily generated
by inaccuracies in the initial conditions rather than by
the imperfections in mathematical models (e.g., [10]). By
contrast, climate change and variability simulations focus
on much longer time scales (several months or even years)
and involve the study of stability of climate model attractors
with respect to external forcing. Nevertheless, deterministic
mathematical models, based on the same physical principles
and fundamental laws of physics, such as conservation of
momentum, energy, and mass, are commonly applied to
both NWP and climate simulations. Mathematically, these
physical laws and principles are generally expressed in terms
of a set of nonlinear partial differential equations (PDEs)
and, in their discrete form, contain a large number of state
variables and parameters. Performing a detailed simulation
of the dynamics of the earth’s climate system and its compo-
nents using such models requires significant computational
resources for simulations and considerable time for analysis
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and interpretation of obtained results. Consequently, low-
order models have drawn the attention of scientists as very
attractive and convenient tools for studying various aspects of
dynamics of natural physical processes and phenomena and
also for estimating the effectiveness of numerical algorithms
and techniques used in computational simulations.

Deterministic nonlinear dynamical models are highly
sensitive to initial conditions, a property which precludes
exact forecasting of their future states and can lead to chaotic
numerical solutions. This means that, over time, under cer-
tain conditions, the behaviour of a simulated system begins to
resemble a random process, despite the fact that the system is
defined by deterministic laws and described by deterministic
equations. This phenomenon of deterministic chaos was first
uncovered by Lorenz as he observed the sensitive dependence
of atmospheric convectionmodel output on initial conditions
[13]. Since the publication of his seminal theoretical work, a
vast number of studies were implemented in order to analyse
various aspects of nonlinear dynamics and deterministic
chaos, as well as properties of the original Lorenz model
(hereinafter referred to as L63 model) and the broader family
of Lorenz-like systems (e.g., [14–23]). The Lorenz system is
derived by strong spectral truncation of Saltzman’s equations,
which describe the Rayleigh-Bénard convection [24], and
consists of three autonomous ordinary differential equations
(ODEs) for time-dependent variables 𝑥, 𝑦, and 𝑧: with 𝑥
corresponding to the intensity of the convective motion in
terms of the stream function,𝑦 to the temperature differences
between rising and descending currents, and 𝑧 to the depar-
ture of the vertical temperature gradient from its equilibrium
magnitude. The Lorenz system also contains three positive
parameters 𝜎, 𝑟, and 𝑏, with 𝜎 being the Prandtl number, 𝑟 the
normalized Rayleigh number, and 𝑏 a geometric parameter
characterizing length scale of the convective cell.

Despite its simplicity, the L63 model is capable of imi-
tating some essential properties of the general circulation of
the atmosphere and ocean [25–28]. For example, the heat
flux from equator to the poles can be represented by variable
𝑧, which is proportional to meridional temperature gradient
that can be represented by parameter 𝑟. Various academic
papers have previously presented successful applications of
the L63 model to climate studies (e.g., [25–28]), NWP
and data assimilation (e.g., [29–31]), sensitivity analysis,
parameter estimations, and predictability studies (e.g., [32–
34]). The L63 model serves as a prototype for developing
coupled nonlinear dynamical systems combining different
time scales [11, 12, 35, 36]. Coupling of two systems, one with
“fast” and another with “slow” time scales, allows imitating
the interaction between a fast-oscillating atmosphere and
slow-fluctuating ocean. This paper aims to explore essential
dynamical, correlative, and spectral properties of this system
for time scales applicable to the NWP and climate variability
simulations.

2. Model Equations

2.1. Preliminary Notes. Continuous-time deterministic
dynamical systems are commonly specified by a set of

either autonomous or nonautonomous ODEs; thus, one can
consider the problem of the evolution of state variables in
time as an initial value problem. If 𝑢 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) is a

set of dynamic variables, 𝑡 is time, and 𝑓 = (𝑓
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𝑛, then an autonomous deterministic dynam-
ical system can be described by the following set of ODEs:

𝑑𝑢
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= 𝑓 (𝑢) , 𝑢 (𝑡
0
) = 𝑢
0
, 𝑡 ∈ 𝑅, 𝑢 ∈ 𝑈, (1)

where 𝑈 is known as the phase space of system (1). By
introducing the solution operator 𝑆

𝑡
having the semigroup

property 𝑆
𝑡+𝑠
= 𝑆
𝑡
⋅ 𝑆
𝑠
, the system (1) can be written as

𝑢 (𝑡) = 𝑆
𝑡
𝑢
0
. (2)

Thus, the trajectory of the system (1) in its phase space 𝑢 ∈ 𝑈
is uniquely defined by the initial values of state variables 𝑢

0

(initial conditions).
With respect to the NWP and climate simulations,

discrete-timedeterministic systems are of particular interests,
because, in general, the solution to differential equations
describing the evolution of the earth’s climate system com-
ponents can only be obtained numerically. Deterministic
dynamical systemwith discrete time 𝑡 ∈ Z that represents the
finite-difference approximation of ODEs (1) can be expressed
in the form of the following difference equation:
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a trajectory (also known as orbit) of (3).Therefore, the system
state 𝑢(𝑡
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) at time 𝑡
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can be explicitly expressed through the

initial conditions 𝑢
0

𝑢 (𝑡
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) = 𝑓
𝑚
(𝑢
0
) . (4)

2.2. Model Equations. A multiscale nonlinear dynamical
system examined in this paper is derived by coupling the fast
and slow versions of the original L63 model [13] and can be
written as follows [11, 12]:

�̇� = 𝜎 (𝑦 − 𝑥) − 𝑐 (𝑎𝑋 + 𝑘) ,

̇𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧 + 𝑐 (𝑎𝑌 + 𝑘) ,

�̇� = 𝑥𝑦 − 𝑏𝑧 + 𝑐
𝑧
𝑍,

�̇� = 𝜀𝜎 (𝑌 − 𝑋) − 𝑐 (𝑥 + 𝑘) ,

�̇� = 𝜀 (𝑟𝑋 − 𝑌 − 𝑎𝑋𝑍) + 𝑐 (𝑦 + 𝑘) ,

̇
𝑍 = 𝜀 (𝑎𝑋𝑌 − 𝑏𝑍) − 𝑐

𝑧
𝑧,

(5)

where lower case letters 𝑥, 𝑦, and 𝑧 represent the dynamic
variables of the fast model, capital letters𝑋, 𝑌, and 𝑍 denote
the state variables of the slow model, 𝜎 > 0, 𝑟 > 0, and
𝑏 > 0 are the parameters of the original L63 model, 𝜀 is
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a time-scale factor (if, e.g., 𝜀 = 0.1, then the slow subsystem
is ten times slower than the fast subsystem), 𝑐 is a coupling
strength for 𝑥,𝑋, 𝑦, and 𝑌 variables, 𝑐

𝑧
is a coupling strength

parameter for 𝑧 and𝑍 variables, 𝑘 is a “decentring” parameter
[11], and 𝑎 is a parameter representing the amplitude scale
factor (𝑎 = 1 indicates that slow and fast subsystems have
the same amplitude scale). The coupling strength parameters
𝑐 and 𝑐

𝑧
control the interconnection between fast and slow

subsystems: the smaller the parameters 𝑐 and 𝑐
𝑧
, the weaker

the interdependence between two subsystems. Without loss
of generality, one can assume that 𝑎 = 1, 𝑘 = 0, and 𝑐 = 𝑐

𝑧
;

then the system of model equations (5) can be represented in
an operator form as follows:

𝑑𝑢

𝑑𝑡

= 𝐴 (𝑢; 𝑝) 𝑢, (6)

where 𝑢 = (𝑥, 𝑦, 𝑧, 𝑋, 𝑌, 𝑍)𝑇 is a coupled model state vector,
𝑝 = (𝜎, 𝑏, 𝑟, 𝜀, 𝑐)

𝑇 is a model parameter vector, and 𝐴(𝑢; 𝑝) is
the matrix operator such that

𝐴 =

[

[

[

[

[

[

[

[

−𝜎 𝜎 0 −𝑐 0 0

𝑟 −1 −𝑥 0 𝑐 0

0 𝑥 −𝑏 0 0 𝑐

−𝑐 0 0 −𝜀𝜎 𝜀𝜎 0

0 𝑐 0 𝜀𝑟 −𝜀 −𝜀𝑋

0 0 −𝑐 0 𝜀𝑌 −𝜀𝑏

]

]

]

]

]

]

]

]

. (7)

System of autonomous ODEs (6) has five control parameters
(𝜎, 𝑟, 𝑏, 𝑐, and 𝜀) and together with given initial conditions,

𝑢 (𝑡
0
) = 𝑢
0
, (8)

represents an initial value problem.

2.3. Model Equations in Variational Form. The model equa-
tions in variational form are used to study the system’s
dynamical properties. These equations can be obtained by
linearization of (6) around a certain trajectory, which is a
particular solution of (6) and represents a vector-function
𝑢(𝑡), 𝑡 ∈ [0,∞). Assume that the system (6) operates
along the trajectory 𝑢∗(𝑡) and let 𝛿𝑢(𝑡) be an infinitesimal
perturbation of the state vector such that 𝛿𝑢(𝑡) = 𝑢(𝑡) −

𝑢
∗
(𝑡). Approximating the right-hand side of (6) by a Taylor

expansion in the vicinity of 𝑢∗(𝑡) and neglecting 2nd order
and higher order terms, one can obtain the following set of
linear ODEs, the equations in variations:

𝑑𝛿𝑢 (𝑡)
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= 𝐽𝛿𝑢 (𝑡) , 𝛿𝑢 (𝑡
0
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0
, (9)

where 𝐽 = (𝜕𝐴/𝜕𝑢)|
𝑢=𝑢
∗ is a Jacobian matrix:

𝐽 =

[

[

[

[

[

[

[

[

−𝜎 𝜎 0 −𝑐 0 0

(𝑟 − 𝑧) −1 −𝑥 0 𝑐 0

𝑦 𝑥 −𝑏 0 0 𝑐

−𝑐 0 0 −𝜀𝜎 𝜀𝜎 0

0 𝑐 0 𝜀 (𝑟 − 𝑍) −𝜀 −𝜀𝑋

0 0 −𝑐 𝜀𝑌 𝜀𝑋 −𝜀𝑏

]

]
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. (10)

Variational equations (9) can be rewritten as
𝛿𝑢 (𝑡) = 𝐿

𝑡
𝛿𝑢
0
, 𝛿𝑢 (𝑡

0
) = 𝛿𝑢

0
, (11)

where 𝐿
𝑡
is a linear solution operator.

Table 1: Values of the coupling strength parameter 𝑐 used in the
numerical experiments [11, 12].

Coupling strength 𝑐 Type of coupling
1.0 El Niño–Southern Oscillation (ENSO) [11]
0.8 ENSO [12]
0.5 Medium strength

0.15 Weather/convection, extratropical
ocean/atmosphere

3. Some Basic Properties of a Coupled System

3.1. Model Parameters. The time evolution of coupled non-
linear system considered in this paper is conditioned by a
set of ODEs (5) and control parameters 𝜎, 𝑟, 𝑏, 𝑐, and 𝜀.
By setting parameter 𝑐 equal to zero, one can restore the
original L63 model. Standard values of the L63 parameters
corresponding to chaotic behaviour are 𝜎 = 10, 𝑏 = 8/3,
and 𝑟 = 28 [13, 16]. These parameter values are used in this
study since the atmospheric motions are inherently chaotic.
It is important to note that, for 𝜎 = 10 and 𝑏 = 8/3, there
is a critical value for parameter 𝑟, equal to 24.74, and any 𝑟
larger than 24.74 induces chaotic behaviour of the L63 system
[16]. The time-scale factor 𝜀 is taken to be 0.1. Thus, in our
study, the main control parameter is the coupling strength
𝑐, which essentially determines the strength of interactions
between fast and slowmodels and, therefore, the behaviour of
the entire coupled system. In numerical experiments values of
this parameter have been chosen in accordance with [11, 12]
and are given in Table 1. Therefore, 𝑐 ∈ [0.15, 1.0].

3.2. Numerical Integration Procedure. The system of (6) is
numerically integrated by applying a fourth order Runge-
Kutta algorithm with a time step Δ𝑡 = 0.01. To begin with,
(6) are transformed into a discrete-time form (3) and then
integrated. This integration produces time series for each of
the dynamic variables at equally spaced time-points starting
from 𝑡

0
and denoted by {𝑢

𝑚
= 𝑢(𝑡

𝑚
), 𝑡
𝑚
= 𝑚Δ𝑡, 𝑚 =

0, . . . ,𝑀 − 1}, where Δ𝑡 is the integration time step, also
known as the sampling interval and 𝑓

𝑠
= (Δ𝑡)

−1 is the
sampling frequency, also known as the sampling rate. To
discard the initial transient period the numerical integration
starts at time 𝑡

−𝑇
= −2
14
Δ𝑡 with the initial conditions

𝑢
−𝑇
= (0.01; 0.01; 0.01; 0.02; 0.02; 0.02)

𝑇 (12)

and finishes at time 𝑡
0
. In addition, this ensures that the

calculated vector of dynamic variables 𝑢
0
= 𝑢(𝑡

0
) is on the

system’s attractor.The state vector 𝑢
0
is then used as the initial

conditions for further numerical experiments. Note that, for
Δ𝑡 = 0.01, the numerical integration with length of 100 time
steps corresponds to one nondimensional unit of time.

The structure of the resulting attractor depends on the
coupling strength parameter 𝑐. Figures 1 and 2 illustrate phase
portraits in 𝑥-𝑦, 𝑥-𝑧, and 𝑦-𝑧 phase planes of both fast and
slow subsystems for weak (𝑐 = 0.15) and strong (𝑐 = 0.8)
coupling. The evolutions of fast and slow dynamic variables
for these values of 𝑐 are shown in Figures 3 and 4. It is well
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Figure 1: Phase portraits for fast and slow subsystems for 𝑐 = 0.15.

known that the L63 model produces chaotic oscillations of
a switching type: the structure of its attractor contains two
regions divided by the stabilemanifold of a saddle point in the
origin. For relatively small coupling strength parameter (𝑐 <
0.5), the attractor for both fast and slow subsystemsmaintains
a chaotic structure, which is inherent in the original L63
attractor. As the parameter 𝑐 increases, the attractor for
both fast and slow subsystems undergoes structural changes
breaking the patterns of the original L63 attractor. Fast and

slow subsystems affect each other through coupling terms,
and at some value of the coupling strength parameter (𝑐 >
0.5) a chaotic behavior is destroyed and dynamic variables
begin to exhibit some sophisticated motions which are not
obviously periodic. Moreover, qualitative examination shows
that the evolution through time of both subsystems becomes,
to large degree, synchronous (however, phase synchroniza-
tion requires specific analysis which is not within the scope
of this paper). For example, for 𝑐 = 0.8, the plane phase



Discrete Dynamics in Nature and Society 5

Fast subsystem Slow subsystem
15

−15

100−10

x

y 0

60

30

−30

−60

0

60

30

0

200−20

X

100−10

x

100−10

y

200

0

−20

X

Y

6030−30−60

Y

Z

60

30

0

Z

20

40

0

z

20

40

0

z

Figure 2: Phase portraits for fast and slow subsystems for 𝑐 = 0.8.

portraits𝑋-𝑌,𝑋-𝑍, and𝑌-𝑍 of the slow subsystem represent
closed curves which are mostly smooth and have no visible
kinks. These portraits indicate that the motion possesses
periodic properties. At the same time, the attractor of the slow
subsystem for 𝑐 = 0.8 has a more complex structure.

3.3. Equilibrium Points. Equilibrium (fixed) points of the
system of ODEs (5) occur whenever �̇� = 0. Because this
system is homogeneous, it has at least a trivial solution, which

is also one of the equilibrium points. In addition, for given
parameter values, system (6) has eight nontrivial equilibrium
points, all of which can be found numerically. Coordinates
of fixed points depend on the parameter 𝑐 and are listed in
Table 2 for 𝑐 = (0.8; 0.15). The stability of the system in
the local vicinity of equilibrium points can be studied by
evaluating the Jacobian matrix (10) at each of the fixed points
of the system (6) and then finding the resulting eigenvalues. If
at least one eigenvalue has a positive real part, the equilibrium
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Table 2: Nontrivial equilibrium points of the coupled system for 𝑐 = 0.15 (numerator) and 𝑐 = 0.8 (denominator).

𝑥
0

𝑦
0

𝑧
0

𝑋
0

𝑌
0

𝑍
0

8.6244/11.9392 8.6202/11.8783 27.0182/27.5491 −0.2751/ − 0.7612 1.0186/8.7902 −15.3028/ − 85.2914

−8.6244/ − 11.9392 −8.6202/ − 11.8783 27.0182/27.5491 0.2751/0.7612 −1.0186/ − 8.7902 −15.3028/ − 85.2914

8.3103/7.8413 8.1437/6.2459 26.8420/25.8088 −11.1123/ − 19.9433 −9.8657/ − 13.6702 26.0129/24.8091

−8.3103/ − 7.8413 −8.1437/ − 6.2459 26.8420/25.8088 11.1123/19.9433 9.8657/13.6702 26.0129/24.8091

8.1879/6.7233 8.3404/7.9473 27.1900/29.2784 10.1619/15.2997 11.3901/20.6783 28.1103/30.8040

−8.1879/ − 6.7233 −8.3404/ − 7.9473 27.1900/29.2784 −10.1619/ − 15.2997 −11.3901/ − 20.6783 28.1103/30.8040

0.0457/0.4400 −0.0837/ − 0.5140 1.5182/8.1275 −8.6242/ − 11.9254 −8.6174/ − 11.5734 27.3743/27.0154

−0.0457/ − 0.4400 0.0837/0.5140 1.5182/8.1275 8.6242/11.9254 8.6174/11.5734 27.3743/27.0154

20

0

−20

A
m

pl
itu

de

x

X

0 10 20 30 40 50 60 70 80

Time

(a)

20

40

0

A
m

pl
itu

de

z

Z

0 10 20 30 40 50 60 70 80

Time

(b)

Figure 3: Time evolution of fast and slow dynamic variables for 𝑐 =
0.15.

is an unstable node. For instance, for 𝑐 = 1.0 at the origin, the
Jacobian has the following six eigenvalues:

𝜆
1
= −22.87, 𝜆

2
= 11.90, 𝜆

3
= 1.22,

𝜆
4
= −2.35, 𝜆

5
= −2.13, 𝜆

6
= −0.80.

(13)

Since two of the eigenvalues are positive, the origin is an
unstable node and since the remaining four of the eigenvalues
are negative this point is saddle. Stability of the system in
the vicinity of the remaining fixed points can be examined
analogously.
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Figure 4: Time evolution of fast and slow dynamic variables for 𝑐 =
0.8.

3.4. Symmetry and Invariance. One can easily show that the
coupled system (6) remains invariant under the following
transformation:

𝐹 : (𝑥, 𝑦, 𝑧, 𝑋, 𝑌, 𝑍) → (−𝑥, −𝑦, 𝑧, −𝑋, −𝑌, 𝑍) . (14)

This means that if

(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝑍 (𝑡)) (15)

is a solution of (6), then

(−𝑥 (𝑡) , −𝑦 (𝑡) , 𝑧 (𝑡) , −𝑋 (𝑡) , −𝑌 (𝑡) , 𝑍 (𝑡)) (16)
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Table 3: Natural frequency 𝜔
0
for different values of the coupling strength parameter.

𝑐 0.01 0.15 0.5 0.8 1.0 1.2 1.5
𝜔
0

0.8422 0.8565 0.9804 1.1624 1.3081 1.4667 1.7208

is also a solution.The invariance of 𝑧 and𝑍 axes indicates that
all trajectories on the 𝑧 and 𝑍 axes remain on these axes and
approach the origin. Indeed, if

(𝑥
0
, 𝑦
0
, 𝑧
0
, 𝑋
0
, 𝑌
0
, 𝑍
0
) = (0, 0, 𝑧

0
, 0, 0, 𝑍

0
) , (17)

then the model equations are as follows:

�̇� = −𝑏𝑧 + 𝑐𝑍, (18)

̇
𝑍 = −𝜀𝑏𝑍 − 𝑐𝑧. (19)

Differentiating (18) with respect to 𝑡 and then substituting
(19) into the result of differentiation give the following second
order ODE:

�̈� + 𝑏 (1 + 𝜀) �̇� + (𝑐
2
+ 𝜀𝑏
2
) 𝑧 = 0. (20)

This equation is a dumped harmonic oscillator which can be
rewritten as

�̈� + 2𝛾�̇� + 𝜔
2

0
𝑧 = 0, (21)

where 𝛾 = 𝑏(1+𝜀)/2 is a damping constant and𝜔2
0
= (𝑐
2
+𝜀𝑏
2
)

is a natural frequency. Equation (21) is a linear homogeneous
ODE and its general solution depends on the relationship
between damping constant 𝛾 and natural frequency 𝜔

0
.

(a) For 𝛾 < 𝜔
0
(underdumped oscillator) the general

solution of (21) has the following form

𝑧 (𝑡) = 𝐴
0
𝑒
−𝛾𝑡 cos (𝜔𝑡 + 𝜑

0
) . (22)

In this case the solution oscillates with the amplitude 𝐴
0
𝑒
−𝛾𝑡

exponentially decreasing to zero and the angular frequency𝜔
is given by𝜔 = 𝜔

0
√1 − (𝛾/𝜔

0
)
2.The initial amplitude𝐴

0
and

the initial phase 𝜑
0
are defined by the initial conditions.

(b) For 𝛾 > 𝜔
0
(overdumped oscillator) the general

solution of (21) is represented by

𝑧 (𝑡) = 𝐴𝑒
−𝛽
1
𝑡
+ 𝐵𝑒
−𝛽
2
𝑡
, (23)

where 𝛽
1,2
= 𝛾±𝜔

0
√(𝛾/𝜔

0
)
2
− 1 and𝐴, 𝐵 are unknown con-

stants of integration. In this case, the solution asymptotically
tends to the equilibrium 𝑧 = 0without oscillations.Thevalues
of 𝐴 and 𝐵 are fixed by imposing specific initial condition.

(c) For 𝛾 = 𝜔
0
(critical damping) the general solution of

(21) is as follows:

𝑧 (𝑡) = 𝑒
−𝛾𝑡
(𝐴 + 𝐵𝑡) , (24)

where𝐴, 𝐵 are arbitrary constants of integration. Similarly to
the overdamped oscillator case, there are no oscillations; only
monotonous damping is observed.
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Figure 5: Time evolution of dynamic variables 𝑧 and 𝑍 for 𝑐 = 0.8.

In our example a damping constant 𝛾 ≈ 1.47 and
the natural frequency 𝜔

0
depend on the coupling strength

parameter 𝑐 (see Table 3). Critical frequency 𝜔𝑐
0
, at which

𝛾 = 𝜔
0
, occurs when 𝑐 ≈ 1.2. Since for our experiments

𝑐 ∈ [0.15; 1.0], oscillator (21) is overdumped (𝛾 > 𝜔
0
) and its

general solution is given by (23). Figure 5 shows computed
solutions to (18) and (19) with initial conditions 𝑧(𝑡

0
) =

𝑍(𝑡
0
) = 1 for 𝑐 = 0.8. As 𝑡 → ∞, the dynamic variables

𝑧 and 𝑍 tend to zero.

3.5. Dissipativity. Let 𝑉 be the volume of some region of
phase space. The rate of volume contraction is given by Lie
derivative:

1

𝑉

𝑑𝑉

𝑑𝑡

=

𝜕�̇�

𝜕𝑥

+

𝜕 ̇𝑦

𝜕𝑦

+

𝜕�̇�

𝜕𝑧

+

𝜕�̇�

𝜕𝑋

+

𝜕�̇�

𝜕𝑌

+

𝜕
̇
𝑍

𝜕𝑍

= − (1 + 𝜀) (1 + 𝜎 + 𝑏) = 𝛼 < 0.

(25)

Since the rate of volume contraction is always negative under
the chosen model parameters, the coupled system (5) is
dissipative and, therefore, volumes in phase space shrink
exponentially with time. This is represented mathematically
by 𝑉(𝑡) = 𝑉(𝑡

0
)𝑒
𝛼𝑡.
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Figure 6: Autocorrelation functions for dynamic variables 𝑥 and𝑋 for different parameter 𝑐.
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Figure 8: Power spectral density estimate of fast (𝑥 and 𝑧) and slow (𝑋 and 𝑍) dynamic variables for 𝑐 = 0.15.

4. Correlation and Spectral Properties

4.1. General Notes. Numerical integration of (5) produces
the time series of dynamic variables hereinafter referred to
as signals or oscillations. We can conduct the diagnosis of
the coupled dynamical system by analysing the signals using
standard tools such as autocorrelation functions and the
distribution of power density in the frequency domain from
signals obtained in the time domain.

Autocorrelation functions (ACFs) enable one to distin-
guish between regular and chaotic processes and to detect
transition from order to chaos. In particular, for chaotic
motions, ACF decreases in time, inmany cases exponentially,
while, for regular motions, ACF is unchanged or oscillating.
In general, however, the behaviour of ACFs of chaotic
oscillations is frequently very complicated and depends on
many factors (e.g., [37–39]). Autocorrelation functions can
also be used to define the so-called typical time memory
(typical timescale) of a process [40]. If it is positive, ACF is

considered to have some degree of persistence: a tendency
for a system to remain in the same state from one moment
in time to the next.

For a given discrete-time signal {𝑢
𝑚
}
𝑀−1

𝑚=0
the power

spectrum density (PSD) characterizes the signal intensity
(power) per unit of bandwidth. For a wide-sense stationary
process, the Wiener-Khinchin theorem relates the ACF to
the PSD by means of a Fourier transform (i.e., PSD is a
Fourier transform of ACF) and provides information about
correlation structure of the time series generated by the
system. The term “power spectral density function” is fre-
quently shortened to spectrum. The units of PSD are 𝑢2/Hz,
irrespective of what the units of 𝑢 are. Oscillations of different
types have specific spectral properties and, therefore, can be
characterized by their PSD. For instance, a periodic motion
consisting of the sum of finite number of sine curves has a
set of lines in its spectrum, whereas a chaotic motion has a
continuous spectral density function.
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Figure 9: Power spectral density estimate of fast (𝑥 and 𝑧) and slow (𝑋 and 𝑍) dynamic variables for 𝑐 = 0.8.

The ACF and spectrum represent different characteriza-
tion of the same time series information. However, the ACF
analyzes information in the time domain and the spectrum
in the frequency domain.

4.2. Autocorrelation Function. The ACF for a given discrete
dynamic variable {𝑢

𝑚
}
𝑀−1

𝑚=0
is defined as

𝐶 (𝑠) = ⟨𝑢
𝑚
𝑢
𝑚+𝑠
⟩ − ⟨𝑢

𝑚
⟩ ⟨𝑢
𝑚+𝑠
⟩ , (26)

where the angular brackets denote ensemble averaging.
Assuming time series originates from a stationary and
ergodic process, ensemble averaging can be replaced by time
averaging over a single normal realization:

𝐶 (𝑠) = ⟨𝑢
𝑚
𝑢
𝑚+𝑠
⟩ − ⟨𝑢⟩

2
. (27)

Signal analysis commonly uses the normalized ACF, defined
as 𝑅(𝑠) = 𝐶(𝑠)/𝐶(0).

ACF plots for realizations of dynamic variables 𝑥 and 𝑋
and 𝑧 and 𝑍 calculated for different values of the coupling

strength parameter 𝑐 are presented in Figures 6 and 7,
respectively. For relatively small parameter 𝑐 (𝑐 < 0.4), the
ACFs for both 𝑥 and 𝑋 variables decrease fairly rapidly to
zero, consistently with the chaotic behaviour of the coupled
system. However, as expected, the rate of decay of the ACF
of the slow variable 𝑋 is less than that of the fast variable 𝑥.
The ACFs for variables 𝑧 and 𝑍 (really, their envelopes) also
decay almost exponentially from the maximum to zero. For
coupling strength parameter on the interval 0.4 < 𝑐 < 0.6 the
ACF of the fast variable 𝑥 becomes smooth and converges to
zero. At the same time, the envelopes of the ACFs of variables
𝑋, 𝑧, and 𝑍 demonstrate a fairly rapid fall, indicating the
chaotic behaviour. As the parameter 𝑐 increases, the ACFs
become periodic and their envelopes decay slowly with time,
indicating transition to regularity. For 𝑐 > 0.8 calculated
ACFs show periodic signal components.

4.3. Power Density Spectra. There are several methods, both
parametric and nonparametric, for spectrum estimation [41,
42].This paper uses periodogram,which is themost common
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Figure 10: Power spectral density estimate obtained by Welch method for fast (𝑥 and 𝑧) and slow (𝑋 and 𝑍) dynamic variables for 𝑐 = 0.15
(a) and 𝑐 = 0.8 (b).

nonparametric method for computing the PSD estimate of a
time series.Thismethod calculates PSD based on the discrete
Fourier transform (DFT). Let us define the DFT of sequence
{𝑢
𝑚
}
𝑀−1

𝑚=0
as

𝑈
𝑘
=

𝑀−1

∑

𝑚=0

𝑢
𝑚
𝑒
−𝑖(2𝜋/𝑀)𝑚𝑘

, 𝑘 = 0, . . . ,𝑀 − 1, (28)

where 𝑘 is a discrete normalized frequency. Then the spec-
trum can be represented as follows:

𝑃
𝑘
=





𝑈
𝑘






2

𝑀𝑓
𝑠

, 𝑘 = 0, . . . ,𝑀 − 1. (29)

The spectrum 𝑃
𝑘
can be plotted on a dB scale, relative to the

reference amplitude 𝑃ref = 1; therefore

𝑃
dB
𝑘
= 10 ⋅ log

10
(𝑃
𝑘
) , 𝑘 = 0, . . . ,𝑀 − 1. (30)

The frequency 𝑓
𝑘
corresponding to point 𝑘 of the DFT is

𝑓
𝑘
= 𝑘

𝑓
𝑠

𝑀

. (31)

The spectrum estimates for fast (𝑥 and 𝑧) and slow (𝑋
and 𝑍) variables as well as for weak (𝑐 = 0.15) and strong
(𝑐 = 0.8) coupling are shown in Figures 8 and 9, respectively.
For weak coupling, the signal power for all dynamic variables
decreases exponentially from low frequencies toward higher
frequencies and distinctive energy peaks are not present for
almost all variables. The only exception is the fast variable

𝑧, for which a local peak is observed at frequency ∼1.2Hz.
For weak coupling, the spectrum of the fast subsystem is
similar to the spectrum of the L63 model: the fast subsystem
generates a broadband spectrum reminiscent of random
noise corresponding to irregular aperiodic oscillations. At the
same time, the low-frequency component strongly dominates
in the spectrum of slow subsystem. As the coupling strength
increases, the power spectrum of both fast and slow subsys-
tems shifts toward the low frequencies, which predominate in
the spectra. The periodogram is an asymptotically unbiased
estimator of the true spectrum; however in statistical terms it
is inconsistent since the periodogram variance does not tend
to zero as the time series length increases and tends to infinity.
The improved estimator of the PSD, according to Welch’s
method [43], reduces the periodogram variance by averaging.
This approach first splits the time series data into overlapping
segments, then calculates a modified periodogram for each
section, and finally averages periodograms of all segments.
The spectrum estimates obtained using Welch’s method for
fast (𝑥 and 𝑧) and slow (𝑋 and 𝑍) variables for weak
(𝑐 = 0.15) and strong (𝑐 = 0.8) coupling are shown in
Figure 10. In this figure, the PSDs are represented by curves
having no background noise oscillations. Meanwhile, the
spectrum patterns remain the same: the signal energy is still
concentrated in the low-frequency domain of the spectrum.

4.4. Spectrogram. Spectrogram is another powerful tech-
nique used in many applications for estimating the spectrum
of the time series data. Spectrogram provides information
about power as a function of frequency and time [42] and
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Figure 11: Spectrogram for fast and slow dynamic variables for 𝑐 = 0.15.
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is generally presented as plot with the frequency of the signal
shown on the vertical axis, time on the horizontal axis, and
signal power on a colour-scale. Thus, for a given time frame
the spectrogram provides the information about frequency
content of a signal. Normalized spectrograms for fast (𝑥, 𝑦,
and 𝑧) and slow (𝑋, 𝑌, and 𝑍) variables for weak (𝑐 = 0.15)
and strong (𝑐 = 0.8) coupling are shown in Figures 11 and
12, respectively, with red color representing the highest signal
power and blue the lowest. Calculated spectrograms are fully
consistent with the ACFs and PSPs, providing additional
information about dominant and minor frequencies in the
spectrum for a given time.

5. Concluding Remarks

Low-order system discussed in this paper represents a power-
ful tool to study various physical and computational aspects
of numerical weather prediction, data assimilation, and
climate simulation. However, as mentioned previously, the
NWP and climate modeling pursue very different objectives
and are focused on dynamical processes of significantly
different spatial and time scales. The integration time 𝜏 of
the system equations can be classified based on its duration
as short, intermediate, long, and very long [32], with the
corresponding values of 𝜏 set to 𝜏 = 0.1, 𝜏 = 0.44, 𝜏 =

2.26, and 𝜏 = 131.36, respectively. The short integration
times traverse some portion of a trajectory along the attractor,
the intermediate integrations correspond to complete circle
around the attractor, the long integrations complete several
circles, and the very long integrations correspond to move-
ment along the attractor of about 100 times. The time step
Δ𝑡 = 0.01 used in the numerical integrations is equivalent to
1.2 hours of a real time [13].Therefore, intermediate and long-
time intervals defined above correspond to 2.2 and 11.3 days,
respectively, which are consistent with the NWP and data
assimilation time of integrations. In turn, the very long inte-
gration intervals correspond to climate modeling time scales.

This paper analyzed the basic dynamic, spectral, and
correlative properties of the discrete-time nonlinear coupled
dynamical system consisting of two versions of the L63
model. The autocorrelation functions, power spectrum den-
sities, and spectrograms for dynamic variables of the fast and
slow subsystems were computed by numerical integration of
the system equations. The influence of the coupling strength
parameter on the ACFs, PSDs, and spectrograms of system’s
dynamic variables was estimated. By changing the coupling
strength parameter 𝑐, one can obtain the system behaviour
that reflects the major dynamical patterns of weather and
climate for given natural conditions.
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