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A discrete logistic steady-state equation with both positive and negative birth rate of population will be considered. By using sub-
and upper-solution method, the existence of bounded positive solutions and the existence and uniqueness of positive solitons will
be established. To this end, the Dirichlet eigenvalue problem with positive and negative coefficients is considered, and a general
sub- and upper-solution theorem is also obtained.

1. Introduction

In this paper, we consider the second-order difference equa-
tion

−Δ

2
𝑥

𝑖−1
= 𝜆 (𝑝

𝑖
𝑥

𝑖
− 𝑥

1+𝛼

𝑖
) , 𝑖 ∈ Z, (1)

whereZ is a set of all integers, 𝛼 > 0 and 𝜆 > 0 are constants,
Δ𝑥
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𝑖
, Δ2𝑥
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= Δ(Δ𝑥
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𝑖∈Z will be
specified later.

This equation is associated with the famous discrete logis-
tic equation with diffusion:
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for 𝑖 ∈ Z and 𝑡 ∈ Z+ = {0, 1, 2, . . .}, where the parameter
𝑑 > 0 corresponds to the rate at which the population
diffuses, and the unknown function 𝑥 corresponds to the
density of a population. The term −𝑥1+𝛼 in the equation
corresponds to the fact that the population is self-limiting
and the 𝑝 corresponds to the birth rate of population if the
self-limitation is ignored. At points where 𝑝

𝑖
> 0 (<0) the

population, ignoring self-limitation, has positive (negative)
birth rate. Hence, we assume throughout this paper that 𝑝
takes on both positive and negative values on Z; we further
assume that the sequence {𝑝

𝑖
}

𝑖∈Z is bounded and there exists
an integer 𝑖

0
∈ Z such that 𝑝

𝑖0
> 0.

If we write 𝜆 = 1/𝑑, we see that the steady-state solutions
of (2) must satisfy (1). Since the sequence 𝑥 represents a pop-
ulation density, it is nonnegative. Such solutions correspond
to possible steady-state distributions of population. So our
purpose in this paper is to establish the existence of positive
solutions or the existence and uniqueness of positive solitons
for (1). A discrete soliton is a spatially localized solution of (1)
and decays to 0 at infinity; that is,

lim
|𝑖|→∞

𝑥

𝑖
= 0. (3)

Recently, the existence of nontrivial discrete solitons for
the general equation

−Δ

2
𝑥

𝑖−1
= 𝑓 (𝑖, 𝑥

𝑖
) , 𝑖 ∈ Z, (4)

has been extensively established by a number of authors [1–
12]. Among the methods used are the principle of anticon-
tinuity [1–3], variational methods [4–10], center manifold
reduction [11], Nehari manifold approach [12], and so forth.
On the other hand, a soliton of (4) is also its homoclinic orbit
or homoclinic solution. By using the variational methods, the
existence of homoclinic orbits or homoclinic solutions has
also been extensively discussed by a number of authors; see
[4–10, 13–16].However, as far aswe know, there are fewpapers
concerned with the existence of positive solitons.
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Equation (2) is a discrete analogue of the well-known
logistic equation of the form

𝑢

𝑡
= 𝐷𝑢

𝑥𝑥
+ 𝑝 (𝑥) 𝑢 − 𝑢

1+𝛼
, 𝑥 ∈ R, 𝑡 ∈ R

+
.

(5)

Indeed, by means of standard finite difference methods, we
set up a grid in the 𝑥, 𝑡 plane with grid spacings Δ𝑥 and
Δ𝑡 and then replace the second derivative 𝑢

𝑥𝑥
with a central

difference and 𝑢
𝑡
with a forward difference. By writing 𝑥
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𝑛
), a finite difference

scheme for (5) is obtained:
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(7)

which has the steady-state equation:
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) , 𝑖 ∈ Z. (8)

We note that the steady-state equation of (5) is

𝐷𝑢


+ 𝑝 (𝑥) 𝑢 − 𝑢

1+𝛼
= 0

(9)

or

−𝑢


= 𝜇 (𝑝 (𝑥) 𝑢 − 𝑢

1+𝛼
) , (10)

where 𝜇 = 1/𝐷. When 𝛼 = 1, (10) is reduced to

−𝑢


= 𝜇 (𝑝 (𝑥) 𝑢 − 𝑢) .

(11)

In [17], the authors considered the existence and uniqueness
of positive solitons of (11) by using sub- and upper-solution
method. The present work is motivated by [17].

To obtain a positive subsolution of (1), we need a positive
eigenvalue and its corresponding positive eigenfunction of
the eigenvalue problem

−Δ

2
𝑥

𝑖−1
= 𝜆𝑝

𝑖
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, 𝑖 ∈ {𝑎, 𝑎 + 1, . . . , 𝑏} ,

𝑥

𝑎−1
= 0 = 𝑥

𝑏+1
.

(12)

Note that𝑝 takes on both positive and negative values; thus, it
is indefinite in a very strong sense. The corresponding prob-
lem for ordinary differential equation had been considered in
[18] by using variational method. However, such problem is
new for the above discrete problem; see [19–21]. In Section 2,
we will consider the above discrete eigenvalue problem by
using the matrix and vector method.

As far as we know, for the discrete problem (1) there
is no general sub- and upper-solution theorem on the set

Z. Thus, a general sub- and upper-solution theorem will be
firstly obtained in Section 3 and such theoremwill be used for
(1). On the other hand, our solutions are classical; however,
[17] cannot insure this fact because some points of their
subsolution are not derivative.

Our results will give some theory groundwork for the
numerical calculation of (11). Note that 𝜆 = (Δ𝑥)2/𝐷 ̸= 𝜇

when (Δ𝑥)2 ̸= 1. This will lead to different results between (1)
and (11).

2. Preliminaries

For any 𝑎, 𝑏 ∈ Z with 𝑎 < 𝑏, we consider the eigenvalue
problem of the form
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where [𝑎, 𝑏] = {𝑎, 𝑎 + 1, . . . , 𝑏}, {𝑝
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}
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Then problem (13) can be rewritten by matrix and vector in
the form

𝐴𝑥 = 𝜆𝑃𝑥. (16)
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}
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Consider the Rayleigh quotient
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and let

𝜆

1
= inf {𝐾 (V) : V ∈ 𝐻,
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For such defined 𝜆
1
, we have the following important

result.

Lemma 1. 𝜆
1
is a positive eigenvalue of the problem (13) or

(16). Moreover 𝜆
1
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for all V ∈ 𝐻. Moreover, by the spectral theorem, (𝐴V, V) ≥
𝛾

1
(V, V), where

𝛾

1
= 4 sin2 𝜋

2 (𝑏 − 𝑎 + 2)

(21)

is the first eigenvalue of the eigenvalue problem
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Hence 𝜆
1
> 0.

Second, consider the linear eigenvalue problem
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𝑖
= −Δ
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𝜑 if and only if 0 is an eigenvalue of 𝑆 and so of (24) with
corresponding eigenfunction 𝜑. The minimal eigenvalue 𝛼
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Note that 𝑄
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(V) ≥ 0 for all V ∈ 𝐻; thus, we have 𝛼

1
≥ 0.

Because of how we defined 𝜆
1
, there exists a sequence V(𝑛) ∈
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2
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2
= 𝜆
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which implies that

lim
𝑛→∞
𝑄

𝜆1
(V(𝑛)) = 0. (27)

Thus, we have 𝛼
1
≤ 0. In this case, we know that 𝛼

1
= 0 is the

minimal eigenvalue of (24). By Lemma A.1 in the Appendix,
𝛼

1
is simple and the corresponding eigenfunction can be

chosen to be positive on𝐻.Thus, the statement in this lemma
is right.

Let 𝜆 > 𝜆
1
; consider the eigenvalue problem of the form
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𝑖
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We have the following result.

Lemma 2. If 𝜆 > 𝜆
1
, then the minimal eigenvalue 𝜇

1
of (28)

is negative and the corresponding eigenfunction 𝜑(1) can be
chosen so that 𝜑(1)

𝑖
> 0 for all 𝑖 ∈ [𝑎, 𝑏].

Proof. Let 𝜑 be the eigenvector obtained in Lemma 1 and
‖𝜑‖ = 1; then we have
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(30)

In view of Lemma A.1 in the Appendix, the eigenvector
corresponding to 𝜇

1
can be chosen to be positive. This

completes the proof.

3. Main Results

First of all, we introduce the definitions of the subsolution and
upper-solution and give a general sub- and upper-solution
theorem.

For any 𝑎, 𝑏 ∈ Z with 𝑎 < 𝑏, consider the Dirichlet
boundary value problem of the form

−Δ

2
𝑥

𝑖−1
= 𝑓 (𝑖, 𝑥

𝑖
) for 𝑖 ∈ [𝑎, 𝑏] ,

𝑥

𝑎−1
= 0 = 𝑥

𝑏+1
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We will denote by (31)
𝑛
the problem (31) when 𝑎 = −𝑛 and

𝑏 = 𝑛.

Definition 3. A sequence 𝑥 = {𝑥
𝑖
}

𝑏+1

𝑖=𝑎−1
is said to be an upper-
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(32)
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A sequence 𝑥 = {𝑥
𝑖
}

+

𝑖=−∞
is said to be a subsolution of (31) if
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𝑖
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𝑥

𝑖
≤ 0 for 𝑖 = 𝑎 − 1, 𝑏 + 1.

(33)

Theorem 4. Suppose that 𝑥, 𝑥 : Z → R are functions with
𝑥 ≤ 𝑥 (where 𝑥 ≤ 𝑥 is defined by 𝑥

𝑖
≤ 𝑥

𝑖
for 𝑖 ∈ Z) and 𝑥|

𝑛
, 𝑥|
𝑛

are, respectively, a subsolution and an upper-solution of (31)
𝑛

for all large 𝑛. Assume that𝑓(𝑖, 𝑧) is continuous with 𝑧 ∈ [𝛼, 𝛽]
and there exists a constant 𝑘 > 0 such that

𝑓 (𝑖, 𝑠

2
) − 𝑓 (𝑖, 𝑠

1
) ≥ −𝑘 (𝑠

2
− 𝑠

1
) (34)

for all 𝑖 ∈ Z and 𝑠
2
> 𝑠

1
with 𝑠

1
, 𝑠

2
∈ [𝛼, 𝛽] (where𝛼 = inf

𝑖∈Z𝑥𝑖

and 𝛽 = sup
𝑖∈Z𝑥𝑖).Then problem (4) has a solution 𝑥 such that

𝑥 ≤ 𝑥 ≤ 𝑥.

Proof. Since 𝑥 and 𝑥 provide sub- and upper-solutions for
(31)
𝑛
, there exists a solution 𝜑 of (31)

𝑛
such that 𝑥

𝑖
≤ 𝜑

𝑖
≤ 𝑥

𝑖

for all |𝑖| ≤ 𝑛.
In fact, for any sequence 𝑢 = {𝑢

𝑖
}

𝑛

𝑖=−𝑛
, clearly, the problem
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2
𝑤

𝑖−1
+ 𝑘𝑤

𝑖
= 𝑓 (𝑖, 𝑢

𝑖
) + 𝑘𝑢

𝑖
for 𝑖 ∈ [−𝑛, 𝑛] ,

𝑤

−𝑛−1
= 0 = 𝑤

𝑛+1
,

(35)

has a unique solution 𝑤. This defines a mapping 𝑇 : 𝑢 →
𝑤. We claim that 𝑇 is increasing on [𝑥, 𝑥]. In fact, for any
sequences {�̃�

𝑖
}

𝑛

𝑖=−𝑛
, {Ṽ
𝑖
}

𝑛

𝑖=−𝑛
∈ [𝑥, 𝑥] with Ṽ ≤ �̃�, we have

Γ (𝑇�̃� − 𝑇Ṽ) = 𝑓 (𝑖, �̃�
𝑖
) + 𝑘�̃�

𝑖
− 𝑓 (𝑖, Ṽ

𝑖
) − 𝑘Ṽ

𝑖

≥ −𝑘 (�̃�

𝑖
− Ṽ
𝑖
) + 𝑘 (�̃�

𝑖
− Ṽ
𝑖
) ≥ 0,

(36)

where Γ is an operator defined as (Γ𝑢)
𝑖
= −Δ

2
𝑢

𝑖−1
+𝑘𝑢

𝑖
for 𝑖 ∈

[−𝑛, 𝑛]. Since (𝑇�̃�)
−𝑛−1
− (𝑇Ṽ)

−𝑛−1
≥ 0, (𝑇�̃�)

𝑛+1
− (𝑇Ṽ)

𝑛+1
≥ 0,

by the strong monotonicity of Γ, we obtain 𝑇�̃� ≥ 𝑇Ṽ; see [21].
Let 𝑢(𝑚) = 𝑇𝑢(𝑚−1), 𝑢(0) = 𝑥; V(𝑚) = 𝑇V(𝑚−1), V(0) = 𝑥. In

the following, we claim that

𝑥 = 𝑢

(0)
≤ 𝑢

(1)
≤ 𝑢

(2)
≤ ⋅ ⋅ ⋅ ≤ V(2) ≤ V(1) ≤ V(0) = 𝑥. (37)

First of all, by using (35) and the definition of subsolution, we
see

− Δ

2
(𝑢

(0)

𝑖−1
− 𝑢

(1)

𝑖−1
) + 𝑘 (𝑢

(0)

𝑖
− 𝑢

(1)

𝑖
)

= −Δ

2
𝑢

(0)

𝑖−1
+ 𝑘𝑢

(0)

𝑖
− [𝑓 (𝑖, 𝑢

(0)

𝑖
) + 𝑘𝑢

(0)

𝑖
]

= −Δ

2
𝑥

𝑖−1
− 𝑓 (𝑖, 𝑥

𝑖
) ≤ 0 for 𝑖 ∈ [−𝑛, 𝑛] ,

(38)

and 𝑢(0)
−𝑛−1
− 𝑢

(1)

−𝑛−1
≤ 0, 𝑢(0)

𝑛+1
− 𝑢

(1)

𝑛+1
≤ 0. This implies that

𝑢

(0)
− 𝑢

(1)
≤ 0 by the strong monotonicity of Γ. A similar

argument gives V(1) ≤ V(0). The monotonicity of Γ and 𝑇 gives
the rest. So there exist 𝑢 and V such that

lim
𝑚→∞

𝑢

(𝑚)
= 𝑢, lim

𝑚→∞
V(𝑚) = V. (39)

By the definition of 𝑢 and V, we see that 𝑢 and V satisfy
(31)
𝑛
and 𝑥 ≤ 𝑢 ≤ V ≤ 𝑥. Let 𝑥(𝑛) denote such solution

corresponding to (31)
𝑛
.

Then standard a priori estimates and a diagonalization
argument show that there exists a subsequence of {𝑥(𝑛)}which
converges to solution 𝑥 of (4) on every bounded subset of
Z. Moreover, since 𝑥 ≤ 𝑥(𝑛) ≤ 𝑥 for all 𝑛, it follows that
𝑥 ≤ 𝑥 ≤ 𝑥 on Z. The proof is complete.

In the following, we use the sub- and upper-solution
theorem to establish the existence of positive solutions or the
existence and uniqueness of positive solitons for (1).

For problem (1), we have assumed that there exists 𝑖
0
∈ Z

such that 𝑝
𝑖0
> 0. For any 𝑛 > |𝑖

0
|, consider the eigenvalue

problem (13) when 𝑎 = −𝑛 and 𝑏 = 𝑛 and denote the
corresponding positive eigenvalue 𝜆

1
defined in (19) by 𝜆(𝑛)

1
.

Then

𝜆

(∞)

1
:= lim
𝑛→∞
𝜆

(𝑛)

1
≥ 0. (40)

Theorem 5. For any 𝜆 > 𝜆(∞)
1

, (1) has a positive solution,
where 𝜆(∞)

1
is defined in (40).

Proof. For any 𝜆 > 𝜆(∞)
1

, clearly, there exists a positive integer
𝑛

1
≥ |𝑖

0
| such that 𝑖

0
∈ [−𝑛

1
, 𝑛

1
] and 𝜆(∞)

1
< 𝜆

(𝑛1)

1
< 𝜆. In view

of Lemma 2, the eigenvalue problem

−Δ

2
𝑥

𝑖−1
− 𝜆𝑝

𝑖
𝑥

𝑖
= 𝜇𝑥

𝑖
, 𝑖 ∈ [−𝑛

1
, 𝑛

1
] ,

𝑥

−𝑛1−1
= 0 = 𝑥

𝑛1+1
,

(41)

has a negative eigenvalue 𝜇(𝑛1)
1

and its corresponding eigen-
function 𝜑(𝑛1) with ‖𝜑(𝑛1)‖ = 1 can be chosen so that 𝜑(𝑛1)

𝑖
> 0

for all 𝑖 ∈ [−𝑛
1
, 𝑛

1
]. For any 𝜀 > 0, we define

𝑥

𝑖
= {

𝜀𝜑

(𝑛1)

𝑖
, 𝑖 ∈ [−𝑛

1
, 𝑛

1
] ,

0, 𝑖 ∈ Z \ [−𝑛
1
, 𝑛

1
] .

(42)

At this time, we have

− Δ

2
(𝜀𝜑

(𝑛1)

𝑖−1
) − 𝜆𝑝

𝑖
(𝜀𝜑

(𝑛1)

𝑖
) + 𝜆 (𝜀𝜑

(𝑛1)

𝑖
)

1+𝛼

= 𝜇

(𝑛1)

1
(𝜀𝜑

(𝑛1)

𝑖
) + 𝜆 (𝜀𝜑

(𝑛1)

𝑖
)

1+𝛼

≤ 0

(43)

for 𝑖 ∈ [−𝑛
1
, 𝑛

1
] and sufficiently small 𝜖. When 𝑖 = 𝑛

1
+ 1,

−Δ

2
𝑥

𝑖−1
= −𝑥

𝑛1+2
+ 2𝑥

𝑛1+1
− 𝑥

𝑛1

= −𝜀𝜑

(𝑛1)

𝑛1
< 0

(44)

and −Δ2𝑥
𝑖−1
≡ 0 for 𝑖 > 𝑛

1
+ 1. Similarly, we can also prove

that −Δ2𝑥
𝑖−1
≤ 0 for 𝑖 ≤ −𝑛

1
−1.Thus, the sequence 𝑥 defined

in (42) is a subsolution of (1).
Note that 𝛼 > 0 and the sequence {𝑝

𝑖
} is bounded.

Thus, the sufficiently large positive constant 𝑀 ≥ 𝑥 is a
supersolution of (1).

For 𝑓(𝑖, 𝑥
𝑖
) = 𝜆(𝑝

𝑖
𝑥

𝑖
− 𝑥

1+𝛼

𝑖
), we have

𝑓 (𝑖, 𝑠

2
) − 𝑓 (𝑖, 𝑠

1
)

= 𝜆 (𝑝

𝑖
𝑠

2
− 𝑠

1+𝛼

2
) − 𝜆 (𝑝

𝑖
𝑠

1
− 𝑠

1+𝛼

1
)

= 𝜆 (𝑝

𝑖
− (1 + 𝛼) 𝜉

𝛼
) (𝑠

2
− 𝑠

1
) ,

(45)
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where 𝜉 ∈ (𝑠
1
, 𝑠

2
). Note that the sequences {𝑝

𝑖
}, {𝑥
𝑖
}, and𝑀

are bounded; thus, (1) satisfies condition (34). ByTheorem 4,
problem (1) has a solution 𝑢 such that 0 ≤ 𝑥 ≤ 𝑢 ≤ 𝑀. We
claim that 𝑢 > 0. Suppose there exists 𝑖

1
∈ Z such that 𝑢

𝑖1
= 0;

then we obtain 𝑢
𝑖1−1
+ 𝑢

𝑖1+1
= 0 since −Δ2𝑢

𝑖1−1
= 𝜆(𝑝

𝑖1
𝑢

𝑖1
−

𝑢

1+𝛼

𝑖1
). Thus we obtain 𝑢

𝑖1−1
= 𝑢

𝑖1+1
= 𝑢

𝑖1
= 0. So 𝑢 ≡ 0, which

contradicts 𝑢 ̸≡ 0. The proof is complete.

Theorem 6. Assume that 𝜆 > 𝜆(∞)
1

and there exists a constant
𝐶 > 6/𝜆 and 𝑛

0
> |𝑖

0
| such that

𝑝

𝑖
≤

{

{

{

{

{

𝐶

[𝑖 (𝑖 + 1)]

𝛼
, 𝛼 ∈ (0, 1] ,

−

𝐶

𝑖 (𝑖 + 1)

, 𝛼 > 1

(46)

for |𝑖| > 𝑛
0
. Then (1) has a positive soliton and there exists a

constant𝑀 > 0 and 𝑛
2
≥ 𝑛

0
such that

𝑥

𝑖
≤

𝑀

𝑖 (𝑖 + 1)

𝑓𝑜𝑟 |𝑖| ≥ 𝑛2
. (47)

Proof. Let 𝑥 be the subsolution of (1) obtained in Theorem 5
and

𝜙

𝑖
=

𝑀

𝑖 (𝑖 + 1)

, 𝑖 ̸= 0, ±1, ±2, (48)

where 𝑀 > 0 is a constant determined later. By simple
calculation, we have

Δ𝜙

𝑖−1
=

𝑀

𝑖 (𝑖 + 1)

−

𝑀

𝑖 (𝑖 − 1)

= −

2𝑀

𝑖 (𝑖

2
− 1)

,

−Δ

2
𝜙

𝑖−1
=

2𝑀

𝑖 (𝑖 + 1) (𝑖 + 2)

−

2𝑀

𝑖 (𝑖

2
− 1)

= −

2𝑀

𝑖 (𝑖 + 1)

⋅

3

(𝑖 − 1) (𝑖 + 2)

,

− Δ

2
𝜙

𝑖−1
− 𝜆𝑝

𝑖
𝜙

𝑖
+ 𝜆𝜙

1+𝛼

𝑖

=

𝜆𝑀

𝑖 (𝑖 + 1)

(

−6

𝜆 (𝑖 − 1) (𝑖 + 2)

+ (

𝑀

𝑖(𝑖 + 1)

)

𝛼

− 𝑝

𝑖
) .

(49)

By the assumption on 𝑝, there exist 𝑛
2
≥ 𝑛

0
and𝑀

1
> 0 such

that

−6

𝜆 (𝑖 − 1) (𝑖 + 2)

+ (

𝑀

𝑖(𝑖 + 1)

)

𝛼

− 𝑝

𝑖
≥ 0

(50)

for𝑀 ≥ 𝑀
1
and |𝑖| ≥ 𝑛

2
.

For any𝑀 ≥ 𝑀
1
, define

𝜓

𝑖
=

{

{

{

𝑀

𝑖 (𝑖 + 1)

, |𝑖| ≥ 𝑛2
,

𝑀, |𝑖| < 𝑛2
.

(51)

We will show that 𝜓 is upper-solution of (1) by appropriate
choice of𝑀. In fact,

(a) for |𝑖| > 𝑛
2
, we have −Δ2𝜓

𝑖−1
− 𝜆𝑝

𝑖
𝜓

𝑖
+ 𝜆𝜓

1+𝛼

𝑖
≥ 0 by

the choice of𝑀;

(b) for |𝑖| < 𝑛
2
− 1, we have

−Δ

2
𝜓

𝑖−1
− 𝜆𝑝

𝑖
𝜓

𝑖
+ 𝜆𝜓

1+𝛼

𝑖
= −𝜆𝑝

𝑖
𝑀+ 𝜆𝑀

1+𝛼
≥ 0

(52)

by choosing𝑀 > 𝑀
1
large enough since 𝛼 > 0 and 𝑝

is bounded;
(c) similarly, for 𝑖 = 𝑛

2
, 𝑛

2
− 1, −𝑛

2
, −𝑛

2
+ 1, one can show

that −Δ2𝜓
𝑖−1
− 𝜆𝑝

𝑖
𝜓

𝑖
+ 𝜆𝜓

1+𝛼

𝑖
≥ 0 for𝑀 > 𝑀

1
large

enough.

In view of (a)–(c), we construct upper-solution 𝜓 of (1)
with 𝜓 ≥ 𝑥. Using the sub- and upper-solution Theorem 4,
we complete the proof.

Theorem7. Assume that there exists a positive integer𝑚 > |𝑖
0
|

such that𝑝
𝑖
≤ 0 for |𝑖| ≥ 𝑚. Let𝑥 be a bounded positive solution

of (1); then

lim
|𝑖|→∞

𝑥

𝑖
= 0. (53)

Proof. At this time, we have

−Δ

2
𝑥

𝑖−1
= 𝜆 (𝑝

𝑖
𝑥

𝑖
− 𝑥

1+𝛼

𝑖
) ≤ 0 for |𝑖| ≥ 𝑚. (54)

HenceΔ𝑥
𝑖−1

is an increasing sequence for |𝑖| ≥ 𝑚 and so there
exists a positive integer 𝑛

1
such thatΔ𝑥

𝑖
is one sign for |𝑖| > 𝑛

1
.

Thus 𝑥 is eventually a monotone sequence for |𝑖| > 𝑛
1
. Note

that 𝑥 is bounded. Thus, lim
𝑛→+∞

𝑥

𝑛
and lim

𝑛→−∞
𝑥

𝑛
exist.

If lim
𝑛→+∞

𝑥

𝑛
̸= 0, we have

Δ

2
𝑥

𝑖−1
≥ 𝜆𝑥

1+𝛼

𝑖
for 𝑖 ≥ 𝑚,

Δ𝑥

𝑛
− Δ𝑥

𝑛0−1
≥ 𝜆

𝑛

∑

𝑖=𝑛0

𝑥

1+𝛼

𝑖
,

(55)

which implies that

lim
𝑛→+∞

𝑥

𝑛
= +∞. (56)

This is impossible since 𝑥 is bounded and so we must have
lim
𝑛→+∞

𝑥

𝑛
= 0. Similarly, we also have lim

𝑛→−∞
𝑥

𝑛
= 0.

The proof is complete.

Theorem 8. For any 𝜆 ̸= 0, there exists at most one positive
solution of (1) such that lim

|𝑖|→∞
𝑥

𝑖
= 0.

Proof. Suppose that𝑢 and V are such twodistinct solutions.As
before we can construct an arbitrarily small subsolution and
so there must exist a solution 𝑤 of (1) such that 𝑤 ≤ 𝑢 and
𝑤 ≤ V. Multiplying the 𝑢-equation by 𝑤 and the 𝑤-equation
by 𝑢, then we have
𝑛

∑

𝑖=−𝑛

(𝑢

𝑖
Δ

2
𝑤

𝑖−1
− 𝑤

𝑖
Δ

2
𝑢

𝑖−1
) = 𝜆

𝑛

∑

𝑖=−𝑛

𝑢

𝑖
𝑤

𝑖
(𝑤

𝛼

𝑖
− 𝑢

𝛼

𝑖
) (57)

or

𝑢

𝑛
Δ𝑤

𝑛
− 𝑢

−𝑛
Δ𝑤

−𝑛−1
− 𝑤

𝑛
Δ𝑢

𝑛
+ 𝑤

−𝑛
Δ𝑢

−𝑛−1

= 𝜆

𝑛

∑

𝑖=−𝑛

𝑢

𝑖
𝑤

𝑖
(𝑤

𝛼

𝑖
− 𝑢

𝛼

𝑖
) .

(58)
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Let 𝑛 → +∞; we have

∞

∑

𝑖=−∞

𝑢

𝑖
𝑤

𝑖
(𝑤

𝛼

𝑖
− 𝑢

𝛼

𝑖
) = 0 (59)

which implies that 𝑢 = 𝑤. Similarly, we can also prove that
V = 𝑤. The proof is complete.

Corollary 9. Assume that all conditions of Theorem 8 hold;
then (1) has a unique positive soliton.

4. Conclusion

This paper studied a discrete logistic steady-state equation
with both positive and negative birth rate of population.
By using sub- and upper-solution method (Theorem 4), the
existence of positive solution and positive soliton is obtained
(Theorems 5 and 6). Uniqueness of homoclinic type solution
is also obtained (Theorem 8).

Appendix

To obtain a positive eigenfunction of (13) or a positive
eigenvector of (16), we need the following lemma. We give
the proof by the method of [22].

Lemma A.1. For any (𝑏 − 𝑎 + 1) × (𝑏 − 𝑎 + 1) diagonal matrix

𝑄 = (

𝑞

𝑎
0 ⋅ ⋅ ⋅ 0

0 𝑞

𝑎+1
⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 ⋅ ⋅ ⋅ 0 𝑞

𝑏

), 𝑞

𝑖
∈ R, 𝑖 ∈ [𝑎, 𝑏] , (A.1)

let 𝜇
1
be the minimal eigenvalue of𝐴+𝑄, where𝐴 is defined in

(14). Then 𝜇
1
is simple and the corresponding eigenvector 𝜑(1)

can be chosen to be positive.

Proof. Without loss of generality, we assume 𝑞
𝑖
> 0 for 𝑖 ∈

[𝑎, 𝑏]. If this is not the case, choose a constant 𝐶 > 0 large
enough such that 𝑞

𝑖
+𝐶 > 0. Consider the matrix𝐴+𝑄+𝐶𝐸

instead, where 𝐸 is a (𝑏 − 𝑎 + 1) × (𝑏 − 𝑎 + 1) identity matrix.
Denote ̃𝑄 = 𝑄 + 𝐶𝐸; then 𝑞

𝑖
> 0 for any 𝑖 ∈ [𝑎, 𝑏].

Since 𝐴 + 𝑄 is a real (𝑏 − 𝑎 + 1) × (𝑏 − 𝑎 + 1) symmetric
positive definitematrix,𝐴+𝑄has 𝑏−𝑎+1 real eigenvalues.We
repeat each eigenvalue according to its multiplicity as follows:

0 < 𝜇

1
≤ 𝜇

2
≤ ⋅ ⋅ ⋅ ≤ 𝜇

𝑏−𝑎+1 (A.2)

and we choose eigenvectors 𝜑(1), 𝜑(2), . . . , 𝜑(𝑏−𝑎+1) for 𝐴 + 𝑄
such that

{𝜑

(1)
, 𝜑

(2)
, . . . , 𝜑

(𝑏−𝑎+1)
} (A.3)

is an orthonormal basis for R𝑏−𝑎+1. In the following we give
the proof of Lemma A.1 in four steps.

Step 1. For any 𝑢, V ∈ R𝑏−𝑎+1, define 𝐵[𝑢, V] = V𝑇(𝐴 + 𝑄)𝑢. It
is obvious that

𝐵 [𝜑

(𝑖)
, 𝜑

(𝑗)
] = {

0, 𝑖 ̸= 𝑗,

𝜇

𝑖
, 𝑖 = 𝑗,

𝑖, 𝑗 ∈ [𝑎, 𝑏] ,

𝜇

1
= min {𝐵 [𝑢, 𝑢] | 𝑢 ∈ R𝑏−𝑎+1, ‖𝑢‖ = 1} .

(A.4)

Step 2. We claim that if 𝑢 ∈ R𝑏−𝑎+1 and ‖𝑢‖ = 1, then 𝑢 is a
solution of

(𝐴 + 𝑄) 𝑢 = 𝜇

1
𝑢 (A.5)

if and only if

𝐵 [𝑢, 𝑢] = 𝜇1
. (A.6)

Obviously (A.5) implies (A.6). On the other hand, suppose
(A.6) is valid. Then, writing 𝑑

𝑘
= (𝑢, 𝜑

(𝑘)
), we have

𝑢 =

𝑏−𝑎+1

∑

𝑘=1

(𝑢, 𝜑

(𝑘)
) 𝜑

(𝑘)
=

𝑏−𝑎+1

∑

𝑘=1

𝑑

𝑘
𝜑

(𝑘)
,

𝑏−𝑎+1

∑

𝑘=1

𝑑

2

𝑘
𝜇

1
= 𝜇

1
= 𝐵 [𝑢, 𝑢] =

𝑏−𝑎+1

∑

𝑘=1

𝑑

2

𝑘
𝜇

𝑘
.

(A.7)

Hence

𝑏−𝑎+1

∑

𝑘=1

(𝜇

𝑘
− 𝜇

1
) 𝑑

2

𝑘
= 0. (A.8)

Consequently 𝑑
𝑘
= (𝑢, 𝜑

(𝑘)
) = 0, if 𝜇

𝑘
> 𝜇

1
. It follows that

𝑢 =

𝑚

∑

𝑘=1

(𝑢, 𝜑

(𝑘)
) 𝜑

(𝑘) (A.9)

for some 𝑚, where (𝐴 + 𝑄)𝜑(𝑘) = 𝜇
1
𝜑

(𝑘) for 𝑘 = 1, 2, . . . , 𝑚.
Therefore

(𝐴 + 𝑄) 𝑢 =

𝑚

∑

𝑘=1

(𝑢, 𝜑

(𝑘)
) (𝐴 + 𝑄) 𝜑

(𝑘)
= 𝜇

1
𝑢. (A.10)

This proves (A.5).

Step 3. We will show that if 𝑢 ∈ R𝑏−𝑎+1 satisfies (𝐴 + 𝑄)𝑢 =
𝜇

1
𝑢, 𝑢 ̸= 0, then either 𝑢 > 0 or 𝑢 < 0.
To see this, let us assume without loss of generality that

‖𝑢‖ = 1 and note 𝛼 + 𝛽 = 1 for 𝛼 = ‖𝑢+‖2, 𝛽 = ‖𝑢−‖2, where
𝑢

+

𝑖
= max{𝑢

𝑖
, 0} and 𝑢−

𝑖
= max{−𝑢

𝑖
, 0}. In this case, we have

𝜇

1
= 𝐵 [𝑢, 𝑢] = 𝐵 [𝑢

+
, 𝑢

+
] + 𝐵 [𝑢

−
, 𝑢

−
]

≥ 𝜇

1









𝑢

+






2

+ 𝜇

1









𝑢

−






2

= 𝜇

1
.

(A.11)

Thus

𝐵 [𝑢

+
, 𝑢

+
] = 𝜇

1









𝑢

+






2

, 𝐵 [𝑢

−
, 𝑢

−
] = 𝜇

1









𝑢

−






2

.

(A.12)
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By Step 2, 𝑢+ and 𝑢− satisfy (𝐴 + 𝑄)𝑢+ = 𝜇
1
𝑢

+, (𝐴 + 𝑄)𝑢− =
𝜇

1
𝑢

−. Thus (𝐴 + 𝑄)𝑢+ ≥ 0, (𝐴 + 𝑄)𝑢− ≥ 0. That is,

2𝑢

+

𝑎
− 𝑢

+

𝑎+1
+ 𝑞

𝑎
𝑢

+

𝑎
≥ 0,

− 𝑢

+

𝑎
+ 2𝑢

+

𝑎+1
− 𝑢

+

𝑎+2
+ 𝑞

𝑎+1
𝑢

+

𝑎+1
≥ 0,

− 𝑢

+

𝑎+1
+ 2𝑢

+

𝑎+2
− 𝑢

+

𝑎+3
+ 𝑞

𝑎+2
𝑢

+

𝑎+2
≥ 0,

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− 𝑢

+

𝑏−1
+ 2𝑢

+

𝑏
+ 𝑞

𝑏
𝑢

+

𝑏
≥ 0.

(A.13)

If there exists an 𝑖
0
∈ [𝑎, 𝑏] such that 𝑢+

𝑖0
= 0, then 𝑢+ =

0. Similar arguments apply to 𝑢−, and so either 𝑢 > 0 or
𝑢 < 0. Thus, we can choose a positive eigenvector 𝜑(1)
corresponding to the minimal eigenvalue 𝜇

1
.

Step 4. Finally assume that 𝑢 and �̃� are two eigenvectors
corresponding to 𝜇

1
; in view of Step 3,

𝑏

∑

𝑖=𝑎

𝑢

𝑖
̸= 0,

𝑏

∑

𝑖=𝑎

�̃�

𝑖
̸= 0

(A.14)

and so there exists a real constant 𝑘 such that

𝑏

∑

𝑖=𝑎

𝑢

𝑖
= 𝑘

𝑏

∑

𝑖=𝑎

�̃�

𝑖
(A.15)

or

𝑏

∑

𝑖=𝑎

(𝑢

𝑖
− 𝑘�̃�

𝑖
) = 0.

(A.16)

But since 𝑢 − 𝑘�̃� also satisfies (𝐴 + 𝑄)(𝑢 − 𝑘�̃�) = 𝜇
1
(𝑢 − 𝑘�̃�),

by Step 3, 𝑢 − 𝑘�̃� = 0 or 𝑢 − 𝑘�̃� > 0 or 𝑢 − 𝑘�̃� < 0. In view of
(A.16), we have 𝑢−𝑘�̃� = 0. Hence the eigenvalue 𝜇

1
is simple.

This completes the proof of Lemma A.1.
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nonlinearity,” Nonlinearity, vol. 23, no. 7, pp. 1727–1740, 2010.

[7] Z. Zhou, J. Yu, and Y. Chen, “Homoclinic solutions in periodic
difference equations with saturable nonlinearity,” Science China
Mathematics, vol. 54, no. 1, pp. 83–93, 2011.

[8] G. Chen and S. Ma, “Homoclinic orbits of superlinear Hamil-
tonian systems,” Proceedings of the American Mathematical
Society, vol. 139, no. 11, pp. 3973–3983, 2011.

[9] G. Chen and S. Ma, “Discrete nonlinear Schröinger equations
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