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We consider fourth-order boundary value problems 𝑢
󸀠󸀠󸀠󸀠

(𝑡) = 𝜆ℎ(𝑡)𝑓(𝑢(𝑡)), 0 < 𝑡 < 1, 𝑢(0) = ∫

1

0
𝑢(𝑠)𝑑𝛼(𝑠), 𝑢

󸀠
(0) = 𝑢(1) =

𝑢
󸀠
(1) = 0, where ∫

1

0
𝑢(𝑠)𝑑𝛼(𝑠) is a Stieltjes integral with 𝛼(𝑡) being nondecreasing and 𝛼(𝑡) being not a constant on [0, 1]; ℎ(𝑡) may

be singular at 𝑡 = 0 and 𝑡 = 1, ℎ ∈ 𝐶((0, 1), [0,∞)) with ℎ(𝑡) ̸≡ 0 on any subinterval of (0, 1); 𝑓 ∈ 𝐶([0,∞), [0,∞)) and 𝑓(𝑠) > 0

for all 𝑠 > 0, and 𝑓
0

= ∞, 𝑓
∞

= 0, 𝑓
0

= lim
𝑠→0
+𝑓(𝑠)/𝑠, 𝑓

∞
= lim

𝑠→+∞
𝑓(𝑠)/𝑠. We investigate the global structure of positive

solutions by using global bifurcation techniques.

1. Introduction

Recently, fourth-order boundary value problem

𝑥
󸀠󸀠󸀠󸀠

+ 𝑘𝑥
󸀠󸀠
+ 𝑙𝑥 = 𝜆ℎ (𝑡) 𝑓 (𝑥) , 0 < 𝑡 < 1,

𝑥 (0) = 𝑥 (1) = 𝑥
󸀠

(0) = 𝑥
󸀠

(1) = 0

(1)

has been investigated by the fixed point theory in cones, see
[1–4] (𝑘 = 𝑙 = 0). By applying bifurcation techniques, see
Rynne [5] (𝑘 = 𝑙 = 0), Korman [6] (𝑘 = 𝑙 = 0), Xu and Han
[7] (𝑘 = 0, 𝑙 ̸= 0), Shen [8, 9] (𝑘 ̸= 0, 𝑙 ̸= 0), and references
therein. However, these papers only studied the nonsingular
boundary value problems.

In 2008, Webb et al. [10] studied the existence of multiple
positive solutions of nonlinear nonlocal boundary value
problems (BVPs) for equations of the form

𝑢
󸀠󸀠󸀠󸀠

(𝑡) = 𝑔 (𝑡)
̂
𝑓 (𝑡, 𝑢 (𝑡)) , for almost every 𝑡 ∈ (0, 1) ,

𝑢 (0) = ∫

1

0

𝑢 (𝑠) 𝑑𝐴 (𝑠) , 𝑢
󸀠

(0) = 𝑢 (1) = 𝑢
󸀠

(1) = 0,

(2)

where 𝑔,
̂
𝑓 are continuous and nonnegative functions and 𝐴

is a function of bounded variation.They treatmany boundary
conditions appearing in the literature in a unified way.

The main tool they used is the fixed point index theory
in cones. In 2009, Ma and An [11] studied the global
structure for second-order nonlocal boundary value problem
involving Stieltjes integral conditions by applying bifurcation
techniques.

Motivated by above papers, in this paper, we will use
global bifurcation techniques to study the global structure of
positive solutions of the singular problem

𝑢
󸀠󸀠󸀠󸀠

(𝑡) = 𝜆ℎ (𝑡) 𝑓 (𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢 (0) = ∫

1

0

𝑢 (𝑠) 𝑑𝛼 (𝑠) , 𝑢
󸀠

(0) = 𝑢 (1) = 𝑢
󸀠

(1) = 0,

(3)

where ℎ(𝑡)may be singular at 𝑡 = 0 and 𝑡 = 1, and 𝜆 ∈ (0,∞)

is a parameter.
In order to prove our main result, let us make the

assumptions as follows:

(A1) 𝛼 : [0, 1] → R is nondecreasing and 𝛼(𝑡) is not a
constant on [0, 1], ∫1

0
𝑘(𝑡, 𝑠)𝑑𝛼(𝑡) ≥ 0 for 𝑠 ∈ [0, 1],

and 0 ≤ 𝑎 < 1 with 𝑎 := ∫

1

0
𝛾(𝑡)𝑑𝛼(𝑡), 𝛾(𝑡) = (𝑡 − 1)

2

(2𝑡 + 1);
(A2) ℎ ∈ 𝐶((0, 1), [0,∞))with ℎ(𝑡) ̸≡ 0 on any subinterval

of (0, 1), and 0 < ∫

1

0
ℎ(𝑠)𝑑𝑠 < ∞;
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(A3) 𝑓 ∈ 𝐶([0,∞), [0,∞)) satisfies 𝑓(𝑠) > 0 for all 𝑠 > 0;
(A4) 𝑓

0
= lim
𝑠→0
+(𝑓(𝑠)/𝑠) = ∞;

(A5) 𝑓
∞

= lim
𝑠→+∞

(𝑓(𝑠)/𝑠) = 0.

Remark 1. For other results on the existence and multiplicity
of positive solutions and nodal solutions for the boundary
value problems of fourth-order ordinary differential equa-
tions based on bifurcation techniques, see Ma et al. [12–15]
and Bai and Wang [16] and their references.

The rest of the paper is arranged as follows: In Section 2,
we state some properties of superior limit of certain infinity
collection of connected sets. In Section 3, we will give some
preliminary results. In Section 4, we state and prove ourmain
results.

2. Superior Limit and Component

In order to treat the case 𝑓
0

= ∞,𝑓
∞

= 0, we will need the
following definition and lemmas.

Definition 2 (see [17]). Let 𝑋 be a Banach space and let {𝐶
𝑛
|

𝑛 = 1, 2, . . .} be a family of subsets of 𝑋. Then the superior
limitD of {𝐶

𝑛
} is defined by

D := lim sup
𝑛→∞

𝐶
𝑛

= {𝑥∈𝑋 | ∃ {𝑛
𝑖
}⊂N, 𝑥

𝑛
𝑖

∈𝐶
𝑛
𝑖

, such that 𝑥
𝑛
𝑖

󳨀→𝑥} .

(4)

Lemma 3 (see [17]). Each connected subset of metric space 𝑋

is contained in a component, and each connected component of
𝑋 is closed.

Lemma 4 (see [11]). Let𝑋 be a Banach space and let {𝐶
𝑛
| 𝑛 =

1, 2, . . .} be a family of closed connected subsets of 𝑋. Assume
that

(i) there exist 𝑧
𝑛
∈ 𝐶
𝑛
, 𝑛 = 1, 2, . . ., and 𝑧

∗
∈ 𝑋, such that

𝑧
𝑛

→ 𝑧
∗;

(ii) 𝑟
𝑛
= sup{‖𝑥‖|𝑥 ∈ 𝐶

𝑛
} = ∞;

(iii) for all 𝑅 > 0, (∪∞
𝑛=1

𝐶
𝑛
) ∩ 𝐵
𝑅
is a relative compact set of

𝑋, where

𝐵
𝑅

= {𝑥 ∈ 𝑋 | ‖𝑥‖ ≤ 𝑅} . (5)

Then there exists an unbounded connected component 𝐶 in D

and 𝑧
∗
∈ 𝐶.

3. Preliminaries

We consider the problem as follows:

𝑢
󸀠󸀠󸀠󸀠

(𝑡) = 𝑦 (𝑡) , 0 < 𝑡 < 1,

𝑢 (0) = ∫

1

0

𝑢 (𝑠) 𝑑𝛼 (𝑠) , 𝑢
󸀠

(0) = 𝑢 (1) = 𝑢
󸀠

(1) = 0.

(6)

Lemma 5. For any 𝑦 ∈ 𝐶[0, 1], the problem (6) has a unique
solution

𝑢 (𝑡) = ∫

1

0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (7)

where

𝐾 (𝑡, 𝑠) =

𝛾 (𝑡)

1 − 𝑎

∫

1

0

𝑘 (𝑡, 𝑠) 𝑑𝛼 (𝑡) + 𝑘 (𝑡, 𝑠) , (8)

𝑘 (𝑡, 𝑠) =

1

6

{

𝑡
2
(1 − 𝑠)

2
[(𝑠 − 𝑡) + 2 (1 − 𝑡) 𝑠] , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝑠
2
(1 − 𝑡)

2
[(𝑡 − 𝑠) + 2 (1 − 𝑠) 𝑡] , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(9)

𝑎 = ∫

1

0
𝛾(𝑡)𝑑𝛼(𝑡), 𝛾(𝑡) = (𝑡 − 1)

2
(2𝑡 + 1).

Proof. By [10], the problem (6) can be equivalently written as

𝑢 (𝑡) = 𝛾 (𝑡) ∫

1

0

𝑢 (𝑠) 𝑑𝛼 (𝑠) + ∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠. (10)

Applying 𝛼 to both sides of (10), we obtain

∫

1

0

𝑢 (𝑡) 𝑑𝛼 (𝑡)

= ∫

1

0

[𝛾 (𝑡) ∫

1

0

𝑢 (𝑠) 𝑑𝛼 (𝑠)] 𝑑𝛼 (𝑡)

+ ∫

1

0

[∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠] 𝑑𝛼 (𝑡) .

(11)

Thus, we have

∫

1

0

𝑢 (𝑡) 𝑑𝛼 (𝑡) = ∫

1

0

𝛾 (𝑡) 𝑑𝛼 (𝑡) ⋅ ∫

1

0

𝑢 (𝑠) 𝑑𝛼 (𝑠)

+ ∫

1

0

[∫

1

0

𝑘 (𝑡, 𝑠) 𝑑𝛼 (𝑡)] 𝑦 (𝑠) 𝑑𝑠.

(12)

Furthermore, it follows that

∫

1

0

𝑢 (𝑠) 𝑑𝛼 (𝑠)

=

1

1 − ∫

1

0
𝛾 (𝑡) 𝑑𝛼 (𝑡)

∫

1

0

[∫

1

0

𝑘 (𝑡, 𝑠) 𝑑𝛼 (𝑡)] 𝑦 (𝑠) 𝑑𝑠.

(13)

So, we obtain

𝑢 (𝑡) = ∫

1

0

[

𝛾 (𝑡)

1 − 𝑎

∫

1

0

𝑘 (𝑡, 𝑠) 𝑑𝛼 (𝑡) + 𝑘 (𝑡, 𝑠)] 𝑦 (𝑠) 𝑑𝑠. (14)

Lemma 6 (see [2–4]). Green’s function 𝑘(𝑡, 𝑠) defined by (9)
satisfies the following:

(i) 𝑘(𝑡, 𝑠) ≥ 0 is continuous for all 𝑡, 𝑠 ∈ [0, 1];

(ii) 𝑐(𝑡)𝑘(𝜏(𝑠), 𝑠) ≤ 𝑘(𝑡, 𝑠) ≤ 𝑘(𝜏(𝑠), 𝑠), for all 𝑡, 𝑠 ∈ [0, 1],
and for any 𝛿 ∈ (0, 1/2) and 𝑡 ∈ [𝛿, 1 − 𝛿], such that

𝑘 (𝑡, 𝑠) ≥

2

3

𝛿
2
𝑘 (𝜏 (𝑠) , 𝑠) , ∀𝑠 ∈ [0, 1] , (15)
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where

𝜏 (𝑠) =

{
{
{

{
{
{

{

1

3 − 2𝑠

, 0 ≤ 𝑠 ≤

1

2

,

2𝑠

1 + 2𝑠

,

1

2

≤ 𝑠 ≤ 1,

𝑘 (𝜏 (𝑠), 𝑠) = max
𝑡∈[0,1]

𝑘 (𝑡, 𝑠) =

{
{
{
{

{
{
{
{

{

2𝑠
2
(1 − 𝑠)

3

3(3 − 2𝑠)
2
, 0 ≤ 𝑠 ≤

1

2

,

2𝑠
3
(1 − 𝑠)

2

3(1 + 2𝑠)
2
,

1

2

≤ 𝑠 ≤ 1,

𝑐 (𝑡) =

2

3

min {𝑡
2
, (1 − 𝑡)

2
} , 𝑡 ∈ [0, 1] ,

min
𝑡∈[𝛿,1−𝛿]

𝑐 (𝑡) =

2

3

𝛿
2
.

(16)

Lemma 7. Green’s function 𝐾(𝑡, 𝑠) defined by (8) satisfies the
following:

(i) 𝐾(𝑡, 𝑠) ≥ 0 is continuous for all 𝑡, 𝑠 ∈ [0, 1];
(ii) 𝐾(𝑡, 𝑠) ≤ 𝐾(𝑠), for all 𝑡, 𝑠 ∈ [0, 1], and for any 𝛿 ∈

(0, 1/2), there exists a constant 𝛾
𝛿

> 0, for any 𝑡 ∈

[𝛿, 1 − 𝛿], such that

𝐾 (𝑡, 𝑠) ≥ 𝛾
𝛿
𝐾 (𝑠) , ∀𝑠 ∈ [0, 1] ,

𝐾 (𝑠) =

1 − 𝑎 + 𝛼 (1) − 𝛼 (0)

1 − 𝑎

⋅ 𝑘 (𝜏 (𝑠) , 𝑠) ,

𝛾
𝛿
=

2

3

𝛿
2
⋅

1 − 𝑎 + 𝛿
2
(3 − 2𝛿) (𝛼 (1) − 𝛼 (0))

1 − 𝑎 + 𝛼 (1) − 𝛼 (0)

,

(17)

where 𝑘(𝑡, 𝑠) is defined by (9), max
𝑡∈[0,1]

𝛾(𝑡) = 1,
min
𝑡∈[𝛿,1−𝛿]

𝛾(𝑡) = 𝛿
2
(3 − 2𝛿).

Proof. (i) From Lemma 6 (i), we get the proof of Lemma 7 (i)
immediately.

(ii) By Lemma 6 (ii), we get

𝐾 (𝑡, 𝑠) ≤

1

1 − 𝑎

∫

1

0

𝑘 (𝜏 (𝑠) , 𝑠) 𝑑𝛼 (𝑡) + 𝑘 (𝜏 (𝑠) , 𝑠)

≤

1 − 𝑎 + 𝛼 (1) − 𝛼 (0)

1 − 𝑎

⋅ 𝑘 (𝜏 (𝑠) , 𝑠) = 𝐾 (𝑠) ,

∀𝑡, 𝑠 ∈ [0, 1] .

(18)

By Lemma 6 (ii), for any 𝛿 ∈ (0, 1/2) and 𝑡 ∈ [𝛿, 1 − 𝛿], 𝑠 ∈

[0, 1], we obtain

𝐾 (𝑡, 𝑠) ≥

𝛿
2
(3 − 2𝛿)

1 − 𝑎

∫

1

0

2

3

𝛿
2
𝑘 (𝜏 (𝑠) , 𝑠) 𝑑𝛼 (𝑡)

+

2

3

𝛿
2
𝑘 (𝜏 (𝑠) , 𝑠)

≥

2

3

𝛿
2
⋅

1 − 𝑎 + 𝛿
2
(3 − 2𝛿) (𝛼 (1) − 𝛼 (0))

1 − 𝑎

⋅ 𝑘 (𝜏 (𝑠) , 𝑠) = 𝛾
𝛿
𝐾 (𝑠) , ∀𝑠 ∈ [0, 1] .

(19)

Lemma 8. For 𝑦 ∈ 𝐶[0, 1] and 𝑦 ≥ 0, the unique solution of
the problem (6) satisfies the following:

(i) 𝑢(𝑡) ≥ 0, for all 𝑡 ∈ [0, 1];
(ii) min

𝑡∈[𝛿,1−𝛿]
𝑢(𝑡) ≥ 𝛾

𝛿
‖𝑢‖
∞
,

where 𝛾
𝛿
is defined by Lemma 7 (ii), ‖𝑢‖

∞
= max

𝑡∈[0,1]
|𝑢|.

Proof. (i) From Lemma 7 (i), we get the proof of Lemma 8 (i)
immediately.

(ii) From (7) and Lemma 7, we have

min
𝑡∈[𝛿,1−𝛿]

𝑢 (𝑡) = min
𝑡∈[𝛿,1−𝛿]

∫

1

0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠

≥ ∫

1

0

min
𝑡∈[𝛿,1−𝛿]

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠

≥ 𝛾
𝛿
∫

1

0

𝐾 (𝑠) 𝑦 (𝑠) 𝑑𝑠

≥ 𝛾
𝛿
∫

1

0

max
𝑡∈[0,1]

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠

≥ 𝛾
𝛿
max
𝑡∈[0,1]

∫

1

0

𝐾 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 = 𝛾
𝛿
‖𝑢‖
∞

.

(20)

Therefore, the proof of Lemma 8 is complete.

Let 𝑌 = 𝐶[0, 1] be the Banach space with the norm
‖𝑢‖
∞

= max
𝑡∈[0,1]

|𝑢|.
Let 𝐸 = {𝑢 ∈ 𝐶

2
[0, 1] | 𝑢(0) = ∫

1

0
𝑢(𝑠)𝑑𝛼(𝑠), 𝑢

󸀠
(0) =

𝑢(1) = 𝑢
󸀠
(1) = 0} with the norm

‖𝑢‖
𝐸
= max {‖𝑢‖

∞
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞

,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󸀠󵄩󵄩
󵄩
󵄩
󵄩∞

} . (21)

Let

𝑃 = {𝑢 ∈ 𝐶 [0, 1] | 𝑢 (𝑡) ≥ 0, 𝑡 ∈ [0, 1] ,

min
𝑡∈[𝛿,1−𝛿]

𝑢 (𝑡) ≥ 𝛾
𝛿
‖𝑢‖
∞

} ,

(22)

and for 𝑟 > 0, let Ω
𝑟
= {𝑢 ∈ 𝑃 | ‖𝑢‖

𝐸
< 𝑟}.

In order to use bifurcation technique to study the problem
(3), we consider the linear eigenvalue problem

𝑢
󸀠󸀠󸀠󸀠

(𝑡) = 𝜆ℎ (𝑡) 𝑢 (𝑡) , 0 < 𝑡 < 1,

𝑢 (0) = ∫

1

0

𝑢 (𝑠) 𝑑𝛼 (𝑠) , 𝑢
󸀠

(0) = 𝑢 (1) = 𝑢
󸀠

(1) = 0.

(23)

Let

𝐿
𝜆
𝑢 (𝑡) = 𝜆∫

1

0

𝐾 (𝑡, 𝑠) ℎ (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] , (24)

𝑇
𝜆
𝑢 (𝑡) = 𝜆∫

1

0

𝐾 (𝑡, 𝑠) ℎ (𝑠) 𝑓 (𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] . (25)

By [18], it is easy to show the following lemma.
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Lemma 9. Assume that (A1)–(A3) hold the following.
𝐿
𝜆

: 𝑃 → 𝑃 is a completely continuous linear operator
and 𝐿

𝜆
(𝑃) ⊂ 𝑃, and the fixed points of the operator 𝐿

𝜆
in 𝑃 are

the positive solutions of the BVP (23).
𝑇
𝜆

: 𝑃 → 𝑃 is a completely continuous operator and
𝑇
𝜆
(𝑃) ⊂ 𝑃, and the fixed points of the operator 𝑇

𝜆
in 𝑃 are

the positive solutions of the BVP (3).
By virtue of Krein-Rutman theorem (Theorem 2.5 in [19]),

one has (see [18] or [20]) the following lemma.

Lemma 10. Suppose that 𝐿
𝜆

: 𝐶[0, 1] → 𝐶[0, 1] is a
completely continuous linear operator and 𝐿

𝜆
(𝑃) ⊂ 𝑃. If there

exist 𝜓 ∈ 𝐶[0, 1] \ (−𝑃) and a constant 𝑐 > 0 such that
𝑐𝐿
𝜆
𝜓 ≥ 𝜓, then the spectral radius 𝑟(𝐿

𝜆
) ̸= 0 and 𝐿

𝜆
has a

positive eigenfunction 𝜙
1
corresponding to its first eigenvalue

𝜆
1
= 1/𝑟(𝐿

𝜆
), that is, 𝜙

1
= 𝜆
1
𝐿
𝜆
𝜙
1
.

Lemma 11. Suppose (A1) and (A2) are satisfied, then for the
operator 𝐿

𝜆
defined by (24), the spectral radius 𝑟(𝐿

𝜆
) ̸= 0 and

𝐿
𝜆
has a positive eigenfunction 𝜙

1
∈ int𝑃 corresponding to its

first eigenvalue 𝜆
1
= 1/𝑟(𝐿

𝜆
).

Proof. It is easy to see that there is 𝑡
1

∈ (0, 1) such that
𝐾(𝑡
1
, 𝑡
1
)ℎ(𝑡
1
) > 0. Thus there exists [𝛼, 𝛽] ⊂ (0, 1) such that

𝑡
1

∈ (𝛼, 𝛽) and 𝐾(𝑡, 𝑠)ℎ(𝑠) > 0, for all 𝑡, 𝑠 ∈ [𝛼, 𝛽]. Take
𝜓 ∈ 𝐶[0, 1] such that 𝜓(𝑡) ≥ 0, for all 𝑡 ∈ [0, 1], 𝜓(𝑡

1
) > 0,

and 𝜓(𝑡) = 0, for all 𝑡 ∉ [𝛼, 𝛽]. Then for 𝑡 ∈ [𝛼, 𝛽],

(𝐿
𝜆
𝜓) (𝑡) = 𝜆∫

1

0

𝐾 (𝑡, 𝑠) ℎ (𝑠) 𝜓 (𝑠) 𝑑𝑠

≥ 𝜆∫

𝛽

𝛼

𝐾 (𝑡, 𝑠) ℎ (𝑠) 𝜓 (𝑠) 𝑑𝑠 > 0.

(26)

So there exists a constant 𝑐 > 0 such that 𝑐𝐿
𝜆
𝜓 ≥ 𝜓, for all 𝑡 ∈

[0, 1]. From Lemma 10, we know that the spectral radius
𝑟(𝐿
𝜆
) ̸= 0 and 𝐿

𝜆
has a positive eigenfunction corresponding

to its first eigenvalue 𝜆
1
= 1/𝑟(𝐿

𝜆
).

Lemma 12. Let (A1)–(A3) hold. The solution 𝑢(𝑡) of the
problem (3) satisfies

‖𝑢‖
∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󸀠󵄩󵄩
󵄩
󵄩
󵄩∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󸀠󸀠󵄩󵄩

󵄩
󵄩
󵄩∞

. (27)

Proof. From 𝑢
󸀠
(0) = 𝑢

󸀠
(1) = 0, there exists 𝜉 ∈ (0, 1), such

that 𝑢󸀠󸀠(𝜉) = 0. Using a similar proof of (10) in [21, page 212],
it is easy to show that

|𝑢 (𝑡)| =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

𝑡

𝑢
󸀠

(𝑠) 𝑑𝑠 − 𝑢 (1)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

𝑡

𝑢
󸀠

(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

1

𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠 ≤ ∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢
󸀠

(0) + ∫

𝑡

0

𝑢
󸀠󸀠

(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑢
󸀠󸀠

(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢
󸀠󸀠

(𝜉) + ∫

𝑡

𝜉

𝑢
󸀠󸀠󸀠

(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝜉

𝑢
󸀠󸀠󸀠

(𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
󸀠󸀠󸀠

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠.

(28)

Furthermore, we obtain

‖𝑢‖
∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󵄩󵄩
󵄩
󵄩
󵄩∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󸀠󵄩󵄩
󵄩
󵄩
󵄩∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󸀠󸀠󵄩󵄩

󵄩
󵄩
󵄩∞

. (29)

Lemma 13. Let (A1)–(A3) hold. Assume that {(𝜇
𝑘
, 𝑢
𝑘
)} ⊂

(0,∞) × 𝑃 is a sequence of positive solutions of (3). Assume
that ‖𝜇

𝑘
‖ ≤ 𝑐
0
for some constant 𝑐

0
> 0, and

lim
𝑘→∞

󵄩
󵄩
󵄩
󵄩
𝑢
𝑘

󵄩
󵄩
󵄩
󵄩𝐸

= ∞. (30)

Then

lim
𝑘→∞

󵄩
󵄩
󵄩
󵄩
𝑢
𝑘

󵄩
󵄩
󵄩
󵄩∞

= ∞. (31)

Proof. Assume on the contrary that
󵄩
󵄩
󵄩
󵄩
𝑢
𝑘

󵄩
󵄩
󵄩
󵄩∞

≤ 𝑀
0

(32)

for some constant 𝑀
0
> 0.

Since (𝜇
𝑘
, 𝑢
𝑘
) is a solution of the problem (3), we have

𝑢
𝑘
(𝑡) = 𝜇

𝑘
∫

1

0

𝐾 (𝑡, 𝑠) ℎ (𝑠) 𝑓 (𝑢
𝑘
(𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] . (33)

Thus,

𝑢
󸀠󸀠󸀠

𝑘
(𝑡) = 𝜇

𝑘
∫

1

0

𝜕
3

𝜕𝑡
3
𝐾 (𝑡, 𝑠) ⋅ ℎ (𝑠) 𝑓 (𝑢

𝑘
(𝑠)) 𝑑𝑠,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕
3

𝜕𝑡
3
𝐾 (𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

12

1 − 𝑎

∫

1

0

𝑘 (𝑡, 𝑠) 𝑑𝛼 (𝑡) +

𝜕
3

𝜕𝑡
3
𝑘 (𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

12 (𝛼 (1) − 𝛼 (0))

1 − 𝑎

𝑘 (𝜏 (𝑠) , 𝑠) +

𝜕
3

𝜕𝑡
3
𝑘 (𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝛼 (1) − 𝛼 (0)

16 (1 − 𝑎)

+ 5 := 𝑀
1
,

(34)

where 0 ≤ |𝑘(𝜏(𝑠), 𝑠)| ≤ 1/192, sup
0≤𝑡,𝑠≤1,𝑡 ̸= 𝑠

|(𝜕
3
/𝜕𝑡
3
)𝑘(𝑡, 𝑠)| ≤

5 (see [3]).
Furthermore, it follows that

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
󸀠󸀠󸀠

𝑘

󵄩
󵄩
󵄩
󵄩
󵄩∞

≤ 𝑐
0
𝑀
1
𝐵
0
∫

1

0

ℎ (𝑠) 𝑑𝑠, (35)

where 𝐵
0

= max
𝑠∈[0,𝑀

0
]
{𝑓(𝑠)}, together with (𝐴

2
), which

implies that ‖𝑢󸀠󸀠󸀠
𝑘

‖
∞
is bounded whenever ‖𝑢

𝑘
‖
∞
is bounded.

Together with Lemma 12, we obtain
󵄩
󵄩
󵄩
󵄩
𝑢
𝑘

󵄩
󵄩
󵄩
󵄩𝐸

≤ 𝑀
2

(36)

for some constant 𝑀
2
> 0. This is a contradiction.
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4. Main Results

Let Σ be the closure of the set of positive solutions of (3) in
[0,∞) × 𝐸. The main results of this paper are the following.

Theorem 14. Let (A1)–(A5) hold, then (3) has at least one
solution for any 𝜆 ∈ (0,∞).

Let 𝐿 : 𝐷(𝐿) ⊂ 𝐸 → 𝐸 be an operator defined by

𝐿𝑢 = 𝑢
󸀠󸀠󸀠󸀠

, 𝑢 ∈ 𝐷 (𝐿) , (37)

with

𝐷 (𝐿) = {𝑢 ∈ 𝐶
4

[0, 1] | 𝑢 (0) = ∫

1

0

𝑢 (𝑠) 𝑑𝛼 (𝑠) ,

𝑢
󸀠

(0) = 𝑢 (1) = 𝑢
󸀠

(1) = 0} .

(38)

Then 𝐿 is a closed operator and 𝐿
−1

: 𝑌 → 𝐸 is completely
continuous.

For each 𝑛 ∈ N, define 𝑓
[𝑛]

(𝑠) : [0,∞) → [0,∞) by

𝑓
[𝑛]

(𝑠) =

{
{
{

{
{
{

{

𝑓 (𝑠) , 𝑠 ∈ (

1

𝑛

,∞) ,

𝑛𝑓(

1

𝑛

) 𝑠, 𝑠 ∈ [0,

1

𝑛

] .

(39)

Then 𝑓
[𝑛]

∈ 𝐶([0,∞), [0,∞)) with

𝑓
[𝑛]

(𝑠) > 0, ∀𝑠 ∈ (0,∞), (𝑓
[𝑛]

)
0
= 𝑛𝑓(

1

𝑛

) . (40)

By (𝐴4), it follows that

lim
𝑛→∞

(𝑓
[𝑛]

)
0
= ∞. (41)

To apply the global bifurcation theorem, one extends 𝑓 to an
odd function 𝑔 : R → R by

𝑔 (𝑠) = {

𝑓 (𝑠) , 𝑠 ≥ 0,

−𝑓 (−𝑠) , 𝑠 < 0.

(42)

Similarly one may extend 𝑓
[𝑛] to an odd function 𝑔

[𝑛]
: R →

R for each 𝑛 ∈ N.
Now let one consider the auxiliary family of the equations

𝑢
󸀠󸀠󸀠󸀠

(𝑡) = 𝜆ℎ (𝑡) 𝑔
[𝑛]

(𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢 (0) = ∫

1

0

𝑢 (𝑠) 𝑑𝛼 (𝑠) , 𝑢
󸀠

(0) = 𝑢 (1) = 𝑢
󸀠

(1) = 0.

(43)

Let 𝜁[𝑛] ∈ 𝐶(R) be such that

𝑔
[𝑛]

(𝑢) = (𝑔
[𝑛]

)
0
𝑢 + 𝜁
[𝑛]

(𝑢) = 𝑛𝑓(

1

𝑛

) 𝑢 + 𝜁
[𝑛]

(𝑢) . (44)

Then

lim
|𝑠|→0

𝜁
[𝑛]

(𝑠)

𝑠

= 0. (45)

Let one consider

𝐿𝑢 = 𝜆ℎ (𝑡) (𝑔
[𝑛]

)
0
𝑢 + 𝜆ℎ (𝑡) 𝜁

[𝑛]

(𝑢) (46)

as a bifurcation problem from the trivial solution 𝑢 ≡ 0.

From Lemma 5, (46) can be converted to the equivalent
equation

𝑢 (𝑡) = ∫

1

0

𝐾 (𝑡, 𝑠) [𝜆ℎ (𝑠) (𝑔
[𝑛]

)
0
𝑢 (𝑠) + 𝜆ℎ (𝑠) 𝜁

[𝑛]

(𝑢 (𝑠))] 𝑑𝑠

:=𝜆𝐿
−1

[ℎ (⋅) (𝑔
[𝑛]

)
0
𝑢 (⋅)] (𝑡)+𝜆𝐿

−1
[ℎ (⋅) 𝜁

[𝑛]

(𝑢 (⋅))] (𝑡) .

(47)

Further one has that
󵄩
󵄩
󵄩
󵄩
󵄩
𝐿
−1

[ℎ(⋅)𝜁
[𝑛]

(𝑢(⋅))]

󵄩
󵄩
󵄩
󵄩
󵄩𝐸

= 𝑜 (‖𝑢‖
𝐸
) , as ‖𝑢‖

𝐸
󳨀→ 0 . (48)

Indeed, (8) implies that, for all (𝑡, 𝑠) ∈ [0, 1] × [0, 1],

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕

𝜕𝑡

𝐾 (𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

6𝑡 (𝑡 − 1)

1 − 𝑎

∫

1

0

𝑘 (𝑡, 𝑠) 𝑑𝛼 (𝑡) +

𝜕

𝜕𝑡

𝑘 (𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝛼 (1) − 𝛼 (0)

128 (1 − 𝑎)

+ 3,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕
2

𝜕𝑡
2
𝐾 (𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

6 (2𝑡 − 1)

1 − 𝑎

∫

1

0

𝑘 (𝑡, 𝑠) 𝑑𝛼 (𝑡) +

𝜕
2

𝜕𝑡
2
𝑘 (𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝛼 (1) − 𝛼 (0)

32 (1 − 𝑎)

+ 8,

(49)

where 0 ≤ |𝑘(𝜏(𝑠), 𝑠)| ≤ 1/192, max
0≤𝑡,𝑠≤1

|(𝜕/𝜕𝑡)𝑘(𝑡, 𝑠)| ≤ 3,
max
0≤𝑡,𝑠≤1

|(𝜕
2
/𝜕𝑡
2
)𝑘(𝑡, 𝑠)| ≤ 8 (see [3]).

So, the compactness of 𝐿
−1 together with (45) and (A2)

imply that

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐿
−1

[ℎ (⋅) 𝜁
[𝑛]

(𝑢 (⋅))])

󸀠󵄩󵄩
󵄩
󵄩
󵄩
󵄩∞

= 𝑜 (‖𝑢‖
∞

) ,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐿
−1

[ℎ (⋅) 𝜁
[𝑛]

(𝑢 (⋅))])

󸀠󸀠󵄩󵄩
󵄩
󵄩
󵄩
󵄩∞

= 𝑜 (‖𝑢‖
∞

) ,

(50)

and consequently

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐿
−1

[ℎ (⋅) 𝜁
[𝑛]

(𝑢 (⋅))])

󸀠󵄩󵄩
󵄩
󵄩
󵄩
󵄩∞

= 𝑜 (‖𝑢‖
𝐸
) ,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝐿
−1

[ℎ (⋅) 𝜁
[𝑛]

(𝑢 (⋅))])

󸀠󸀠󵄩󵄩
󵄩
󵄩
󵄩
󵄩∞

= 𝑜 (‖𝑢‖
𝐸
) .

(51)

Let 𝑆
+

0
= {𝑢 ∈ 𝐸 | 𝑢(𝑡) > 0, for all 𝑡 ∈ [0, 1]}, 𝑆−

0
=

{𝑢 ∈ 𝐸 | 𝑢(𝑡) < 0, for all 𝑡 ∈ [0, 1]}, then 𝑆
+

0
∩ 𝑆
−

0
= 0. Let

𝑆
0
= 𝑆
+

0
∪ 𝑆
−

0
, Φ
±

0
= 𝑅 × 𝑆

±

0
.

By Lemma 11 and the fact (𝑔[𝑛])
0
> 0, the global bifurcation

result (see Rabinowitz [22]) for (46) can be stated as follows:
there exists a continuum 𝐶

[𝑛]

+
(⊂ [0,∞) × 𝑃) of positive

solutions of (46) joining (𝜆
1
/(𝑔
[𝑛]

)
0
, 0) to infinity in [0,∞)×𝑃.

Moreover, (𝜆
1
/(𝑔
[𝑛]

)
0
, 𝜃) is the only positive bifurcation point

of (46) lying on trivial solutions line 𝑢 ≡ 𝜃. Moreover, 𝐶[𝑛]
+

\

{(𝜆
1
/(𝑔
[𝑛]

)
0
, 0)} ⊂ Φ

+

0
.

Since

lim
𝑛→∞

𝜆
1

(𝑔
[𝑛]

)
0

= lim
𝑛→∞

𝜆
1

𝑛𝑓 (1/𝑛)

= 0, (52)



6 Discrete Dynamics in Nature and Society

condition (i) in Lemma 4 is satisfied with 𝑧
∗

= (0, 0).
Obviously

𝑟
𝑛
= sup {𝜆 + ‖𝑢‖ | (𝜆, 𝑢) ∈ 𝐶

[𝑛]

+
} = ∞, (53)

and accordingly (ii) in Lemma 4 holds. (iii) in Lemma 4 can
be deduced directly from the Arzela-Ascoli theorem and the
definition of 𝑔

[𝑛]. Therefore, the superior limit of {𝐶
[𝑛]

+
}, D,

contained an unbounded connected component 𝐶 with (0, 0) ∈

𝐶. Since 𝐶
[𝑛]

+
⊂ Φ
+, one concludes 𝐶 ⊂ Φ

+. Moreover, 𝐶 ⊂ Σ

by (3).

Proof of Theorem 14. We firstly prove

Proj
𝑅
𝐶 = (0,∞) . (54)

Assume on the contrary that

sup {𝜆 | (𝜆, 𝑢) ∈ 𝐶} < ∞. (55)

Then there exists a sequence (𝜇
𝑘
, 𝑢
𝑘
) ∈ 𝐶 such that

lim
𝑘→∞

󵄩
󵄩
󵄩
󵄩
𝑢
𝑘

󵄩
󵄩
󵄩
󵄩𝐸

= ∞, 𝜇
𝑘
≤ 𝑐
0
, (56)

for some positive constant 𝑐
0
with doing not depend on 𝑘.

From Lemma 13, we have

lim
𝑘→∞

󵄩
󵄩
󵄩
󵄩
𝑢
𝑘

󵄩
󵄩
󵄩
󵄩∞

= ∞. (57)

This together with the fact

min
𝑡∈[𝛿,1−𝛿]

𝑢
𝑘
(𝑡) ≥ 𝛾

𝛿

󵄩
󵄩
󵄩
󵄩
𝑢
𝑘

󵄩
󵄩
󵄩
󵄩∞

, ∀𝛿 ∈ (0,

1

2

) (58)

imply that for arbitrary 𝛿 ∈ (0, 1/2)

lim
𝑘→∞

𝑢
𝑘
(𝑡) = ∞, uniformly for 𝑡 ∈ [𝛿, 1 − 𝛿] . (59)

Since (𝜇
𝑘
, 𝑢
𝑘
) ∈ 𝐶, we have that

𝑢
󸀠󸀠󸀠󸀠

𝑘
= 𝜇
𝑘
ℎ (𝑡) 𝑓 (𝑢

𝑘
) , 0 < 𝑡 < 1,

𝑢
𝑘
(0) = ∫

1

0

𝑢
𝑘
(𝑠) 𝑑𝛼 (𝑠) , 𝑢

󸀠

𝑘
(0) = 𝑢

𝑘
(1) = 𝑢

󸀠

𝑘
(1) = 0.

(60)

Set V
𝑘
(𝑡) = 𝑢

𝑘
(𝑡)/‖𝑢

𝑘
‖
∞
. Then

󵄩
󵄩
󵄩
󵄩
V
𝑘
(𝑡)

󵄩
󵄩
󵄩
󵄩∞

= 1, (61)

V󸀠󸀠󸀠󸀠
𝑘

(𝑡) = 𝜇
𝑘
ℎ (𝑡)

𝑓 (𝑢
𝑘
(𝑡))

𝑢
𝑘
(𝑡)

V
𝑘
(𝑡) , 0 < 𝑡 < 1,

V
𝑘
(0) = ∫

1

0

𝑦 (𝑠) 𝑑𝛼 (𝑠) , V󸀠
𝑘
(0) = V

𝑘
(1) = V󸀠

𝑘
(1) = 0.

(62)

Now, choosing a subsequence and relabeling if necessary,
it follows that there exists (𝜇

∗
, V
∗
) ∈ [0, 𝑐

0
] × 𝐸 with

󵄩
󵄩
󵄩
󵄩
V
∗

󵄩
󵄩
󵄩
󵄩∞

= 1 (63)

such that

lim
𝑘→∞

(𝜇
𝑘
, V
𝑘
) = (𝜇

∗
, V
∗
) , in R × 𝑌. (64)

By (A3), let

𝑓 (𝑢) = max
0≤𝑠≤𝑢

𝑓 (𝑠) . (65)

Then 𝑓 is nondecreasing and

lim
𝑢→+∞

𝑓 (𝑢)

𝑢

= 0. (66)

Further it follows from (66) that

𝑓 (𝑢)

‖𝑢‖
∞

≤

𝑓 (𝑢)

‖𝑢‖
∞

≤

𝑓 (‖𝑢‖
∞

)

‖𝑢‖
∞

󳨀→ 0, ‖𝑢‖
∞

󳨀→ +∞. (67)

Thus,

lim
𝑘→∞

𝑓 (𝑢
𝑘
)

𝑢
𝑘

= 0. (68)

Notice that (62) is equivalent to

V
𝑘
(𝑡) = 𝜇

𝑘
∫

1

0

𝐾 (𝑡, 𝑠) ℎ (𝑠)

𝑓 (𝑢
𝑘
(𝑠))

𝑢
𝑘
(𝑠)

V
𝑘
(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] .

(69)

Furthermore, by (59), (68), and (69), together with the
Lebesgue dominated convergence theorem, it follows that

V
∗
(𝑡) = 𝜇

𝑘
∫

1

0

𝐾 (𝑡, 𝑠) ℎ (𝑠) ⋅ 0 ⋅ V
∗
(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] . (70)

It follows that

V
∗
(𝑡) ≡ 0. (71)

This contradicts (63). Therefore

sup {𝜆 | (𝜆, 𝑢) ∈ 𝐶
[𝑛]

+
} = ∞. (72)

Noticing that 𝜆 = 0 is the only solution of the problem
(3), thus

Proj
𝑅
𝐶 = (0,∞) . (73)

Furthermore, it follows the proof of Theorem 14.
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