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This paper defines bus timetables setting problem during each time period divided in terms of passenger flow intensity; it is
supposed that passengers evenly arrive and bus runs are set evenly; the problem is to determine bus runs assignment in each
time period to minimize the total waiting time of passengers on platforms if the number of the total runs is known. For such a
multistage decision problem, this paper designed a dynamic programming algorithm to solve it. Global optimization procedures
using dynamic programming are developed. A numerical example about bus runs assignment optimization of a single line is
given to demonstrate the efficiency of the proposed methodology, showing that optimizing buses’ departure time using dynamic
programming can save computational time and find the global optimal solution.

1. Introduction

The transit planning process includes four basic components
which are usually performed in sequence: (1) network route
design, (2) setting frequencies and timetables, (3) scheduling
vehicles to trips, and (4) assignment of drivers. This paper
focuses on “setting frequencies and timetable.” Trip frequency
scheduling is the determination of trip frequencies for an
operation period, normally a daily operation. The operation
period is divided into several subperiods for which a specific
number of trips are determined. Trip frequency scheduling is
more or less identical to headway determination and hence to
the so-called timetable construction problem. The timetable
problem, however, requires the specification of precise arrival
and departure times at terminals and major stops.

Friedman (1976) [1] formulated a mathematical model
of a general public transportation network and suggested
an optimization procedure to schedule the buses’ departure
times, but he did not show a case study. Furth and Wilson
(1981) [2] proposed a model which allocates the available
buses between time periods and between routes so as to
maximize net social benefit subject to constraints on total
subsidy, fleet size, and levels of vehicle loading; however,
they did not take minimizing the waiting time of passengers
into account. De Palma and Lindsey (2001) [3] considered
the transit network timetabling problem on a single transit

link, where each transit rider was assumed to incur a varying
schedule delay cost from travelling earlier or later; but in their
research it was supposed that vehicle capacity constraints
were ignored, so that a vehicle can carry any number of
passengers without congestion, which is inconsistent with the
reality.

Some literatures (Wan and Lo, 2003 [4]; Barra et al.,
2007 [5]; Van Nes et al., 1988 [6]; Carrese and Gori, 2002
[7]; Pattnaik et al., 1998 [8]; and Tom and Mohan, 2003
[9]) put transit network design and frequencies setting
together; however, the routes network is generally a stable
component in a transit system while the frequencies setting
is changeable; the construction of routes network should not
be influenced by flexible parameters such as frequencies; thus
bus routes network design and frequencies setting should not
be dealt with simultaneously (Yu et al. 2005 [10]). Generally
frequencies’ setting is only an approximate value in the stage
of transit network design.

Ceder (1984) [11] described four data collection
approaches for the bus operator in order to set the bus
frequencies/headways: two are based on point check
(maximum load) data and two propose the use of ride check
(load profile) data. As a continuation of research, he provided
alternative methods for constructing bus timetables using
passenger load data (Ceder, 1987 [12]). Ceder (1991) [13]
described an automats procedure for the scheduler to adjust
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Figure 1: A single bus line.

the number of departures at each route timepoint to that
required from a passenger load standpoint with the objective
to minimize the maximum headway to be obtained. Van
Oudheusden and Zhu (1995) [14] developed an integer
programming model for trip frequency scheduling and
presented two heuristic solution methods, one of which
was based on linear programming and the other was
a straightforward derivation of common bus operation
practice; but they could not guarantee the global optimal
solution. Chakroborty et al. (1995 [15], 1997 [16]) focused on
the application of genetic algorithms to determine departure
times in a transit network in a coordinated manner, so as
to minimize the passengers’ total waiting time. Zhao and
Zeng (2008) [17] presented a metaheuristic method for
optimizing transit networks, including route network design,
vehicle headway, and timetable assignment; a metaheuristic
search scheme that combines simulated annealing, tabu,
and greedy search methods was presented. Yu et al. (2010)
[18] presented a bilevel programming model for the bus
frequency design and an iterative approach, which consists
of a genetic algorithm, and a label-marking method was
used to solve the bilevel model. Yan and Chen (2002) [19]
developed amodel that will help Taiwan intercity bus carriers
in timetable setting and bus routing/scheduling; the model
was formulated as a mixed integer multiple commodity
network flow problem.

Themajority of previous solutionmethods for transit fre-
quencies and timetable setting problems relied on problem-
based heuristics or design guidelines, which could not guar-
antee the best solution in mathematics. This paper aims to
optimize arrangement of bus runs on a single line, regards
the objective problem as a multistage decision problem,
and tries to look for the global optimal solution through
dynamic programming to obtain the best scheme of bus
runs arrangement. The remainder of the paper is organized
as follows. Section 2 describes the bus timetable setting
problem. Section 3 develops an optimization procedure with
dynamic programming to solve the bus timetable setting
problem. In Section 4, a numerical experiment is given to
demonstrate the efficiency of the proposed method.The final
section concludes the paper and discusses future research
issues.

2. The Bus Timetable Setting Problem

2.1. Time Period Division. A bus line has up and down going
directions; this paper only studies the case of one direction
(1 → 𝑛); see Figure 1. Of course, the same analysis can be
made for the reverse direction.

Here, it is supposed that 𝑡
𝑖
(𝑖 = 1, 2, . . . , 𝑛 − 1) are

kept fixed and that the earliest passengers occur at stop 1 at

timepoint 𝑡
0
. Since a travel time is needed for buses getting

to the next stops, the timepoints of passengers beginning to
accumulate at the next stops can be regarded as

stop 1 𝑡
0
,

stop 2 𝑡
0
+ 𝑡
1
,

stop 3 𝑡
0
+ 𝑡
1
+ 𝑡
2
,

. . .

stop 𝑖 𝑡
0
+ 𝑡
1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑖−1
,

stop 𝑖 + 1 𝑡
0
+ 𝑡
1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑖−1
+ 𝑡
𝑖
, and

. . .

stop 𝑛 − 1 𝑡
0
+ 𝑡
1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑖−1
+ 𝑡
𝑖
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−2
.

Bus service time of a day is divided into some small
time periods (𝑇(1), 𝑇(2), . . . , 𝑇(𝑚)) according to passenger flow
intensity (the length of each period may be different), and it
is supposed that passengers evenly arrive at the stop during
each time period. The smaller the time periods are, the more
evenly the passengers arrive during each time period. For
example, time periods are all 1 hour interval. At stop 1, it is
supposed that passenger flows last from 6:00 to 22:00, so the
period 6:00∼22:00 can be divided into 16 small time periods.
During each small time period, passengers are thought as
evenly arriving at the stop, but the passenger flow intensity of
different time periods can be different. At stop 2, since a travel
time (𝑡

1
) is needed for buses’ arriving, passengers appear 𝑡

1

later, and the departure time of the last bus run should be
22:00 + 𝑡

1
. The period 6:00 + 𝑡

1
∼ 22:00 + 𝑡

1
is divided into

16 small time periods: 6:00 + 𝑡
1
∼ 7:00 + 𝑡

1
, 7:00 + 𝑡

1
∼ 8:00

+ 𝑡
1
, . . ., and 21:00 + 𝑡

1
∼ 22:00 + 𝑡

1
. The same analysis can

be made at stops 3, 4, 5, . . ., and 𝑛 − 1. It needs to be noticed
that passengers should be evenly arriving at the stop during
each time period; otherwise, the length of some time periods
needs to be shorter.

2.2. The Number of the Total Bus Runs. It is supposed
that, taking passenger flow intensity, available resources, and
economy conditions into account, the number of the total bus
runs that is at most𝑀.𝑀 can be estimated according to

𝜌MCL = ∑
𝑙

𝑞
𝑇
(𝑙)

𝑖𝑗
𝑑
𝑖𝑗
, 𝑖 < 𝑗, (1)

where 𝜌 is the average saturation of vehicles:

𝜌 = 100 ×
𝜏

𝐶
(%) . (2)

𝜌 can be approximately given according to the forecasting of
future bus operation; 𝜏 is the average number of in-vehicle
passengers; 𝐶 is the capacity of the vehicle; 𝐿 is the length of
the bus line; 𝑞𝑇

(𝑙)

𝑖𝑗
is the number of passengers going from stop

𝑖 to stop 𝑗 during time period 𝑇(𝑙), and here 𝑖 < 𝑗 is because
this paper only studies the case of one direction (1 → 𝑛); 𝑑

𝑖𝑗

is the distance between stops 𝑖 and 𝑗. Passenger turnovers of
both sides of equality (1) are equal, so an approximate value
of𝑀 can be worked out according to equality (1).
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Figure 2: Time period division at each stop and bus runs arrange-
ment.

2.3. The Bus Timetable Setting Problem. The bus timetable
setting problem is to determine bus runs assignment in each
time period (then the frequency and departure time of bus
runs can also be obtained) to minimize the total waiting time
of passengers on platforms if the number of the total runs is
known.

A supposition is made that bus runs are set evenly in each
time period. This is because, on one hand, we have supposed
that passengers evenly arrive at the stop in each time period,
and bus runs being set evenly accord with this; on the other
hand, the solutionwill become easy and simple if bus runs are
evenly set. There are many time points in each time period;
the solution will become very complex if these timepoints
are all included into the solution set, while if bus runs are
set evenly in each time period, the departure time of each
run can be easily obtained if the number of bus runs in each
time period is known. For example, if 3 runs are arranged for
an hour, then 20min, 40min, and 60min are the departure
times.

In Figure 2, the thick line at the bottom denotes the time
of passengers beginning to accumulate at each stop, which is
different from different stops, since the bus arrives at each
stop at a different timepoint. The difference is a travel time
between stops. Likewise, the time period of different stops
involves a different time span, and the difference is just travel
time between stops.

2.4. Passenger Flow Data. Thenumber of arriving passengers
at stop 𝑖 during the period between bus runs c and 𝑐 − 1 is𝑤𝑐

𝑖
,

𝑤
𝑐

𝑖
=

𝑛

∑
𝑗=𝑖+1

𝑞
𝑐

𝑖𝑗
, (3)

where 𝑞𝑐
𝑖𝑗
is the number of arriving passengers at stop 𝑖whose

destination stop is stop 𝑗 during the period between bus runs
𝑐 and 𝑐 − 1.
𝑇
(𝑙) of different stops in Table 1 involves a different time

span, and the difference is a travel time between stops. 𝑞𝑐
𝑖𝑗
for

bus run 𝑐 can be calculated according to (4) since in period
𝑇(𝑙) passengers were supposed to evenly arrive at the stop
and 𝑢

𝑙
runs were supposed to be set evenly. For example, in
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... T
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Figure 3: Bus runs arrangement.

Figure 3, the number of passengers between two immediate
runs is 𝑞

𝑖𝑗
/3:

𝑞
𝑐

𝑖𝑗
=
𝑞
𝑖𝑗

𝑢
𝑙

. (4)

It is supposed that no passengers are detained at the stop;
that is, all passengers at the stop can get on the current bus
run; otherwise, more bus runs are needed.

3. Optimization Procedures Using
Dynamic Programming

3.1. Recurrence Formula of Dynamic Programming. This
paper applies dynamic programming to optimize the bus
timetable setting problembased on reasons as follows. (1)The
problem is to determine bus runs assignment in each time
period, belonging to a time-continuous multistage decision
problem; the dynamic programming method is appropriate
to solve it. (2)Thework using exhaustive search algorithm to
solve this discrete optimization problem will be very huge;
the dynamic programming method can greatly reduce the
calculation work. (3) Dynamic programming algorithm in
nature is a global optimization algorithmand canfind a global
optimal solution of the problem.

For a bus line, its operation time of a day is divided into
some continuous time periods 𝑇(1), 𝑇(2), . . . , 𝑇(𝑚). Each time
period 𝑇(𝑙) (𝑙 = 1, 2, . . . , 𝑚) is a stage. Phase 𝑠

𝑙
of stage 𝑇(𝑙)

denotes the number of the total bus runs from 𝑇
(1) to 𝑇(𝑙),

and all its possible values construct the phase set S
𝑙
(𝑠
𝑙
∈ S
𝑙
),

𝑙 = 1, 2, . . . , 𝑚. The number (𝑢
𝑙
(𝑠
𝑙
)) of bus runs of stage 𝑇(𝑙)

is the decision variable, and all its possible values construct
the decision setD

𝑙
(𝑠
𝑙
), apparently 𝑢

𝑙
(𝑠
𝑙
) ∈ D
𝑙
(𝑠
𝑙
).The strategy

(𝑝
1,𝑙
(𝑠
𝑙
)) is a group of decisions,

𝑝
1,𝑙
(𝑠
𝑙
) = {𝑢

1
(𝑠
1
) , 𝑢
2
(𝑠
2
) , . . . , 𝑢

𝑙
(𝑠
𝑙
)} ; (5)

when 𝑙 = 𝑚, 𝑝
1,𝑚
(𝑠
𝑚
) is a strategy of the whole process,

𝑝
1,𝑚
(𝑠
𝑚
) = {𝑢

1
(𝑠
1
) , 𝑢
2
(𝑠
2
) , . . . , 𝑢

𝑚
(𝑠
𝑚
)} . (6)

The problem is to find the optimal strategy.
If 𝑠
𝑙
and 𝑢

𝑙
are given, then 𝑠

𝑙−1
of stage 𝑇(𝑙−1) can be

obtained, 𝑠
𝑙
= 𝑠
𝑙−1
+ 𝑢
𝑙
. 𝑉
1,𝑙

is a performance evaluation
function,

𝑉
1,𝑙
= 𝑉
1,𝑙
(𝑠
1
, 𝑢
1
, 𝑠
2
, 𝑢
2
, . . . , 𝑠

𝑙
, 𝑢
𝑙
) , 𝑙 = 1, 2, . . . , 𝑚. (7)
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Table 1: Traffic distribution on one direction.

𝑇(𝑙) 𝑂
𝐷

1 2 3 ⋅ ⋅ ⋅ 𝑛 − 1 𝑛

a∼b 1 0 𝑞
12

𝑞
13

𝑞
1,𝑛−1

𝑞
1,𝑛

𝑎 + 𝑡
1
∼b + 𝑡

1
2 0 𝑞

23
𝑞
2,𝑛−1

𝑞
2,𝑛

𝑎 + 𝑡
1
+ 𝑡
2
∼b + 𝑡

1
+ 𝑡
2

3 0 𝑞
3,𝑛−1

𝑞
3,𝑛

...
𝑎 + 𝑡
1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−2
∼b + 𝑡

1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−2
𝑛 − 1 0 𝑞

𝑛−1,𝑛

𝑎 + 𝑡
1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
∼b + 𝑡

1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑛−1
𝑛 0

Table 2: Optimization results when𝑀 = 40.

𝑇(𝑙) 𝑢∗
𝑙

𝑠
𝑙

𝑧
𝑙
(𝑠
𝑙
) Departure time of bus runs at stop 1

𝑇(1) 10 10 2166 7:06, 7:12, 7:18, 7:24, 7:30, 7:36, 7:42,
7:48, 7:54, 8:00

𝑇(2) 7 17 4185 8:09, 8:19, 8:27, 8:36, 8:44, 8:52, 9:00
𝑇
(3) 5 22 5661 9:12, 9:24, 9:36, 9:48, 10:00
𝑇
(4) 4 26 6831 10:15, 10:30, 10:45, 11:00
𝑇(5) 5 31 7935 11:12, 11:24, 11:36, 11:48, 12:00

𝑇(6) 9 40 9895 12:07, 12:14, 12:21, 12:28, 12:35, 12:42,
12:48, 12:54, 13:00

Table 3: Optimization results under different values of𝑀.

𝑀 (𝑢∗
1
, 𝑢∗
2
, 𝑢∗
3
, 𝑢∗
4
, 𝑢∗
5
, 𝑢∗
6
) Total waiting time

40 (10, 7, 5, 4, 5, 9) 9895
39 (10, 7, 5, 4, 4, 9) 10171
38 (10, 7, 4, 4, 4, 9) 10540
37 (10, 7, 4, 3, 4, 9) 10930
36 (10, 7, 4, 3, 3, 9) 11390
35 No feasible solutions

𝑉
1,𝑙
should be separable and has a recurrence relation; that is,

𝑉
1,𝑙
can be denoted as function of 𝑠

𝑙
, 𝑢
𝑙
, 𝑉
1,𝑙−1

:

𝑉
1,𝑙
(𝑠
1
, 𝑢
1
, 𝑠
2
, 𝑢
2
, . . . , 𝑠

𝑙
, 𝑢
𝑙
)

= 𝜓
𝑙
[𝑠
𝑙
, 𝑢
𝑙
, 𝑉
1,𝑙−1

(𝑠
1
, 𝑢
1
, 𝑠
2
, 𝑢
2
, . . . , 𝑠

𝑙−1
, 𝑢
𝑙−1
)] .

(8)

In the bus timetable setting problem, 𝑉
1,𝑙

is the total waiting
time of all stages and V

𝑙
(𝑠
𝑙
, 𝑢
𝑙
) is the waiting time of stage 𝑇(𝑙),

𝑉
1,𝑙
(𝑠
1
, 𝑢
1
, 𝑠
2
, 𝑢
2
, . . . , 𝑠

𝑙
, 𝑢
𝑙
)

= V
𝑙
(𝑠
𝑙
, 𝑢
𝑙
) + 𝑉
1,𝑙−1

(𝑠
1
, 𝑢
1
, 𝑠
2
, 𝑢
2
, . . . , 𝑠

𝑙−1
, 𝑢
𝑙−1
) ,

𝑙 = 1, 2, . . . , 𝑚.

(9)

𝑧
𝑙
(𝑠
𝑙
) is the objective function value under the optimal

strategy:

𝑧
𝑙
(𝑠
𝑙
) = opt
{𝑢1,𝑢2 ,...,𝑢𝑙}

𝑉
1,𝑙
(𝑠
1
, 𝑢
1
, 𝑠
2
, 𝑢
2
, . . . , 𝑠

𝑙
, 𝑢
𝑙
)

= min
{𝑢1,𝑢2 ,...,𝑢𝑙}

𝑉
1,𝑙
(𝑠
1
, 𝑢
1
, 𝑠
2
, 𝑢
2
, . . . , 𝑠

𝑙
, 𝑢
𝑙
) .

(10)

Recurrence formulae of dynamic programming are

𝑧
𝑙
(𝑠
𝑙
) = min
𝑢𝑙∈D𝑙(𝑠𝑙)

{V
𝑙
(𝑢
𝑙
) + 𝑧
𝑙−1
(𝑠
𝑙
− 𝑢
𝑙
)} , 𝑙 = 2, 3, . . . , 𝑚;

𝑧
1
(𝑠
1
) = min
𝑢1=𝑠1

V
1
(𝑢
1
) .

(11)

Calculating each stage using recurrence formulae, 𝑧
𝑚
(𝑀)

is the objective function value.

3.2. Dynamic Programming Algorithms for Solving the Bus
Timetable Setting Problem. Traffic demands of each time
period, the number (𝑀) of the total bus runs, and bus
capacity (𝐶) are given. The maximal and minimal number of
bus runs in time period 𝑇(𝑙) are 𝑢

𝑙
and 𝑢

𝑙
, respectively.

(1) Calculation for Time Period 𝑇(1).
(1.1) Let 𝑢

1
= 𝑢
1
.

(1.2) Traffic demands 𝑞𝑐,𝑇
(1)

𝑖𝑗
for bus run 𝑐 (𝑐 = 1, 2, . . . , 𝑢

1
)

in 𝑇(1) are equal to 𝑞𝑇
(1)

𝑖𝑗
/𝑢
1
, according to (4), where 𝑞𝑇

(1)

𝑖𝑗
is

traffic distribution in 𝑇(1).𝑤𝑐,𝑇
(1)

𝑖
= ∑
𝑛

𝑗=𝑖+1
𝑞𝑐,𝑇
(1)

𝑖𝑗
, where𝑤𝑐,𝑇

(1)

𝑖

is the number of arriving passengers at stop 𝑖 during the
period between bus runs 𝑐 and 𝑐 − 1 of 𝑇(1). Let V

1
(𝑢
1
) = 0

(V
1
(𝑢
1
) denote the total waiting time of passengers in time

period 𝑇(1) when 𝑢
1
runs are assigned to time period 𝑇(1)).

Let 𝑐 = 1.
(1.3) Calculate the waiting time of passengers for bus

run 𝑐.
(1.3.1) Let 𝑖 = 1.
(1.3.2) Calculate the number (∑𝑖−1

𝑗=1
𝑞𝑐,𝑇
(1)

𝑗𝑖
) of passengers

alighting at stop 𝑖 (if this is stop 1, then it is 0).The number (𝜏)
of in-vehicle passengers is updated, 𝜏 = 𝜏 − ∑𝑖−1

𝑗=1
𝑞𝑐,𝑇
(1)

𝑗𝑖
, and

the remainder of bus capacity is 𝐶
𝑎
− 𝜏 (for stop 1, 𝜏 = 0).

(i) If 𝑤𝑐,𝑇
(1)

𝑖
⩽ 𝐶
𝑎
− 𝜏, then V

1
(𝑢
1
) is updated,

V
1
(𝑢
1
) = V
1
(𝑢
1
) + 𝑤
𝑐,𝑇
(1)

𝑖
⋅
(𝑇𝑇(1)/𝑢

1
)

2
, (12)

where 𝑇𝑇(1) is the length of time period 𝑇(1); 𝑇𝑇(1)/𝑢
1
is the

maximumwaiting time of each passenger since𝑢
1
runs are set

evenly in 𝑇(1); (𝑇𝑇(1)/𝑢
1
)/2 is the average waiting time since

passengers evenly arrive at the stop.
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Table 4: Traffic distribution between stops in time period 𝑇(1).

𝑇(1) 𝑂
𝐷

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7:00∼8:00 1 0 3 4 5 5 7 7 11 10 10 13 10 10 8 7 8
7:00 + 𝑡

1,2
∼8:00 + 𝑡

1,2
2 0 0 2 4 5 5 6 7 9 10 10 11 8 6 7

7:00 + 𝑡
1,3
∼8:00 + 𝑡

1,3
3 0 0 0 4 5 6 7 8 7 7 11 9 10 9

7:00 + 𝑡
1,4
∼8:00 + 𝑡

1,4
4 0 0 2 4 5 10 7 6 7 10 10 9 8

7:00 + 𝑡
1,5
∼8:00 + 𝑡

1,5
5 0 2 5 4 4 5 10 9 10 8 11 6

7:00 + 𝑡
1,6
∼8:00 + 𝑡

1,6
6 0 2 3 4 5 7 7 9 8 8 5

7:00 + 𝑡
1,7
∼8:00 + 𝑡

1,7
7 0 0 2 4 5 7 7 5 8 7

7:00 + 𝑡
1,8
∼8:00 + 𝑡

1,8
8 0 0 2 3 4 8 6 7 4

7:00 + 𝑡
1,9
∼8:00 + 𝑡

1,9
9 0 0 0 4 4 8 10 8

7:00 + 𝑡
1,10
∼8:00 + 𝑡

1,10
10 0 0 2 6 10 7 8

7:00 + 𝑡
1,11
∼8:00 + 𝑡

1,11
11 0 0 8 7 7 10

7:00 + 𝑡
1,12
∼8:00 + 𝑡

1,12
12 0 0 8 7 8

7:00 + 𝑡
1,13
∼8:00 + 𝑡

1,13
13 0 2 4 7

7:00 + 𝑡
1,14
∼8:00 + 𝑡

1,14
14 0 0 5

7:00 + 𝑡
1,15
∼8:00 + 𝑡

1,15
15 0 2

7:00 + 𝑡
1,16
∼8:00 + 𝑡

1,16
16 0

Table 5: Traffic distribution between stops in time period 𝑇(2).

𝑇(2) 𝑂
𝐷

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
8:00∼9:00 1 0 0 2 3 4 5 4 5 8 6 4 5 8 5 8 6
8:00 + 𝑡

1,2
∼9:00 + 𝑡

1,2
2 0 0 2 3 2 5 4 4 5 6 5 6 5 8 3

8:00 + 𝑡
1,3
∼9:00 + 𝑡

1,3
3 0 0 2 3 8 6 6 5 4 4 5 5 5 8

8:00 + 𝑡
1,4
∼9:00 + 𝑡

1,4
4 0 0 3 4 5 2 4 8 6 5 8 6 5

8:00 + 𝑡
1,5
∼9:00 + 𝑡

1,5
5 0 2 2 2 5 3 4 10 6 6 7 5

8:00 + 𝑡
1,6
∼9:00 + 𝑡

1,6
6 0 0 2 2 2 4 2 5 5 6 6

8:00 + 𝑡
1,7
∼9:00 + 𝑡

1,7
7 0 0 0 2 2 6 4 3 9 2

8:00 + 𝑡
1,8
∼9:00 + 𝑡

1,8
8 0 0 0 2 3 4 3 4 6

8:00 + 𝑡
1,9
∼9:00 + 𝑡

1,9
9 0 0 4 5 4 2 8 5

8:00 + 𝑡
1,10
∼9:00 + 𝑡

1,10
10 0 0 2 3 2 8 5

8:00 + 𝑡
1,11
∼9:00 + 𝑡

1,11
11 0 0 2 4 6 5

8:00 + 𝑡
1,12
∼9:00 + 𝑡

1,12
12 0 0 2 4 5

8:00 + 𝑡
1,13
∼9:00 + 𝑡

1,13
13 0 0 4 2

8:00 + 𝑡
1,14
∼9:00 + 𝑡

1,14
14 0 0 4

8:00 + 𝑡
1,15
∼9:00 + 𝑡

1,15
15 0 1

8:00 + 𝑡
1,16
∼9:00 + 𝑡

1,16
16 0

The number (𝜏) of in-vehicle passengers is updated, 𝜏 =
𝜏 + 𝑤𝑐,𝑇

(1)

𝑖
.

(ii) If𝑤𝑐,𝑇
(1)

𝑖
> 𝐶
𝑎
−𝜏, then this 𝑢

1
is not a feasible solution,

and let 𝑢
1
= 𝑢
1
+ 1 return to (1.2).

(1.3.3) Let 𝑖 = 𝑖 + 1; if 𝑖 < 𝑛, then return to (1.3.2);
otherwise, turn to (1.4).

(1.4) Let 𝑐 = 𝑐 + 1; if 𝑐 ⩽ 𝑢
1
, then return to (1.3);

otherwise, output V
1
(𝑢
1
). Let C{1, 𝑢

1
} = [ V1(𝑢1) 𝑢1 ]. 𝑧𝑙(𝑠𝑙)

is the minimum waiting time of passengers when 𝑠
𝑙
bus runs

are assigned to 𝑇(1) ∼ 𝑇(𝑙). 𝑠
1
= 𝑢
1
, so 𝑧
1
(𝑠
1
) = V

1
(𝑢
1
) and

C{1, 𝑠
1
} = [ 𝑧1(𝑠1) 𝑢1 ].

(1.5) Let 𝑢
1
= 𝑢
1
+ 1; if 𝑢

1
⩽ 𝑢
1
, then return to (1.2);

otherwise, turn to (2).

(2) Calculation for Time Periods 𝑇(1), 𝑙 = 2, 3, . . . , 𝑚.
(2.1) Let 𝑙 = 2.
(2.2) The upper bound 𝑠

𝑙
of 𝑠
𝑙
(𝑙 ⩽ 𝑚 − 1) is

min(∑𝑙
𝑟=1
𝑢
𝑟
,𝑀), and the lower bound 𝑠

𝑙
(𝑙 ⩽ 𝑚−1) is∑𝑙

𝑟=1
𝑢
𝑟
.

𝑠
𝑚
= 𝑠
𝑚
= 𝑠
𝑚
= 𝑀. Let 𝑠

𝑙
= 𝑠
𝑙
.
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Table 6: Traffic distribution between stops in time period 𝑇(3).

𝑇(3) 𝑂
𝐷

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9:00∼10:00 1 0 0 1 1 3 1 4 3 2 4 3 4 4 5 4 3
9:00 + 𝑡

1,2
∼10:00 + 𝑡

1,2
2 0 0 0 0 1 2 4 5 4 4 3 4 2 3 3

9:00 + 𝑡
1,3
∼10:00 + 𝑡

1,3
3 0 0 0 1 3 3 3 1 6 2 4 3 4 4

9:00 + 𝑡
1,4
∼10:00 + 𝑡

1,4
4 0 0 0 1 1 2 2 4 4 1 3 4 6

9:00 + 𝑡
1,5
∼10:00 + 𝑡

1,5
5 0 0 0 0 1 2 1 2 1 4 4 3

9:00 + 𝑡
1,6
∼10:00 + 𝑡

1,6
6 0 0 0 0 2 2 5 1 4 1 3

9:00 + 𝑡
1,7
∼10:00 + 𝑡

1,7
7 0 0 0 1 2 2 2 2 2 4

9:00 + 𝑡
1,8
∼10:00 + 𝑡

1,8
8 0 0 0 1 2 2 2 2 1

9:00 + 𝑡
1,9
∼10:00 + 𝑡

1,9
9 0 0 0 3 5 2 7 5

9:00 + 𝑡
1,10
∼10:00 + 𝑡

1,10
10 0 0 0 1 2 2 1

9:00 + 𝑡
1,11
∼10:00 + 𝑡

1,11
11 0 0 0 2 2 5

9:00 + 𝑡
1,12
∼10:00 + 𝑡

1,12
12 0 0 2 2 2

9:00 + 𝑡
1,13
∼10:00 + 𝑡

1,13
13 0 0 0 2

9:00 + 𝑡
1,14
∼10:00 + 𝑡

1,14
14 0 0 1

9:00 + 𝑡
1,15
∼10:00 + 𝑡

1,15
15 0 0

9:00 + 𝑡
1,16
∼10:00 + 𝑡

1,16
16 0

Table 7: Traffic distribution between stops in time period 𝑇(4).

𝑇(4) 𝑂
𝐷

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10:00∼11:00 1 0 0 0 1 1 1 1 2 4 2 4 3 3 1 1 2
10:00 + 𝑡

1,2
∼11:00 + 𝑡

1,2
2 0 0 0 1 2 2 2 2 4 2 2 2 1 1 2

10:00 + 𝑡
1,3
∼11:00 + 𝑡

1,3
3 0 0 0 0 3 1 1 3 2 2 2 2 3 1

10:00 + 𝑡
1,4
∼11:00 + 𝑡

1,4
4 0 0 0 1 1 2 3 1 1 2 2 2 3

10:00 + 𝑡
1,5
∼11:00 + 𝑡

1,5
5 0 0 0 1 1 1 4 2 2 2 2 3

10:00 + 𝑡
1,6
∼11:00 + 𝑡

1,6
6 0 0 0 0 1 1 2 1 3 3 3

10:00 + 𝑡
1,7
∼11:00 + 𝑡

1,7
7 0 0 0 0 1 1 1 1 1 2

10:00 + 𝑡
1,8
∼11:00 + 𝑡

1,8
8 0 0 0 0 0 1 1 2 2

10:00 + 𝑡
1,9
∼11:00 + 𝑡

1,9
9 0 0 0 0 1 2 2 2

10:00 + 𝑡
1,10
∼11:00 + 𝑡

1,10
10 0 0 0 0 1 2 1

10:00 + 𝑡
1,11
∼11:00 + 𝑡

1,11
11 0 0 0 1 2 2

10:00 + 𝑡
1,12
∼11:00 + 𝑡

1,12
12 0 2 0 2 1

10:00 + 𝑡
1,13
∼11:00 + 𝑡

1,13
13 0 0 0 1

10:00 + 𝑡
1,14
∼11:00 + 𝑡

1,14
14 0 0 1

10:00 + 𝑡
1,15
∼11:00 + 𝑡

1,15
15 0 1

10:00 + 𝑡
1,16
∼11:00 + 𝑡

1,16
16 0

(2.3)The upper bound of 𝑢
𝑙
(𝑠
𝑙
) ismin(𝑢

𝑙
, 𝑠
𝑙
−∑
𝑙−1

𝑟=1
𝑢
𝑟
), and

the lower bound of 𝑢
𝑙
(𝑠
𝑙
) is 𝑢
𝑙
. Let 𝑢

𝑙
(𝑠
𝑙
) = 𝑢
𝑙
.

(2.4) If ∑𝑙−1
𝑟=1
𝑢
𝑟
⩽ 𝑠
𝑙
− 𝑢
𝑙
(𝑠
𝑙
) ⩽ ∑

𝑙−1

𝑟=1
𝑢
𝑟
, then turn to (2.5);

otherwise, if 𝑢
𝑙
(𝑠
𝑙
) < min(𝑢

𝑙
, 𝑠
𝑙
− ∑
𝑙−1

𝑟=1
𝑢
𝑟
), then let 𝑢

𝑙
(𝑠
𝑙
) =

𝑢
𝑙
(𝑠
𝑙
) + 1 and repeat (2.4) to make judgment again, while if

𝑢
𝑙
(𝑠
𝑙
) = min(𝑢

𝑙
, 𝑠
𝑙
− ∑
𝑙−1

𝑟=1
𝑢
𝑟
), then turn to (2.9).

(2.5) Traffic demands 𝑞𝑐,𝑇
(𝑙)

𝑖𝑗
for bus run 𝑐 (𝑐 =

1, 2, . . . , 𝑢
𝑙
(𝑠
𝑙
)) in𝑇(𝑙) are equal to 𝑞𝑇

(𝑙)

𝑖𝑗
/𝑢
𝑙
(𝑠
𝑙
), according to (4),

where 𝑞𝑇
(𝑙)

𝑖𝑗
is traffic distribution in 𝑇(𝑙). 𝑤𝑐,𝑇

(𝑙)

𝑖
= ∑
𝑛

𝑗=𝑖+1
𝑞
𝑐,𝑇
(𝑙)

𝑖𝑗
,

where 𝑤𝑐,𝑇
(𝑙)

𝑖
is the number of arriving passengers at stop

𝑖 during the period between bus runs 𝑐 and 𝑐 − 1 of 𝑇(𝑙).
Let V
𝑙
(𝑢
𝑙
(𝑠
𝑙
)) = 0 (V

𝑙
(𝑢
𝑙
(𝑠
𝑙
)) denote the total waiting time of

passengers in time period 𝑇(𝑙) when 𝑢
𝑙
(𝑠
𝑙
) runs are assigned

to time period 𝑇(𝑙)). Let 𝑐 = 1.
(2.6) Calculate the waiting time of passengers for bus

run 𝑐.
(2.6.1) Let 𝑖 = 1.
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Table 8: Traffic distribution between stops in time period 𝑇(5).

𝑇(5) 𝑂
𝐷

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11:00∼12:00 1 0 0 1 1 1 1 2 2 4 1 3 2 3 5 3 2
11:00 + 𝑡

1,2
∼12:00 + 𝑡

1,2
2 0 0 1 1 1 1 1 3 4 1 2 3 0 3 4

11:00 + 𝑡
1,3
∼12:00 + 𝑡

1,3
3 0 0 1 1 3 2 1 2 4 4 1 2 2 2

11:00 + 𝑡
1,4
∼12:00 + 𝑡

1,4
4 0 0 1 1 1 2 2 4 2 2 1 2 3

11:00 + 𝑡
1,5
∼12:00 + 𝑡

1,5
5 0 0 1 1 3 1 2 1 2 4 2 2

11:00 + 𝑡
1,6
∼12:00 + 𝑡

1,6
6 0 0 1 1 2 1 2 2 1 3 3

11:00 + 𝑡
1,7
∼12:00 + 𝑡

1,7
7 0 0 0 1 1 1 1 0 1 2

11:00 + 𝑡
1,8
∼12:00 + 𝑡

1,8
8 0 0 2 1 2 1 2 2 4

11:00 + 𝑡
1,9
∼12:00 + 𝑡

1,9
9 0 0 1 2 2 2 1 1

11:00 + 𝑡
1,10
∼12:00 + 𝑡

1,10
10 0 0 1 4 0 1 2

11:00 + 𝑡
1,11
∼12:00 + 𝑡

1,11
11 0 0 1 0 1 2

11:00 + 𝑡
1,12
∼12:00 + 𝑡

1,12
12 0 0 1 1 1

11:00 + 𝑡
1,13
∼12:00 + 𝑡

1,13
13 0 0 1 0

11:00 + 𝑡
1,14
∼12:00 + 𝑡

1,14
14 0 0 1

11:00 + 𝑡
1,15
∼12:00 + 𝑡

1,15
15 0 0

11:00 + 𝑡
1,16
∼12:00 + 𝑡

1,16
16 0

Table 9: Traffic distribution between stops in time period 𝑇(6).

𝑇(6) 𝑂
𝐷

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12:00∼13:00 1 0 2 2 3 4 8 6 8 9 8 10 8 9 7 7 6
12:00 + 𝑡

1,2
∼13:00 + 𝑡

1,2
2 0 0 2 4 3 4 8 7 6 9 10 10 8 9 8

12:00 + 𝑡
1,3
∼13:00 + 𝑡

1,3
3 0 0 2 4 4 4 6 5 9 8 10 10 7 7

12:00 + 𝑡
1,4
∼13:00 + 𝑡

1,4
4 0 0 3 4 4 6 8 7 10 8 9 9 8

12:00 + 𝑡
1,5
∼13:00 + 𝑡

1,5
5 0 0 0 4 4 5 6 7 10 6 8 8

12:00 + 𝑡
1,6
∼13:00 + 𝑡

1,6
6 0 0 0 3 4 4 5 5 6 9 4

12:00 + 𝑡
1,7
∼13:00 + 𝑡

1,7
7 0 0 0 4 4 5 5 6 4 6

12:00 + 𝑡
1,8
∼13:00 + 𝑡

1,8
8 0 0 0 4 5 4 8 7 7

12:00 + 𝑡
1,9
∼13:00 + 𝑡

1,9
9 0 0 0 3 4 5 8 7

12:00 + 𝑡
1,10
∼13:00 + 𝑡

1,10
10 0 0 0 4 5 7 5

12:00 + 𝑡
1,11
∼13:00 + 𝑡

1,11
11 0 0 3 4 5 6

12:00 + 𝑡
1,12
∼13:00 + 𝑡

1,12
12 0 0 3 4 4

12:00 + 𝑡
1,13
∼13:00 + 𝑡

1,13
13 0 0 2 2

12:00 + 𝑡
1,14
∼13:00 + 𝑡

1,14
14 0 0 2

12:00 + 𝑡
1,15
∼13:00 + 𝑡

1,15
15 0 1

12:00 + 𝑡
1,16
∼13:00 + 𝑡

1,16
16 0

(2.6.2) Calculate the number (∑𝑖−1
𝑗=1
𝑞
𝑐,𝑇
(𝑙)

𝑗𝑖
) of passengers

alighting at stop 𝑖 (if this is stop 1, then it is 0). The number
(𝜏) of in-vehicle passengers is updated, 𝜏 = 𝜏 − ∑𝑖−1

𝑗=1
𝑞𝑐,𝑇
(𝑙)

𝑗𝑖
,

and the remainder of bus capacity is 𝐶
𝑎
−𝜏 (for stop 1, 𝜏 = 0).

(i) If 𝑤𝑐,𝑇
(𝑙)

𝑖
⩽ 𝐶
𝑎
− 𝜏, then V

𝑙
(𝑢
𝑙
(𝑠
𝑙
)) is updated,

V
𝑙
(𝑢
𝑙
(𝑠
𝑙
)) = V

𝑙
(𝑢
𝑙
(𝑠
𝑙
)) + 𝑤

𝑐,𝑇
(𝑙)

𝑖
⋅
(𝑇𝑇(𝑙)/𝑢

𝑙
(𝑠
𝑙
))

2
, (13)

where𝑇𝑇(𝑙) is the length of time period𝑇(𝑙);𝑇𝑇(𝑙)/𝑢
𝑙
(𝑠
𝑙
) is the

time interval between bus runs 𝑐−1 and 𝑐 since 𝑢
𝑙
(𝑠
𝑙
) runs are

set evenly in 𝑇(𝑙); (𝑇𝑇(𝑙)/𝑢
𝑙
(𝑠
𝑙
))/2 is the average waiting time

since passengers evenly arrive at the stop.
The number (𝜏) of in-vehicle passengers is updated, 𝜏 =

𝜏 + 𝑤
𝑐,𝑇
(𝑙)

𝑖
.

(ii) If 𝑤𝑐,𝑇
(𝑙)

𝑖
> 𝐶
𝑎
− 𝜏, then this 𝑢

𝑙
(𝑠
𝑙
) is not a feasible

solution, let 𝑢
𝑙
(𝑠
𝑙
) = 𝑢
𝑙
(𝑠
𝑙
) + 1, and return to (2.4).

(2.6.3) Let 𝑖 = 𝑖 + 1; if 𝑖 < 𝑛, then return to (2.6.2);
otherwise, turn to (2.7).

(2.7) Let 𝑐 = 𝑐 + 1; if 𝑐 ⩽ 𝑢
𝑙
(𝑠
𝑙
), then return to (2.6);

otherwise, output V
𝑙
(𝑢
𝑙
(𝑠
𝑙
)).

(2.8) Let 𝑢
𝑙
(𝑠
𝑙
) = 𝑢
𝑙
(𝑠
𝑙
)+1; if 𝑢

𝑙
(𝑠
𝑙
) ⩽ min(𝑢

𝑙
, 𝑠
𝑙
−∑
𝑙−1

𝑟=1
𝑢
𝑟
),

then return to (2.4); otherwise, turn to (2.9).
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1 2 3 4 5 6 7 8 9 1110 12 13 14 15 16

Figure 4: A bus line with 16 stops.

(2.9) Since C{𝑙 − 1, 𝑠
𝑙
−𝑢
𝑙
(𝑠
𝑙
)} = [𝑧

𝑙−1
(𝑠
𝑙−1
), 𝑢∗
𝑙−1
, 𝑧
𝑙−2
(𝑠
𝑙−2
),

𝑢∗
𝑙−2
, . . . , 𝑧

1
(𝑠
1
), 𝑢∗
1
], where 𝑠

𝑙−1
= 𝑠
𝑙
− 𝑢
𝑙
(𝑠
𝑙
), (𝑢∗
𝑙−1
, 𝑢∗
𝑙−2
, . . . ,

𝑢∗
1
)|
𝑠𝑙−1

is the optimal strategy of subprocess (1 → 𝑙−1) when
𝑠
𝑙−1
= 𝑠
𝑙
− 𝑢
𝑙
(𝑠
𝑙
). The value of 𝑢

𝑙
(𝑠
𝑙
) making 𝑧

𝑙
(𝑠
𝑙
) (𝑧
𝑙
(𝑠
𝑙
) =

V
𝑙
(𝑢
𝑙
(𝑠
𝑙
)) + 𝑧

𝑙−1
(𝑠
𝑙−1
)) minimum is taken as the optimal

strategy (𝑢∗
𝑙
(𝑠
𝑙
)) under phase 𝑠

𝑙
. (𝑢∗
𝑙
, 𝑢∗
𝑙−1
, 𝑢∗
𝑙−2
, . . . , 𝑢∗

1
)|
𝑠𝑙
is the

optimal strategy of subprocess (1 → 𝑙) under phase 𝑠
𝑙
, and

𝑧
𝑙
(𝑠
𝑙
) is the optimal function value of subprocess (1 → 𝑙)

under phase 𝑠
𝑙
. C{𝑙, 𝑠

𝑙
} = [𝑧

𝑙
(𝑠
𝑙
), 𝑢∗
𝑙
(𝑠
𝑙
),C{𝑙 − 1, 𝑠

𝑙
− 𝑢∗
𝑙
(𝑠
𝑙
)}].

(2.10) Let 𝑠
𝑙
= 𝑠
𝑙
+ 1; if 𝑠

𝑙
⩽ 𝑠
𝑙
, then return to (2.3);

otherwise, turn to (2.11).
(2.11) Let 𝑙 = 𝑙 + 1; if 𝑙 ⩽ 𝑚, then return to (2.2);

otherwise, output C{𝑚,𝑀}. If no feasible solutions can be
found, then the value of𝑀 is not right andmore bus runs are
needed.C{𝑚,𝑀} = [𝑧

𝑚
(𝑠
𝑚
), 𝑢∗
𝑚
,C{𝑚−1, 𝑠

𝑚
−𝑢∗
𝑚
}], and then

the optimal strategy (𝑢∗
𝑚
, 𝑢
∗

𝑚−1
, 𝑢
∗

𝑚−2
, . . . , 𝑢

∗

1
) for the whole

process can be obtained.

4. A Numerical Example

A bus line is illustrated in Figure 4, where stop 1 is the origin
stop and stop 16 is the terminal.The bus travel time 𝑡

𝑖,𝑗
(𝑖, 𝑗 =

1, 2, 3, . . . , 16) between stops 𝑖 and 𝑗 is fixed. The bus line’s
service time is from 7:00 to 13:00. Tables 4, 5, 6, 7, 8, and 9
(see the appendix) give the data of traffic distributions (𝑞𝑇

(𝑙)

𝑖𝑗
)

in each time period. Each hour is regarded as a time period
and there are 6 time periods in total. At most 10 and at least
2 bus runs are for each time period; bus capacity is 50. It is
supposed that no passengers are detained at the stop; that is,
all passengers at the stop can get on the current bus run.

The target is to minimize the total waiting time of
passengers at the stops. The problem is to determine the
number of bus runs arranged for each time period and the
departure timetable of bus runs at the origin stop.

If the number (𝑀) of the total bus runs is 40, the
optimization results are in Table 2. Since bus runs are set
evenly in each time period, the departure time of bus runs
at the origin stop is listed in Table 2.

If 𝑀 takes different values, the results under different
values of𝑀 are in Table 3.

5. Conclusions and Prospect

This paper studied bus runs arrangement of a bus line
and defined the bus timetable setting problem which is to
determine bus runs assignment in each time period so as to
minimize the total waiting time of passengers on platforms
if the number of the total bus runs is known. On the basis
of this definition, the global optimization algorithm using
dynamic programming was proposed to solve the problem. A
numerical example about bus runs assignment optimization

of a single bus line demonstrated the efficiency of the
proposed method.

Although only the case of one direction of a single bus
line was discussed in this paper, the similar analysis can be
made for the case of both directions only if traffic demands
on the reverse direction are also known. By the same way the
scheme of bus runs arrangement on the reverse direction can
also be obtained. However, if the restriction of the number
of vehicles and the optimal deployment of resources are
taken into account, then the problem involves scheduling of
vehicles and needs more researches in the future.

Appendix

See Tables 4–9.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research is supported by the Hunan Province Social
Science Fund (Grant no. 12YBB274).

References

[1] M. Friedman, “A mathematical programming model for opti-
mal scheduling of buses’ departures under deterministic condi-
tions,” Transportation Research, vol. 10, no. 2, pp. 83–90, 1976.

[2] P. G. Furth and N. H. M. Wilson, “Setting frequencies on bus
routes: theory and practice,” Transportation Research Record,
vol. 818, pp. 1–7, 1981.

[3] A. De Palma and R. Lindsey, “Optimal timetables for public
transportation,” Transportation Research B, vol. 35, no. 8, pp.
789–813, 2001.

[4] Q. K. Wan and H. K. Lo, “A mixed integer formulation for
multiple-route transit network design,” Journal of Mathematical
Modelling and Algorithms, vol. 2, no. 4, pp. 299–308, 2003.

[5] A. Barra, L. Carvalho, N. Teypaz, V. D. Cung, and R. Balassiano,
“Solving the transit network design problem with constraint
programming,” in Proceedings of the 11th World Conference in
Transport Research, pp. 24–28, University of California, 2007.

[6] R. Van Nes, R. Hamerslag, and B. H. Immers, “Design of public
transport networks,” Transportation Research Record, vol. 1202,
pp. 74–83, 1988.

[7] S. Carrese and S. Gori, “An urban bus network design proce-
dure,” in Applied Optimization, P. Michael and L. Martine, Eds.,
pp. 177–195, Springer, New York, NY, USA, 2002.

[8] S. B. Pattnaik, S. Mohan, and V. M. Tom, “Urban bus transit
route network design using genetic algorithm,” Journal of
Transportation Engineering, vol. 124, no. 4, pp. 368–375, 1998.

[9] V. M. Tom and S. Mohan, “Transit route network design using
frequency coded genetic algorithm,” Journal of Transportation
Engineering, vol. 129, no. 2, pp. 186–195, 2003.

[10] B. Yu, Z. Yang, C. Cheng, and C. Liu, “Optimizing bus transit
network with parallel ant colony algorithm,” in Proceedings of
the Eastern Asia Society for Transportation Studies, pp. 374–389,
Bangkok, Thailand, 2005.



Discrete Dynamics in Nature and Society 9

[11] A. Ceder, “Bus frequency determination using passenger count
data,” Transportation Research A, vol. 18, no. 5-6, pp. 439–453,
1984.

[12] A. Ceder, “Methods for creating bus timetables,” Transportation
Research A, vol. 21, no. 1, pp. 59–83, 1987.

[13] A. Ceder, “A procedure to adjust transit trip departure times
through minimizing the maximum headway,” Computers and
Operations Research, vol. 18, no. 5, pp. 417–431, 1991.

[14] D. L. van Oudheusden andW. Zhu, “Trip frequency scheduling
for bus route management in Bangkok,” European Journal of
Operational Research, vol. 83, no. 3, pp. 439–451, 1995.

[15] P. Chakroborty, K. Deb, and P. S. Subrahmanyam, “Optimal
scheduling of urban transit systems using genetic algorithms,”
Journal of Transportation Engineering, vol. 121, no. 6, pp. 544–
553, 1995.

[16] P. Chakroborty, K. Deb, and H. Porwal, “A genetic algorithm
based procedure for optimal transit systems scheduling,” in
Proceedings of the 5th International Conference on Computers in
Urban Planning and UrbanManagement, pp. 330–341, Mumbai,
India, 1997.

[17] F. Zhao and X. Zeng, “Optimization of transit route network,
vehicle headways and timetables for large-scale transit net-
works,” European Journal of Operational Research, vol. 186, no.
2, pp. 841–855, 2008.

[18] B. Yu, Z. Yang, and J. Yao, “Genetic algorithm for bus frequency
optimization,” Journal of Transportation Engineering, vol. 136,
no. 6, Article ID 002006QTE, pp. 576–583, 2010.

[19] S. Yan and H.-L. Chen, “A scheduling model and a solution
algorithm for inter-city bus carriers,” Transportation Research
A, vol. 36, no. 9, pp. 805–825, 2002.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


