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We construct dynamic Bertrand-Stackelberg pricing models including two manufacturers and a common retailer in a risk-averse
supply chain with the uncertain demand. The risk-averse supply chain follows these strategies: Bertrand game between the two
manufacturers and Stackelberg game between the manufacturer and the retailer. We study the effect of the price adjustment speed,
the risk preference, and the uncertain demand on the stability of the risk-averse supply chain using bifurcation, power spectrum,
attractor, and so forth. It is observed that there exists slip bifurcation when the price adjustment speed across some critical value,
the stable region, and total profit of the risk-averse supply chain will increase with increase of R, and decrease with increase of 0.
The profit of the supply chain and the two manufacturers will decrease and the weaker (retailer) is a beneficiary when the supply

chain is in chaos. The fluctuation in the supply chain can be gradually controlled by the control of the price adjustment speed.

1. Introduction

With the development of economic globalization, the rela-
tionship among the supply chain members becomes more
and more complex under the different environment. An
enterprise which is involved in the middle of multiple supply
chains has all kinds of complicated relationship when the
parameter of the upstream and downstream enterprises is
changed, such as market uncertainty and risk preference
factor; the enterprise’s decision-making behaviors become
more complicated and hard to predict.

We all know that the price is always a sensitive topic,
which can affect customer needs and wants, distribution of
the products and services among the supply chains. Scholars
at home and abroad have done a lot of research on this
aspect. Wei et al. [1] studied pricing decisions in a supply
chain with two manufacturers and one common retailer
and constructed five pricing models under decentralized
decision cases with consideration of different market power
structures. Mukhopadhyay et al. [2] considered two separate
firms, which had private forecast information about market
uncertainties and offered complement goods in a leader-
follower type, and devised a “simple to implement” informa-
tion sharing scheme under which both firms and the total

system are better off. These literatures analyzed and compared
the optimal solution under different market power structures,
but they did not consider the effect of risk reference of the
participants on the optimal solution.

There are many literatures taking risk preference into
account. Caliskan-Demirag et al. [3] constructed models
of the supply chain with a risk-averse retailer by adopting
the conditional-value-at-risk (CVaR) decision criterion. Luo
and Huang [4] explored the impact of risk preference on
the strategies of the supply chain by taking the different
attention of high profit and low profit as retailers risk
measurement. These literatures only consider the unilateral
risk, but, in the uncertainty environment, there exists bilateral
risk among the participants which corresponds to the actual
situation. In this paper, we will consider a supply chain
under bilateral risk with two risk-averse manufacturers and
a risk-averse retailer, which make the supply chain more
complex.

Many literatures study the complexity of supply chain.
Huang and Chen [5] studied the sale-surety contract option
of supply chain with effort dependent demand and risk
preference and got some meaningful conclusions. Guan and
Zhou [6] researched the integrated optimization problem



of three-level supply chain consisting of suppliers, distrib-
utors, and retailers under decision-makers having different
risk attitude. Huang and Yang [7] studied a two-echelon
supply chain model with one supplier and one retailer
in a newsvendor problem; the supplier with different risk
attitude has great influence on the retailer’s optimal order
quantity; the operation efficiency of the supply chain will be
underperformed when the supplier is much too risk-averse.
These literatures have studied the participant’s behaviors of
the risk supply chain, but they did not present the dynamic
complex features of the risk supply chain.

Research on dynamical complexity of a system has been
of concern to scholars. Puu [8] found that the Cournot three
oligopoly model could appear strange attractors with fractal
dimension, and he studied the situation of the duopoly game.
Many researchers improved the classical Cournot model
and found that certain dynamical behaviors of the system
occurred in the course of repeated games with three or
four duopolies. Many experts have also studied this field
under different conditions, such as different expectations and
incomplete information select it Ma and Sun [9] established
a decentralized pricing game model and studied its complex
dynamic characteristics of triopoly under different decision-
making rule; the result showed that the process of game
would tend to a Nash equilibrium at a lower price adjustment
speed, and, with the increase of the value of adjustment
speed, the system would appear to be unstable and gradually
gone into a chaos state. Ma and Bangura [10] studied the
dynamic complexity of financial and economic system under
the condition of three parameters changing.

In recent years, many experts apply the dynamical com-
plexity to study the dynamic change process of supply chain.
Hwarng and Xie [11] found that there existed the chaotic
enlargement phenomenon among the members of the supply
chain which enriched the connotation of the bullwhip effect.
J. Wang and X. Wang [12] established nonlinear supply
chain inventory system models with forbidden returning and
limited supply capacity; numerable simulations showed that
the supply chain inventory system had complex dynamic
behaviors under certain parameter settings; they gave some
suggestions to eliminate the complexity of the dynamic
supply chain. Ma and Feng [13] presented investigation
simulations of retailer’s demand and stock; the behaviors
of the system exhibited deterministic chaos with consid-
eration of system constraints. These literatures researched
the dynamic complexity of the supply chain but did not
consider the influence of the decision-maker’s risk behav-
iors on the supply chain management. In this paper, we
will study the dynamic complexity of a risk-averse supply
chain with two manufacturers and a common retailer under
uncertain demand. Considering the change of parameters in
the dynamic risk supply chain, such as the price adjustment
speed, risk preference, and uncertain demand, we can study
the influence of parameters on the price and stable region of
the two manufacturers and retailer.

The remainder of this paper is organized as follows.
In Section 2, we describe the supply chain problem, make
assumptions of the system model, and discuss the system
model. In Section 3, we construct a Bertrand-Stackelberg
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dynamic pricing model which consists of two manufactures
and one retailer with risk-averse attitude. Analysis is made
under different variable conditions in Section 4. In Section 5,
the variable feedback control method will be used to con-
trol chaos in the system. In Section 6, we outline some
conclusions and hence relevant recommendations for future
research.

2. Model

2.1. Description of the Problem. In this section, we construct
a dynamic pricing game model in a risk-averse supply chain
which consists of two manufacturers (M, and M,) and a com-
mon retailer (R). The two manufacturers are competitive and
sell respective products to the common retailer, and the com-
mon retailer sells two kinds of products to consumers directly.
The customers’ demand is stochastic. We consider the supply
chain following these strategies: Bertrand game between
the two manufacturers and Stackelberg game between the
manufacturer and the retailer. In these strategies, the two
manufacturers and the retailer make their own decisions,
respectively, for maximizing their profit; the decision process
is as follows: the two manufacturers, as the Stackelberg leader,
determine the respective wholesale price (w;) (i = 1,2);
the retailer as the follower sets his own optimal retail price
(p;) (i =1,2) based on the manufacturer’s decisions.

Furthermore, in order to capture the uncertain demand
which is affected by the change of economic and business
conditions and prediction errors, we assume the market
demand random variable a is as follows: a = a + ¢,
where a is the primary demand level and ¢ follows a normal
distribution such as E(e) = 0, Var(e) = o°. However,
the normality assumption has been used extensively in the
literature (e.g., Gal-Or [14]; Raju and Roy [15]; Vives [16]).
The two manufacturers and the retailer know the distribution
of the uncertain demand and determine their behaviors,
respectively.

Because the customer demand is stochastic, there is
financial risk to the two manufacturers and the retailer.
Therefore, we should consider the effect of the risk preference
of the two manufacturers and the retailer on pricing decision.
The preference theory provides the framework which incor-
porates the participators” financial risk preference into their
decision process. The valuation measure we use is known
as the certainty equivalent in the preference theory and is
defined as certain value that a participator is just willing to
accept an uncertain event (Kunstman [17]).

One form of the utility function in both theoretical
and applied work in areas of decision theory and finance
is the exponential utility function which can be expressed
as (m;) = —e R (i = M, M,, R), where R; is the risk
tolerance level of the two manufacturers and retailer, 7; is
the profit, and e is the exponential constant. When R; < oo,
it implies that the decision-maker has risk-averse behavior,
and R; approaches co which implies the decision-maker
is risk-neutral (Walls [18]). If the decision-maker is risk-
averse, 77 follows a normal distribution, and expected utility is
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E(U) = E(rr) — (Var(7r)/2R), where E(r) is the mean of 7 and
Var() is the variance of 7.

2.2. Assumption of the System

(1) Customer demand is always satisfied, demand func-
tion is linear, and the two manufacturers and the
retailer make decentralized decision.

(2) We consider two partly substitutable products coming
from a competitive market in which consumers can
buy any one of them.

(3) The consumer demand is stochastic; the two manu-
facturers and the retailer are all risk aversion.

(4) Cy, is marginal cost of M;; C,, is marginal cost of
M,.

2.3. Revenue Function of the System. In this study, w; and
p; (i = 1,2) are decision variables and other variables are
exogenous variables. As is known in the supply chain, we
assume that p; > w; (i = 1,2); this inequality ensures that
each participant can obtain a positive profit.

Extend the demand function in Banker et al. [19]. We
assume that the primary demand function in this paper is
decided by p; (i = 1,2) as follows:

Dy =a-bp, +d,p,

¢))
D, =a-bp, +d,p;,

where a represent the base demand level of the product,
b, (i = 1,2) are price sensitive coefficient of demand,
the cross-price sensitive coefficient d; (i = 1,2) reflects
the substitution degree of the products, and a,b,,d; > 0.
We can obtain the expected utility functions of the two
manufacturers and the retailer as follows:
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From formulas (2), (3), and (4), we obtain the revenue
functions of the two manufacturers and the retailer which
is more in accordance with the actual situation using the
utility function. When a manufacturer changes the value of
parameter, how to adjust value of parameter and what impact
it will have on the other manufacturers and the retailer are the
main innovation points of this paper.

3. Bertrand-Stackelberg Model

Suppose that the two manufacturers and the retailer have
principal and subordinate relationship, the two manufactur-
ers are Stackelberg leaders, the retailer is follower, and there
is Bertrand competition between the two manufacturers.
Then, the manufacturers and the retailer process sequential
dynamic game; the game equilibrium is Stackelberg equilib-
rium. In this game, the two manufacturers make decisions
for wholesale price according to the market information; the
retailer makes decisions according to the two manufacturers.
Using backward induction, we first find the response func-
tions of the second stage from the game model. The optimal
marginal utility of the retailer can be obtained by the first-
order conditions of formula (2); the calculation results are as
follows:

OE (U
(Us) =a+bw, -dw, +
op, Ry

0'2 O'2
—(R—R +2b1)p1+<d1+d2—R—R)p2,

(w, + w2)02

(w, + w2)02

(5)

OE (U,
(Uz) =a+bw,-dw, +
op, Ry

o o’
- (R_R +2b2)p2+ (dl +d, - R—R)pl.

The retailer’s reaction functions are as follows by solving
formula (5):

. AE+BC
=P
(6)
. AC+BD
= pE-c>
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where A = a + bjw, a
~(0?/Rp), D

byw, — d w, + (w, +w,)0*/Ry),C = d, +d,
(0*/Ry) + 2b,, E = (6°/Ry) + 2b,.

Formula (6) is the optimal decision making of the retailer
on the premise of w,, w,; the retailer can obtain the decision
after it observes the manufacturer’s behavior. Substitute
formula (6) into formulas (3) and (4); the optimal wholesale
price of the two manufacturers can be obtained by the first-
order conditions of formulas (3) and (4):
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Let aE(UMl)/aw1 = 0 and aE(UMZ)/aw2 = 0; we can find
out the equilibrium solutions of the two manufacturers to
the retailer at some stage; the equilibrium solutions express
optimal decision of the two manufacturers in various possible
situations in a game stage.

In the actual decision process, the economic behavior of
the decision-maker always shows limited rational character-
istics, such as risk-averse behavior. Then, decision results are
different from the one which is perfectly rational. Optimal
solution is an optimal state when other parameters in the
system change. Although it is very much rare for the system
to go into an optimal state, how to determine the adjustment
speed and pricing orientation is the focus of this research. In
this paper, the two manufacturers make decisions based on
limited rational expectations; they adjust the game process
on the basis of last period marginal utilities. If the marginal
utilities in period t are positive, they will continue their
output adjustment strategy in period t + 1. The process can
be modeled as follows: )

>

)
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FIGURE : Price bifurcation and Lyapunov of two manufacturers and retailer with change of k; when k, = 0.001: (a) wholesale price; (b) retail

price; (c) Lyapunov.

where k,; is the adjustment coefficient of w; and k, is the
adjustment coefficient of w,. According to the dynamic
adjustment process, we can see that the wholesale price of the
manufacturer is related to the price adjustment speed, retail
price, the mean and variance of the base demand level, and
risk tolerance level of manufacturers. Similarly, the retail price
of the retailer is related to the adjustment speed coefficient,
wholesale price, the mean and variance of the base demand
level, and risk tolerance level of the retailer.

4. The Complex Dynamic Behavior

The ultimate goal of the supply chain is to pursue profit
maximization for each of the participants and to achieve
optimum overall. Therefore, they should adjust price based
on their marginal profit of last period.

4.1. The Fixed Point. In system (8), letting w;(t + 1) =
w;(t)@ = 1,2), we can get the fixed points of sys-
tem (8). Before we solve the fixed points of system (8),
we first assign some parameters considering the actual
competition: a = 1000,b, = 12,b, = 1d, =
08,d, = 07,0 = 60,Ry = 60,Ry = Ry = 60,
Cy, = 15 and Cy, = 10. We will calculate all the fixed
points and only consider the Nash equilibrium point (w, =
31.22,w, = 26.33, p, = 37.37, and p, = 36.59).
Jacobian matrix of (8) in the Nash equilibrium point is
/- (1 +91895.38k, ©)

146744.3k,
202024.66k, :

1+ 119860.3k,

Characteristic polynomial of (9) is f(1) = A*~ AL+ B, where
A = 91895.38k; + 119860.3k, + 2 and B = 91895.38k; +
119860.3k, + 10718148142.27k, k, + 1.
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The local stability of Nash equilibrium can be gained
according to Routh-Hurwiz’s condition:

f(1)=1-A+B>0,
F(-1)=1+A+B>0, (10)
B-1<0.

Condition (10) gives the necessary and sufficient conditions
of stable region of the Nash equilibrium point. Economic
meaning of the stable region is that, whatever initial price is
chosen by the two manufacturers in local stable region, they
will eventually achieve Nash equilibrium price after finite
games. It is important to notice that the two manufacturers
may accelerate the price adjustment speed in order to increase
their profit. Price adjustment parameter does not change

Nash equilibrium point. Once one manufacturer adjusts price
too fast and pushes k;, k, out of the stable region, the system
tends to become unstable and falls into chaos. On the basis of
the parameters assigned above, we use numerical simulation
to describe the dynamic behaviors of system (8).

4.2. The Effect of Price Adjustment Speed on the System

(1) The Influence Which the Price Adjustment Speed Has on the
Behaviors of the Two Manufacturers and the Retailer. Since the
two manufacturers’ behaviors are similar, we only discuss the
influence on system behaviors when the parameter of M, is
changed.

First, we can get the price trajectory diagrams of the
two manufacturers and retailer with change of k; when
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k, = 0.00l,w; = 20, and w, = 15, as shown in
Figure 1(a) and Figure 1(b). We can obtain that w, is less
affected by change of k; and w;, w,, p;, and p, change from
the stable period, period-doubling bifurcation to the chaos
in three trajectories. When k; € [0,0.00102], w;, w,, p;,
and p, are stable. When k; = 0.00102, the first bifurcation
appears in w;,w,, p;, and p,, and the price of the two
manufacturers and retailer vibrates in two points; after that
the second bifurcation appears in the system; finally, the
system goes into chaos, the price behaves more disorderly,
and the market behaviors become unpredictable. Figure 1(c)
shows corresponding change of the Lyapunov exponent. The
positive Lyapunov exponent is used to mark the chaos; the
bigger the Lyapunov exponent, the stronger the chaos. The
system is in chaos when most of the Lyapunov exponents
are positive. Figure 2 shows the price trajectory diagrams of
the two manufacturers and retailer with the change of k; and
k, simultaneously. We can observe that the stable regions of
wy, w, are smaller than the one with change of only k, or only
k, and the w,, p;, and p, change from the stable period and
period-doubling bifurcation to the chaos in four trajectories;
the dynamic characteristics of w, in particular do not follow
the period-doubling bifurcation. Because k, and k, change at
the same time, the retailer’s behaviors appear in complicated
characteristics.

Figure 3(a) shows an attractor of the supply chain which
is in stable state when k; = k, = 0.001. Figure 3(b) shows
a chaos attractor of the supply chain which appears in a
complex state when k; = k, = 0.0015; it is another chaos
characteristic of the variables.

Proposition 1. The value of price adjustment speed determines
whether the supply chain is stable or not; when we determine
this value, each manufacturer should consider market reaction
of the competitors and retailer. Only upstream and downstream
enterprises keep stable, to ensure the stability of the supply chain
and to maximize the enterprise’s profit.
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(2) The Influence Which Change of Risk Preference Has on
the Behaviors of the Two Manufacturers and the Retailer. Let
k, = 0.001,R; = 120; the value of other parameters is
the same as in the previous assumption; we can obtain the
price bifurcation diagrams of the two manufacturers and the
retailer with change of k,, as shown in Figure 4. We can see
that the stable region is not changed, wholesale price of the
two manufacturers declines, and the retail price goes up with
change of Ry. Figure 5 shows the price bifurcation diagrams
of the two manufacturers and the retailer with change of k,
when k, = 0.001,R,, = 120, the first bifurcation point
is k; = 0.00129, and the equilibrium value is (46.73, 26.4,
48.89, and 40.6). We can make a conclusion that the risk
preference of the manufacturer can affect the stable region of
system and change the equilibrium point of system, and the
risk preference of the retailer cannot affect the stable region
of system and change the equilibrium point of system.

(3) The Influence Which the Uncertain Demand Has on the
System Variable Behaviors. Because the demand forecasting
exists errors, the customer demand is always uncertain. Next
we will observe the price change of the two manufacturers
and retailer with change of k; when o = 70,k, = 0.001, and
it is shown in Figure 6. We can see that, with o increasing,
the first bifurcation point of the system is k; = 0.00105, and
wy, Wy, p;, and p, are all falling.

Proposition 2. Uncertain demand makes the supply chain
access chaos quickly, and the wholesale price and the retail price
decline. It is uncertain about their respective profit; thereby the
competitiveness of the supply chain becomes weak.

(4) The Power Spectrum of Variables and the Sensitive Depen-
dence on Initial Conditions. We adopt a cycle diagram method
to estimate the power spectrum of variables. Next, we will
observe the price change of the two manufacturers and
retailer when k; = k, = 0.001 and the initial values are
w; = 20,w, = 15; it is shown in Figure 7. We know that the
supply chain is stable when k; = k, = 0.001, so the power
spectrum of the variables is straight lines which conform
to the attractor in Figure 3(a). When k; = k, = 0.0015,
the supply chain is in chaos. From Figure 8, we can see that
wy, Wy, Py, and p, vibrate with a frequency, w, changes with
approximate periodic motion, and range of movement of p,
is bigger than the one of p,.

Then, we will observe the price change of the two
manufacturers and the retailer when k;, = k, = 0.0015
and (w;,w,) = (20.01, 15) and (20, 15) which has smaller
change in w; and no change in w,; they are shown in Figure 9.
We can see that the price of the two manufacturers and
retailer has distinct change. The sensitive dependence on
initial conditions is another important characteristic of the
chaotic system as it fully manifests the sensitive dependence
on the initial conditions of the system (8).

Through the above analysis, we know that the risk-averse
supply chain has been in chaos. At this state, the price of the
two manufacturers and the retailer changes disorderly from
the beginning of the Nash equilibrium.
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(5) The Effect of Parameter Change on the Profit. Figure 10
shows the profit bifurcation of the two manufacturers and
retailer with changes of k;. Obviously, the profit bifurcation is
similar to price bifurcation including period-doubling bifur-
cation, four-period-doubling bifurcation, and chaos state.
Figure 11 shows the profit of the two manufacturers and
retailer in 50 games when the system is in a stationary period,
two-period-doubling bifurcation, and a chaotic period. In the
different period, the fluctuation range of price of M, is larger
than that of M, . Tables 1, 2, and 3 give the profit data of the two
manufacturers and retailer, respectively, in different periods
with change of k;, Ry, , and 0.

Proposition 3. First, the total profit of the system in the chaotic
period is less than that in other periods. Second, the total profit
of the system and respective profit of the two manufacturers and
the retailer will increase with increase of Ry, and decrease with
increase of 0. Third, when the system is in chaos, the profit of the
two manufacturers will decrease, but the profit of retailer will
increase. Namely, when the system goes into chaos, the retailer
is a beneficiary. This is why some participants set out contract to

TaBLE I: The profit of the two manufacturers and retailer in different
periods when k; = 0.001.

Different Two-period-
. Stable period doubling Chaotic period

periods . .

bifurcation
TR 8159.76 8144.99 8175.85
usve 8074.74 6126.11 2403.59
o, 8128.54 8149.99 8054.7
> 24363.04 22421.09 18634.14

avoid disordered competition in some situations and why some
participants prefer chaotic market in some cases.

5. Chaos Control

Competitive manufacturers will certainly want to achieve
maximum profit in the existing supply chain. Through the
above analysis, we can see that the change of ki, k,, and
o often causes disorder behaviors in the market which are
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TaBLE 2: The profit of the two manufacturers and retailer in different
periods when R, = 120.

Different Two-period-
. Stable period doubling Chaotic period

periods - .

bifurcation
T 8182.74 8190.65 8203.86
s 15539.95 14331.78 12443.96
o, 8144.84 8136.82 8125.35
> 31867.63 30659.25 28773.17

of disadvantage to the stability of the supply chain and the
development of the enterprise. However, the participants
often maximize their own profit by any kind of means in
the process of marketization. So the market will be out of
order and finally falls into chaos. It is particularly important
that each participant should make rational strategic decision
timely for making the system return to the stable equilibrium.

Parameter adjustment and feedback control method of
the system variable will be used to control the chaos of

TaBLE 3: The profit of the two manufacturers and retailer in different
periods when o = 120.

Different Two
- Stable period  period-doubling Chaotic period
periods . .
bifurcation

T 6001.45 6009.92 6013.69
Ty, 5918.76 4346.43 3573.6

o, 5972.61 5968.58 5967.1

Y 17892.81 16324.92 15554.38

the system (8). It is often used at the chaos control of
general discrete dynamic system. We will analyze system
chaos control based on the influence of k; on the stability of
the risk-averse supply chain. Assume system (8) is w;(t + 1) =
fi(w, (t), w,(t)); the system under control is as follows:

wy (t+m) = (1-u) f" (w; (), w, (1)) + uw, (),

w,(t+m) =(1-u) f;" (w; (), w, (1) + uw, (),



Discrete Dynamics in Nature and Society
10000 . . . 8220
X:0.00104
9000 | 1 . 1
Y: 8072 8200
8000 1 8180 | 1
7000 | 1 8160 1
6000 | 1 8140 | 1
S 5000 - 8120 b i
4000 | 1 8100 | 1
3000 | B : 8080 | :
2000 | Lt ] 8060 | ]
1000 | P ] 8040 | ]
0 : Ll 8020 : :
0 0.5 1 15 2 0 0.5 1 1.5 2 .
10 -
K, X k, x10
8400
8350 |
8300 |
o 8250 |
8200 |
8150 |
8100 s : :
0 05 1 1.5 2,
K x10

FIGURE 10: The profit bifurcation with change of k; when k, = 0.001.

p(t+m) = fi(w, (), w0, (1)),
pr(t+m) = fy(w (1), w, (1)).

When u = 0, the controlled system is the original system;
thus, the controlled system has the same periodic orbit a
the original system. When m = 1, each step iteration of
the fixed point is in control. When m = 2, 4, and so forth,
namely, to control the second cycle orbit, four cycles orbit. As
long as we select an appropriate value for u, we can ensure
delayed bifurcation with k, at fixed point and keep the supply
chain being stable within large scope of k. In addition, with
appropriate adjustment value of m, we can realize stability
control of higher cycle orbits for the chaotic attractor. Then,
we discuss the stability control in the supply chain when
m = 1 and try to stabilize the price on the fixed point. The
controlled system can be represented as
)

(1)

3E (Uyy,
w t+D)=1-u)| w, () +kyw, (t) w +uw; (t),
1
9E (U
w, (t+1)=(1 —u)<w2 (t) + kw, (t)%) +uw, (t),
2

P

(t)

_ (( [a +byw, () — dyw, (1)

RCAOEL (t))az] (“_2 +2b,

Ry

+ [E +bw, (t) - d,w, (t)

N (w, (t)+w2(t))02] (d1+ 2

1
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period.

P2 (f)

a? o
X (—+2bl)(—+2b2)
= (( [E+ byw; (t) — dyw, (t) Ry Ry

() + w, (1)) 0 2 212\
OO (42 ) (ara-g))

+ [a +byw, (t) - dyw, (t) (12)

, ) ) Figures 12 and 13 show that the chaos system can be controlled
+(w1( ) twy ()0 ] (U_ + 2;,1)) gradually from the four-period-doubling bifurcation and
two-period-doubling bifurcation to the fixed point with the
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control parameter u increasing. When u > 0.4825, the
controlled system can be stabilized at the Nash equilibrium
point. In a real market, we can consider u as the regulation
on the price adjustment speed which could avoid market
chaos when manufacturers pursue their maximum profit. We
can also consider u as the learning ability or adaptability
of the market. For instance, the manufacturer will adjust
price according to the information in the past. Due to the
complexity, disorder, and randomness in chaotic state, the
manufacturer should have a clear forecast of chaos control.
After adjusting parameter 1, we can make the periodic orbit
stable at the expected point.

6. Conclusions

Considering the randomness of customer’s requirements and
supply’s risk preference, we study the supply chain in the mar-
ket which consists of two manufacturers and a retailer. We

construct a dynamic Stackelberg and Bertrand pricing game
model and find that bifurcation, chaos, and other complex
phenomena occur when the price adjustment speed, the level
of risk preference, and predict error change. When the chaos
occurs, the stability of the whole supply system is broken, and
the market becomes abnormal, irregular, and unpredictable.
It is important to note that, when determining the value
of the parameter, each manufacturer should consider the
market reaction of competitors and retailer to ensure that the
upstream and downstream enterprises keep stable and ensure
that the supply chain keeps stable for their maximum profit.
Finally, we use the parameter adjustment method to control
the supply system. Then, we have obtained some conclusions
from our research.

(1) The two manufacturers play the Bertrand game; when
M, changes its price adjustment speed, its wholesale
price presents deterministic characteristics of chaos,
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and the wholesale price of M, is influenced less.
The price of retailer is influenced largely. When price
adjustment speed of the two manufacturers changes
at the same time, it has no effect on the optimal
pricing strategy, the stable region of the supply chain
gets smaller, and the two manufacturers all show
complicated behavior characteristics.

(2) Increasing the risk tolerance level of the retailer does
not impact stable region, but retail price will increase
and wholesale price of the two manufacturers will fall.
If M, increases his risk tolerance level, the stability
between M, and the retailer is enhanced, and the two
manufacturers’ wholesale price and products’ retail
price go up. Uncertain demand makes the whole-
sale prices and retailer prices access chaos quickly,
two manufacturers’ wholesale price and retail price
decline, and total profit and their respective profit
decrease.

(3) The total profit of the system in the chaotic period is
less than that in other periods; it and respective profit
of the two manufacturers and the retailer will increase
with increase of Ry, and decrease with increase of
0. When the system is in chaos, the profit of the two
manufacturers will decrease, but the profit of retailer
will increase. Namely, when the system goes into the
chaos, the weaker (retailer) is a beneficiary.

This paper is a realistic guide for the risk-averse supply chain
to formulate its parameter adjustment strategies to avoid the
loss of the respective profit and the total profit. It is also
a realistic reference for the managers to formulate relevant
policies on macroeconomic control. The managers can adjust
parameters to make the supply chain in good operating
condition based on the operation condition of the supply
chain; for example, when the variance of customer demand
gets bigger, the manager should reduce the price adjustment
speed for the stability of the supply chain.

There are several possible directions for the future
study. First, one can study three-echelon supply chain with
complexity behaviors under the different game strategies
considering the delay time, such as the Stackelberg game
between the two manufacturers. Second, one can adopt a
different form of demand function and, finally, other control
methods may be applied in order to achieve different results.
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