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Olfactory bulb plays an important part in signal encoding of olfactory system. The interaction between excitatory mitral cell (MC)
and inhibitory granule cell (GC) is particularly crucial. In this paper, the current situation of synchronous oscillation in the network
of olfactory system is firstly introduced. Then we set up a dynamical model of MC and GC in the olfactory bulb. The simulation
shows the firing patterns of single MC and single GC, as well as these two kinds of cells having a coupling relationship. The results
indicate that MCs have an excitatory effect on GCs, and GCs have an inhibitory effect on MCs. The firing pattern varies with
different synaptic strength. In addition, we set up simple olfactory network models, discussing the influence of ring-like and grid-
like neuronal networks of GCs on the synchronization of two MCs. Different types of firing synchronization are quantified by means
of ISI-distance method. The numerical analysis indicates that grid-like neuronal network can make MCs synchronize better.

1. Introduction

Olfactory system is an important part in sensory nervous
system. Since there are many olfactory sensory neurons in our
nose, we can sense the odour [1] and distinguish thousands
of odours successfully. Each olfactory sensory neuron can
express a specific odorant receptor. These receptors pass the
odour information to olfactory bulb. Then the information
will be the information will be transmitted to the entorhinal
cortex of the brain by olfactory bulb, resulting in the sense
of smell. As the first transfer station of the olfactory system,
olfactory bulb plays an important role in processing olfactory
information. When nerve signals coming from the depths of
nasal get to the olfactory bulb, it will generate corresponding
spatial and temporal coding [2]. The process of encoding
information, in fact, is the process of further processing
and handling information. Many scholars are discussing how
the information processed by olfactory bulb is transferred
synchronously to the entorhinal cortex.

In the olfactory bulb, there is an interaction between
excitatory MCs and inhibitory GCs. The synaptic connections
have several functions: (1) the lateral inhibition from GCs
makes the receptive field of MCs smaller; (2) the interaction
plays a role in oscillations formation in the olfactory bulb
and also acts to synchronize the spikes of the MCs; (3) these
synapses may be able to store the olfactory memory. Local
field potential can be produced by the interaction between
MCs and GCs [3]. The strength of synaptic connections
determines the degree of the synchronization of the spikes,
which is conducive to the integration of information. In
this way, it can be more reliable to activate neurons of
following olfactory cortex [4]. Thus there is a guarantee of
transmitting signal and it lays a foundation for processing
different olfactory information. Bazhenov et al. [5] and some
other scholars put forward a network structural model of
locust antenna, and then they verified the phenomenon
of synchronous oscillation. On the concept of many-are-
equal (MAE), Brody and Hopfield [6] further checked that



olfactory system can identify odour by the synchronization
of spikes of MCs. When the odorousness is in a certain
range, the synchronization of group cells is unchanged. Some
scholars like Horcholle-Bossavit et al. [7] studied the encod-
ing mechanism of locust olfactory system through space-
time coding model. The simulation results indicated that
excitatory neurons were phase-locked in different oscillatory
period and showed synchronization.

In conclusion, the synchronization of the spikes of MCs
plays an important role in information encoding. The inter-
action between MCs and GCs in olfactory bulb is particularly
critical. So it becomes necessary to analyse these two kinds of
cells in detail. In this paper, we set up the dynamical model
of MC and GC in the olfactory bulb. The simulation figures
show the firing patterns of single MC and single GC, as well
as these two kinds of cells having a coupling relationship.
It shows that MCs can be synchronized by inhibition from
GC, changing from irregular spiking to synchronous spiking.
We wonder if the synchronization still exists when MCs are
connected to different neuronal network of GCs and whether
the degree of synchronization is different. To answer this
question, we set up simple olfactory network models that
consist of two MCs and nine GCs, discussing the influence
of ring-like and grid-like neuronal network of GCs on the
synchronization of two MCs.

2. Dynamics Model of Olfactory System

In this paper, MCs and GCs are implemented as conduction
base models following Hodgkin-Huxley kinetics [8]. MCs are
modeled using a single compartment while GCs are modeled
using two compartments, representing a soma and dendrites.
The membrane capacitance for all cells is 1 4F/cm” and
therefore not mentioned specifically in the voltage equations.
In addition, the following units were used: conductance per
unit area in ms/cm?, current per unit area in yA/cmz, and
voltage in mV and time (¢) in ms. The membrane potentials
are calculated with the following kinetic equation:
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where I, I;, I, and I, are the leak, ionic, synaptic, and external
currents, respectively. g, ;, v;, and v, represent the electronic
conductance and voltages between adjacent compartments in
a given cell.

There are two sodium currents Iy, and Iy,, and three
potassium currents Iy, I ,and Iy , in MCs. The GC soma
has a sodium current INa and three potassium currents Iy,
Ix,»and Iy . The GC dendrites have one sodium current Iy,
and one potassium current I. All the intrinsic currents are
described by the following equation:

I = githH (v-E), @)

where g; is the maximal conductance and E; the reversal
potential. The activation and inactivation variables m and h
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raised to the power M and H, respectively; follow the kinetic
equation as follows:

d_m_ (moo_m)
dr T,
@_ (hoo_h)

a1,

3)

The parameters m,, and h,, and the time constants T
are not the same for different currents. Values for some
parameters of MCs and GCs are given in Table 1 [8, 9].

For the current Iy in the MC and the currents Iy, and
I in the GC dendrites and soma, we used values as shown in
Figure 1 [9].

Synaptic connections between neurons are in the form of
channel connectivity [10]. When MCs excite GCs, GCs will
receive excitatory effect coming from receptors like APMA
and NMDA. Accordingly, MCs will receive inhibitory effect
from receptor GABA when inhibited by GCs. The strength of
synaptic connections between cells is expressed by excitatory
and inhibitory strength. The synaptic equations and relevant
parameters are described in Table 2 [8].

3. Simulation Results and Analysis

3.1. Simulation of the Action Potential. Figures 2 and 3 are the
spike trains of a single MC and GC under different external
currents, respectively. Figure 2(a) is the membrane potential
of MC without any external stimulus. When the stimulus
gradually increases to 2nA and 4 nA, the firing frequency
increases at the same time. For GC, the spiking frequency
also increases when stimulus varies from 0 nA to 10 nA and
20 nA. It shows that the response of cell changes with different
stimulus, consistent with the sensitivity to outside stimuli of
the olfactory system.

We can find that the firing frequency of MC has a great
change when the stimulus only increases by 2 nA. While for
GC, the spiking frequency just changes a little with stimulus
adding 10 nA. By comparing these two group figures, maybe
we can conclude that the firing patterns of MC change more
obviously than GC with different stimulus.

3.2. Interaction between MC and GC. In the olfactory bulb,
MC has an excitatory effect on GC, while GC has an
inhibitory effect on MC. Cells coupled by synaptic connec-
tions and the firing patterns change according to different
connection strength. We choose to change GABA conduc-
tance as an example to investigate the firing patterns of
MC under different inhibition strength. In addition, we also
discussed how the spike trains of MC varied when coupled
with a single GC.

As is shown in Figures 4 and 5, the firing frequency
of GC increases when it gets an excitatory effect from
MC. And when MC gets an inhibitory effect from GC,
the spiking frequency decreases. This phenomenon becomes
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FIGURE 1: (a) m, and h, curves for Na channel of GC; (b) 7 curves for Na channel of GG; (c) m, and h, curves for K and K¢, channels; (d)
7 curves for K and K, channels. The 7 values for K channel are scaled up by a factor of 4 from the graph.

TABLE 1: Some parameters in the dynamical model.

Mitral cells

Na ion channel

M =3,H =1, Ey, =45,a,, = 0.32(v+50) / {1 - exp [~ (v + 50) /4]}, b, = 0.28(v + 23)/ {exp [(v +23)/5] - 1},
@, = 0.128/ exp [(v + 46)/181, b, = 4/ {1 + exp [~(v + 23)/5]}, My = A,/ (@, + B,.)s by = a4/ (@, +by),
7, =1/(a,+b,), 7, =1/(a, +b,)

K, ion channel

M=1,H=1,Eg =-70, h,, = 1/{exp[(v + 65)/6.6] + 1}, T, = 10, m, = 1/{exp(—[v + 34)/6.5] + 1},
7, = 2000 + 220/{exp[—(v + 71.6)/6.85] + 1}

K, ion channel

M=1,H=1Eg, =-70,mg, = 1/{exp[—(v —70)/14] + 1}, h, = 1/{exp[(v + 47.4)/6] + 1},
7,, = 25exp[(v + 45)/13.3] /{exp[(v + 45)/10] + 1}, 7j, = *55.5exp [(v + 70) /5.1] / {exp [(v + 70) /5] + 1}

Na, ion channel

Ixap = Gonap (1/(exp(= (v + 51) /5) + 1)) (v — 45)

Granule cell soma

K, ion channel

=1,H =1,E, =-70,my, = 1/(1 +exp(-(v +42)/13)), hy, = 1/(1 + exp((v + 110)/18)), 7,, = 1.38, 7;, = 150

K, ion channel

M
M=3H=0,E =-70,m = 1/(exp(—=(v+35)/5) + 1), 7,,, = 1000/(3.3 exp((v + 35)/40) + exp(—(v + 35)/20))

TABLE 2: Equations and some parameters of synaptic currents.

Synaptic currents

GABA channel icapa = Goasa(eXp(=t/T,) — exp(=t/7)))(v — eGapa)> Ty = 1, T, = 200, egpps = =80
APMA channel iamea = Gamea EXP(E/T)(V — €ampa)> T = 3, €appa = 0
NMDA channel ixaipa = Mg(Ron + Roff)(v — eyyp,s)> Ron' = —Ron/2.6, mg = 1/(1 + exp(—0.062v)/3.57), Roff’ = —0.035 Roff,

envpa =0




V (mV)

V (mV)

Discrete Dynamics in Nature and Society

Mitral cell i
50 T T T T T T T 50 . . . Mltrzlil cell . . .
ok 1~ L _
= 0
£
-50} 4 > 50} .
—-100 . L . L L L ) -100 L 1 L 1 L 1 1
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
t t
Membrane potential of single MC when I, = 0nA Membrane potential of single MC when I, = 2nA
(a) ()
50 1 1 Mltr?l cell | |
—~ 0} i
>
E
> 50| 1
—-100 1 L | ) L 1 1
0 10 20 30 40 50 60 70 80
t
Membrane potential of single MC when I, = 4nA
(©
FIGURE 2: Spike trains of a MC under different stimulus.
Granular cell 50 Granular cell
s T l
c
> _50 i
—-100 L 1 1 1 L 1 1 —100 1 1 L L 1 L L
10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Membrane potential of single GC when I, = 0nA

()

V (mV)

(b)
Granular cell
50 T T T T T T T
0 i
-50
_ 1 00 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

t
Membrane potential of single GC when I, = 20nA

(c)
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FIGURE 5: Membrane potential of a GC when g, p, = 0.1.

more obvious as the inhibitory strength increases, as shown
in Figures 6,7, 8, and 9.

(1) MC Having Excitatory on GC. See Figures 4 and 5.

(2) GC Having an Inhibitory Effect on MC. See Figures 6, 7, 8,
and 9.

(3) MCs Spike Synchronously When Coupled with GC. The
response of five MCs to stimulus without synaptic connec-
tions is shown in Figure 10(a). MC population spike asyn-
chronously, for each MC getting different stimulus. When
MCs got an inhibitory effect from GC, the firing rate of
MCs decreases and they spike synchronously, as shown in
Figure 11(a).

Figures 10(b) and 11(b) are the corresponding LEP plots
of Figures 10(a) and 11(a). LFP reflects the excitement of
local network, aiming to analyse the collaborative behavior
of MC population. LFP focuses on the collaborative function
between cells, hiding the individual role of each neuron. It
is of great importance to discuss synchronous oscillation in
the olfactory network. The LFP is defined as th mean value of
the membrane potential of all MCs. When MC population
spikes asynchronously, the LFP shows high frequency and
low amplitude. While MC population fires synchronously, the
LEP shows low frequency and high amplitude.

With the increase in the number of MCs, the curve of dif-
ferent membrane potential will be confused. Therefore, when
the number reaches 20, we take the raster plot to characterize
the spiking activity of cell population. Figure 12(a) is the
raster plot of MCs firing irregularly with no synaptic connec-
tions. With an inhibition from GC, MCs spike regularly with
aslow speed, as shown in Figure 13(a). Figures 12(b) and 13(b)
are the corresponding LFP plot of Figures 12(a) and 13(a).
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FIGURE 9: Membrane potential of a MC when ggp, = 0.1.

3.3. Network Model of Olfactory Bulb. Based on the previous
work, we found that MCs spiked irregularly before; now
they can spike synchronously with inhibition from a single
GC. We wonder if the synchronization still exists when MCs
connected to different neuronal network of GCs and whether
the degree of synchronization is different.

To figure out this question, we set up simple olfactory
network models consisting of two MCs, nine GCs, and several
synaptic connections. We bring in GABA receptor in GC-MC
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FIGURE 13: (a) Raster pattern of twenty MCs when g, = 0.1. (b) LFP of twenty MCs when ggaps = 0.1.
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FIGURE 14: (a) Two coupled MCs, (b) ring-like neuronal network of
GCs, and (c) grid-like neuronal network of GCs.
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FIGURE 15: Membrane potential of two coupled MCs when ggaps =
0.

and GC-GC synapses and also bring in AMPA and NMDA
receptor in MC-GC synapses. We discussed how the ring-
like and grid-like neuronal network of GCs influenced the
synchronization of two MCs, respectively [11, 12].

In this model, the connection between MCs and two
different topologies of GCs are shown in Figure 14. The
ring-like neuronal network of GC only considers nearest-
neighbour neurons while the grid-like neuronal network is
with all nearest neighbour couplings. We have already known
that coupled MCs could achieve synchronization with the
variation of coupling strength without inhibition from GCs
[13]. In order to exclude the interference, we take the coupling
strength of MCs as 0.01. In this way, there is weak coupling
relationship between two MCs.

In the present paper, the synchronization degree of two
spike trains is quantified by the ISI-distance [14], which
is suitable for both two and multiple neurons. It uses the
interspike interval (ISI) instead of spike frequency as the basic
element of comparison. The method is a simple complemen-
tary approach that extracts information from the interspike
intervals by evaluating the ratio of the instantaneous firing
rates. It is parameter-free, time scale independent, and easy to
visualize. Firstly, we take the instantaneous ISI-ratio between
two interspike intervals, xIISI and xIZSI, and then normalize it.
When two spike trains are the same, the quantity of ISI-ratio
I, ,(t) becomes zero. While if the first spike train is much
higher or lower than the second spike train, it approaches -1
and 1, respectively. In order to derive a measure of spike train
distance, the absolute ISI-distance D is integrated over time.
The more synchronous the coupled neurons are, the less the
ISI-distance D is, and the complete synchronization state of

50
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0

FIGURE 16: Membrane potential of two coupled MCs when con-
nected to ring-like neuronal network of GCs.

50

~100 . . . . . . . . .
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FIGURE 17: Membrane potential of two coupled MCs when con-
nected to grid-like neuronal network of GCs.

the coupled neurons is achieved when D is equal to 0. The
calculation formula is as follows:

s ()
222 o Xpg1 (£) < x7g; (£)
I, (t) = )
(®)

T
D= L dt |1(0)].

=0

The membrane potential curve of two MCs without
inhibition from GCs networks is shown in Figure 15. When
coupled with ring-like and grid-like neuronal networks of
GCs, the membrane potential plots of MCs have some change,
as illustrated in Figures 16 and 17, respectively.

As shown in Figure 15, the solid line and dotted line
are the spike trains of two MCs without connection with
GCs network, respectively. These two MCs spike in different
moment, and D is equal to 3.6575 x 10>, Compared with
Figure 15, the spiking frequency of MCs decreases when
coupled with ring-like network of GCs. At the same time, we
can find that there is an apparent synchronization between
two spike trains and D is equal to 0.7041 x 107>. When
coupled with grid-like network, the response is similar to
Figure 16. Two MCs spike synchronously in a low speed, and
D is equal to 0.5811 x 10 at the time. Comparing Figure 15
with Figures 16 and 17, it shows that MCs spike irregularly
without connection with GCs, turning to regular spiking
slowly when coupled with GCs networks.

Comparing Figures 16 and 17, we can find similar syn-
chronous spike trains of MCs when coupled with different
topology network of GCs. MCs fire synchronously, but the



synchronization degree is a little different. According to ISI-
distance D, it shows that MCs become more synchronous
when coupled with grid-like neuronal network of GCs.

4. Conclusion

In this paper, we have done some simulation work based on
the dynamical model of MC and GC in the olfactory bulb.
The simulation results show the firing patterns of a single MC
and a single GC, as well as these two kinds of cells having a
coupling relationship. In addition, we set up simple olfactory
network models, discussing the influence of ring-like and
grid-like neuronal networks of GCs on the synchronization
of two MCs. ISI-distance method has been used to measure
the synchronization degree of MCs. In summary, we have got
four outcomes.

(1) The spike trains of MC and GC change with different
external currents. When there is a larger external
current, the spiking frequency of neuron increases
accordingly. By comparison, we may conclude that
the firing patterns of MC change more obviously than
GC with different stimulus.

(2) MC has an excitatory effect on GC. While GC has
an inhibitory effect on MC. The firing frequency of
GC increases when it gets an excitatory effect from
MC. And when MC gets an inhibitory effect from
GC, the spiking frequency decreases. Cells coupled by
synaptic connections and the firing patterns change
accordingly with different connection strength.

(3) MCs spike asynchronously when there is no connec-
tion with GC, and LFP shows high frequency and low
amplitude. When MCs got an inhibitory effect from
GC, the firing rate of MCs decreases and they spike
synchronously at the same time. The LFP shows low
frequency and high amplitude.

(4) In the simple olfactory network models, we discussed
how the ring-like and grid-like neuronal networks
of GCs influenced the synchronization of two MCs,
respectively. Through numerical analysis, it shows
that MCs spike irregularly without connection with
GCs, turning to regular spiking slowly when coupled
with GCs networks. Compared with ring-like net-
work, MCs become more synchronous when coupled
with grid-like neuronal network of GCs.

Since the synchronization of the spikes of MCs plays an
important role in information encoding and the interaction
between MCs and GCs in olfactory bulb is particularly
critical, we have made a detailed analysis on excited MC
and inhibitory GC. These results are important both for
understanding the sense of smell and for understanding
the mechanisms of neural computation. The study of the
neural basis of olfactory system lays a foundation for our
later work about analysing how the neurons in olfactory
bulb play a role in information coding comprehensively
and quantificationally, starting from the overall structure of
olfactory bulb. It can also help us study the odour pattern
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recognition based on olfactory bulb physiological structure.
In this paper, our research about olfactory cognitive function
is below the entorhinal cortex. In the future work, we will
discuss the formation mechanism of smell more roundly,
combining the information processing process of entorhinal
cortex.
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