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Defined contribution and annuity contract are merged into one pension plan to study both accumulation phase and distribution
phase, which results in such effects that both phases before and after retirement being “defined”. Under the Heston’s stochastic
volatility model, this paper focuses on mean-variance insurers with the return of premiums clauses to study the optimal time-
consistent investment strategy for theDCpensionmergedwith an annuity contract. Both accumulation phase before retirement and
distribution phase after retirement are studied. In the time-consistent framework, the extendedHamilton-Jacobi-Bellman equations
associated with the optimization problem are established. Applying stochastic optimal control technique, the time-consistent
explicit solutions of the optimal strategies and the efficient frontiers are obtained. In addition, numerical analysis illustrates our
results and also deepens our knowledge or understanding of the research results.

1. Introduction

Annuity contract and defined contribution are merged into
one pension plan to study both accumulation phase and
distribution phase, which results in such effects that both
phases before and after retirement being “defined,” making
the defined contribution plans even more portable and of
great convenience for insurance companies.

Annuity is any financial contract providing continuing
payment with a fixed total amount on fixed time interval
which usually can be once a year. A lot of research have been
done on annuity plans and have gained many good results.
For example, Gao [1] investigated annuity contracts in the
optimal investment problem under the constant elasticity of
variance model in 2009.

Defined contribution (DC) pension plan is a type of
retirement plan in which fixed contributions are paid into an
individual account, and then the contributions are invested
in a financial market and the returns on the investment
(positive or negative) are credited to the individual’s account.
Only contributions to the account are guaranteed, but the

future benefits fluctuate on the basis of investment earnings
(referring to Cairns et al. [2], etc.). A pension member
contributes a predetermined amount of money as premiums
before retirement, which lasts for thewholeworking period of
the pension member. From the moment the member retires,
the accumulation phase end and the fund will be distributed
monthly as old-age pension. Obviously, the distribution per
month is not predetermined; however, it is determined by the
whole accumulation fund size.

Different from the defined contribution (DC) pension
plans, a defined benefit plan is “defined” in the sense that
the benefit formula is defined and known in advance, which
is based on the earnings history, tenure of service, and
age, rather than depending on individual investment returns
directly. Because of the cost of administration being fewer
than defined benefit plans and ease of determining the plan
sponsor’s liability in practice, defined contribution plans have
been widespread all over the world as the dominant form of
plan in many countries.

For the reason that the retirement benefits of the DC
pension plan depend on the fund size, the insurermust invest

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2014, Article ID 862694, 13 pages
http://dx.doi.org/10.1155/2014/862694



2 Discrete Dynamics in Nature and Society

on financial markets to increase the returns, which results
in the optimal investment problem becoming so crucial that
lots of interests attracted into this field. Dokuchaev and Yu
Zhou [3] studied optimal investment strategies with bounded
risks, general utilities, and goal achieving. Blanchet-Scalliet
et al. [4] investigated optimal investment decisions when
time horizon is uncertain. Faggian and Gozzi [5] developed
dynamic programming approach for a family of optimal
investment models with vintage capital. Blake et al. [6] study
the optimal asset allocation problem for DC pension funds.

In the financial market, the price process of stock is
described by Heston’s stochastic volatility (SV) model. Hes-
ton’s stochastic volatility (SV) is a classical stochastic volatility
model. In the previous literatures, Heston’s SV model was
very popular for option pricing; however, there are few
literatures about the investment problem for insurers. Kraft
[7] began to apply the Heston model to study the portfolio
problem By maximizing utility from terminal wealth with
respect to a power utility function. Li et al. [8] apply
the Heston’s SV model to investigate the reinsurance and
investment problem under the mean-variance criterion.

Mean-variance criterion is first proposed by Markowitz
[9] to investigate portfolio selection. But the optimal strate-
gies under the mean-variance criterion are not time con-
sistent, because the mean-variance criterion lacks the iter-
ated expectation property so that the Bellman’s principle of
optimality does not hold. However, in many situations time
consistency of strategies is a basic requirement for rational
decision makers. Recently, many researchers paid much
attention to time-inconsistent stochastic control problems
and aimed at deriving the optimal time-consistent strategies.
In 2010, Bjork and Murgoci [10] studied the general theory
of Markovian time inconsistent stochastic control problems.
Bjork et al. [11] investigated the portfolio optimization with
state-dependent risk aversion in the mean-variance frame-
work in 2012.

Some pension plan members may die early during the
accumulation phase so that they have no chance to accept
pension distribution after retirement. The DC pension plans
must have return of premium clauses to protect the rights of
them. With this kind of actuarial clause, the dead member
can withdraw the premiums she/he contributes or the premi-
ums accumulated by a predetermined interest rate. For this
problem, He and Liang [12] studied the DC pension plan for
a mean-variance insurer with the return of premiums clauses
in 2013. But they focused on the accumulation phase before
retirement while there is no serious research on the other
phase after retirement.

As far as we know, there is no literature to study both
annuity contract and the DC plan with the return of pre-
miums clauses under Heston’s SV models under the mean-
variance criterion. In this paper, we study a whole pension
plan that the DC pension plan with the return of premiums
clauses is merged with annuity contract under the mean-
variance criterion to find an optimal time consistent strategy
under the Heston’s stochastic volatility model which can
describe the volatility of risk asset more perfectly. Both
accumulation phase before retirement and distribution phase
after retirement of pension plan are studied in detail.

This paper proceeds as follows. In Section 2, we formulate
the model and introduce the actuarial methods of the DC
pension plan with the return of premiums clauses. Section 3
solves the time inconsistent problem in the framework of
mean-variance criterion. In Section 4, we give some numer-
ical analysis to demonstrate the results. Section 5 concludes
the paper.

2. Formulation of the Model

In this paper, the defined contribution in the accumula-
tion phase before retirement is merged with an annuity in
the distribution phase after retirement to make one whole
pension plan. The contributions are invested in a financial
market, which consists of one risk-free asset and a stock, to
increase revenues. We try to find the optimal time-consistent
investment policy of the DC pension fund for a mean-
variance insurer with the return of premiums clauses during
the accumulation phase and the benefits of pension fund paid
by the form of annuities in distribution phase.

2.1. The Financial Market. Throughout this paper, (Ω,F, 𝑃,
{F
𝑡
}
0≤𝑡≤𝑇

) denotes a complete probability space satisfying the
usual condition, where 𝑇 > 0 is a finite constant representing
the investment time horizon; F

𝑡
stands for the information

available until time 𝑡.
The price 𝑆

0
(𝑡) of bonds is given by

d𝑆0 (𝑡) = 𝑟𝑆0 (𝑡) d𝑡, 𝑆
0
(0) = 1. (1)

The price 𝑆(𝑡) of equities obeys the Heston’s stochastic
volatility model:

d𝑆 (𝑡) = 𝑆 (𝑡) [(𝑟 + 𝜆𝐿 (𝑡)) d𝑡 + √𝐿 (𝑡)d𝑊
1
(𝑡)] ,

𝑆 (0) = 𝑠
0
,

d𝐿 (𝑡) = 𝑘 (𝜃 − 𝐿 (𝑡)) d𝑡 + 𝜎√𝐿 (𝑡)d𝑊
2
(𝑡) ,

𝐿 (0) = 𝑙
0
,

(2)

where 𝑟 > 0 is the risk-free interest rate and 𝜆, 𝑘, 𝜃, 𝜎 are
positive constants and the two Brownian motions satisfying
E[𝑊
1
(𝑡),𝑊

2
(𝑡)] = 𝜌 ⋅ 𝑡, 𝜌 ∈ [−1, 1] are the correlation

coefficients of𝑊
1
(𝑡),𝑊

2
(𝑡).

2.2. The Accumulation Phase before Retirement. During the
period before retirement, the contributions are invested in
a risk-free asset and a stock to maximize the pension fund
size at retirement. Let𝑋(𝑡) denote the pension wealth at time
𝑡 ∈ [0, 𝑇], inspired by He and Liang [12], and we formulate
the model of DC pension fund with the return of premiums
clauses for Heston’s stochastic volatility model as follows.

For the convenience of expression, Let us do some symbol
descriptions first.

𝑃 denotes the premium per unit time, which is a
predetermined variable;
𝜔
0
denotes the accumulation period starting age;
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𝑇 is the time length; that is, 𝜔
0
+ 𝑇 is the end age of

the pension fund accumulation period;

𝛿
(1/𝑛),𝜔0+𝑡

denotes the mortality rate from time 𝑡 to
time 𝑡 + (1/𝑛);

𝑡𝑃 is the accumulated premium at time 𝑡;

𝑡𝑃𝛿
(1/𝑛),𝜔0+𝑡

is the premium returned to the dead
member from time 𝑡 to time 𝑡 + (1/𝑛).

The plan members who die early can withdraw the pre-
miums she/he contributes or the premiums accumulated at a
predetermined interest rate, which is the actuarial return of
premiums clause.

To guarantee the interests of pension members, the
pension management must invest in equities and bonds to
increase the size of pension fund during the accumulation
phase.

𝜋 is the proportion allocated in the equities, which is
the control variable;

1 − 𝜋 is the remaining allocated in bonds.

First, we formulate the fund size 𝑋(𝑡) as a differential form.
Taking the time interval by [𝑡, 𝑡 + (1/𝑛)],

𝑋(𝑡 +
1

𝑛
)

= 𝑋 (𝑡) (𝜋
𝑆
𝑡+(1/𝑛)

𝑆
𝑡

+ (1 − 𝜋)
𝑆0
𝑡+(1/𝑛)

𝑆0
𝑡

)

+ 𝑃
1

𝑛
− 𝑃𝑡𝛿

(1/𝑛),𝜔0+𝑡

= 𝑋 (𝑡) (1 + 𝜋
𝑆
𝑡+(1/𝑛)

− 𝑆
𝑡

𝑆
𝑡

+ (1 − 𝜋)
𝑆0
𝑡+(1/𝑛)

− 𝑆0
𝑡

𝑆0
𝑡

)

+ 𝑃
1

𝑛
− 𝑃𝑡𝛿

(1/𝑛),𝜔0+𝑡

= 𝑋 (𝑡) (1 + Δ
𝑡,(1/𝑛)

) + 𝑃
1

𝑛
− 𝑃𝑡𝛿

(1/𝑛),𝜔0+𝑡
,

(3)

whereΔ
𝑡,(1/𝑛)

= 𝜋((𝑆
𝑡+(1/𝑛)

−𝑆
𝑡
)/𝑆
𝑡
)+(1−𝜋)((𝑆0

𝑡+(1/𝑛)
−𝑆0
𝑡
)/𝑆0
𝑡
).

Using the actuarial formulas to simplify (3), the force
function of mortality denoted by 𝜇(𝑡) and the conditional
death probability satisfies

𝛿
𝑡,𝑦
= 1 − 𝑝

𝑡,𝑦
= 1 − 𝑒

−∫
𝑡

0
𝜇(𝑦+𝑠)d𝑠

. (4)

So

𝛿
(1/𝑛),𝜔0+𝑡

= 1 − 𝑒
−∫
(1/𝑛)

0
𝜇(𝜔0+𝑡+𝑠)d𝑠 = 𝜇 (𝜔

0
+ 𝑡)

1

𝑛
+ 𝑜 (

1

𝑛
) ,

(5)

as 𝑛 → ∞, and 𝜇(𝜔
0
+ 𝑡) is small during the accumulation

phase of the pension plan. Thus

𝑋(𝑡 +
1

𝑛
) = 𝑋 (𝑡) (1 + Δ

𝑡,(1/𝑛)
) + 𝑃

1

𝑛
− 𝑃𝑡𝛿

(1/𝑛),𝜔0+𝑡

= 𝑋 (𝑡) (1 + Δ
𝑡,(1/𝑛)

) + 𝑃
1

𝑛
− 𝑃𝑡𝜇 (𝜔

0
+ 𝑡)

1

𝑛

+ 𝑜 (
1

𝑛
) ,

(6)

𝑋(𝑡 +
1

𝑛
) − 𝑋 (𝑡) = 𝑋 (𝑡) Δ

𝑡,(1/𝑛)
+ 𝑃

1

𝑛

− 𝑃𝑡𝜇 (𝜔
0
+ 𝑡)

1

𝑛
+ 𝑜 (

1

𝑛
) .

(7)

Let 𝑛 → ∞, and then

𝑆
𝑡+(1/𝑛)

− 𝑆
𝑡

𝑆
𝑡

→
d𝑆
𝑡

𝑆
𝑡

,

𝑆0
𝑡+(1/𝑛)

− 𝑆0
𝑡

𝑆0
𝑡

→
d𝑆0
𝑡

𝑆0
𝑡

,

Δ
𝑡,(1/𝑛)

= 𝜋
d𝑆
𝑡

𝑆
𝑡

+ (1 − 𝜋)
d𝑆0
𝑡

𝑆0
𝑡

.

(8)

And (7) becomes

d𝑋 (𝑡) = 𝑋 (𝑡) [𝜋
d𝑆
𝑡

𝑆
𝑡

+ (1 − 𝜋)
d𝑆0
𝑡

𝑆0
𝑡

]

+ 𝑃d𝑡 − 𝑃𝑡𝜇 (𝜔
0
+ 𝑡) d𝑡.

(9)

Plugging (1) and (2) into (9)

d𝑋 (𝑡)

= 𝑋 (𝑡) [𝜋 ((𝑟 + 𝜆𝐿 (𝑡)) d𝑡 + √𝐿 (𝑡)d𝑊
1
(𝑡)) + (1 − 𝜋) 𝑟d𝑡]

+ 𝑃d𝑡 − 𝑃𝑡𝜇 (𝜔
0
+ 𝑡) d𝑡

= [𝑋 (𝑡) (𝑟 + 𝜋𝜆𝐿 (𝑡)) + 𝑃 (1 − 𝑡𝜇 (𝜔
0
+ 𝑡))] d𝑡

+ 𝑋 (𝑡) 𝜋√𝐿 (𝑡)d𝑊
1
(𝑡) .

(10)

If we choose the mortality force function as the following
form:

𝜇 (𝑡) =
1

𝜔 − 𝑡
, 0 ≤ 𝑡 < 𝜔, (11)

where𝜔 is themaximal age of the life table.Then the SDE (10)
becomes

d𝑋 (𝑡) = [𝑋 (𝑡) (𝑟 + 𝜋𝜆𝐿 (𝑡)) + 𝑃
𝜔 − 𝜔

0
− 2𝑡

𝜔 − 𝜔
0
− 𝑡

] d𝑡

+ 𝑋 (𝑡) 𝜋√𝐿 (𝑡)d𝑊
1
(𝑡) , 0 ≤ 𝑡 ≤ 𝑇.

(12)
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The pension management’s optimization problem could
be described as follows:

sup
𝜋∈∏

{E
𝑡,𝑥,𝑙
𝑋
𝜋
(𝑇) − Var

𝑡,𝑥,𝑙
𝑋
𝜋
(𝑇)} , (13)

where∏ = {𝜋 | 𝜋 ∈ [0,∞)}, which means that a short sell of
the bonds is permitted.

2.3. The Distribution Phase after Retirement. Inspired by Gao
[1], the whole accumulation fund will purchase a paid-up
annuity at retirement time 𝑡 = 𝑇 and the purchase rate of
annuity will calculate on a predetermined interest rate. The
part of the fund used to purchase an annuity of𝑁 periods is
denoted as𝐷, where𝐷 ≤ 𝑋(𝑇). The surplus at the end of the
fixed period can be used again in a similar way or paid back
to the participants. The contributions benefit to pay between
𝑇 and 𝑇 + 𝑁 are given by

𝜁 =
𝐷

𝑎
𝑁|

, (14)

where 𝑎
𝑁|
= 1 − 𝑒−𝜉𝑁/𝜉, 𝜉 is a continuous technical rate.

During the period after retirement 𝑡 ∈ [𝑇, 𝑇 + 𝑁], the
insurer also invests in one risk-free asset and a risk asset. In
addition, he has to pay the guaranteed annuity to pension
members.The evolution of the pension fund during [𝑇, 𝑇+𝑁]
is described by the following equation:

d𝑋 (𝑡) = [𝑋 (𝑡) (𝑟 + 𝜋𝜆𝐿 (𝑡)) − 𝜁] d𝑡 + 𝑋 (𝑡) 𝜋√𝐿 (𝑡)d𝑊
1
(𝑡) .

(15)

The objective of the optimization problem for a mean-
variance pension management could be described as follows:

sup
𝜋∈∏

{E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇 + 𝑁)] − Var

𝑡,𝑥,𝑙
[𝑋
𝜋
(𝑇 + 𝑁)]} , (16)

where∏ = {𝜋 | 𝜋 ∈ [0,∞)}, which means that a short sell of
the bonds is permitted.

3. The Time Consistent Solution in the
Framework of Mean-Variance Criterion

3.1. The Accumulation Phase before Retirement. According to
the recent research paper, such as Bjork and Murgoci [10]
and so forth, the mean-variance optimal control problem
is equivalent to the following Markovian time inconsistent
stochastic optimal control problem:

𝐽 (𝑡, 𝑥, 𝑙, 𝜋) = E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇)] −

𝛾

2
Var
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇)] ,

= E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇)] −

𝛾

2
{E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇)
2
]

− (E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇)])
2

} ,

𝑉 (𝑡, 𝑥, 𝑙) = sup
𝜋∈∏

𝐽 (𝑡, 𝑥, 𝑙, 𝜋) .

(17)

Denote

𝑦
𝜋
(𝑡, 𝑥, 𝑙) = E

𝑡,𝑥,𝑙
[𝑋
𝜋
(𝑇)] ,

𝑧
𝜋
(𝑡, 𝑥, 𝑙) = E

𝑡,𝑥,𝑙
[𝑋
𝜋
(𝑇)
2
] ,

(18)

and the value function

𝑉 (𝑡, 𝑥, 𝑙) = sup
𝜋∈∏

{𝑓 (𝑡, 𝑥, 𝑙, 𝑦
𝜋
(𝑡, 𝑥, 𝑙) , 𝑧

𝜋
(𝑡, 𝑥, 𝑙))} , (19)

where

𝑓 (𝑡, 𝑥, 𝑙, 𝑦, 𝑧) = 𝑦 −
𝛾

2
(𝑧 − 𝑦

2
) . (20)

Theorem 1 (verification theorem). If there exist three real
functions 𝐹, 𝐺,𝐻 : [0, 𝑇]×𝑅×𝑅 → 𝑅 satisfying the following
extended HJB equations:

sup
𝜋

{𝐹
𝑡
− 𝑓
𝑡
+ (𝐹
𝑥
− 𝑓
𝑥
) [𝑟𝑥 + 𝜆𝑙𝑥𝜋 + 𝑃

𝜔 − 𝜔
0
− 2𝑡

𝜔 − 𝜔
0
− 𝑡

]

+ (𝐹
𝑙
− 𝑓
𝑙
) 𝑘 (𝜃 − 𝑙) +

1

2
(𝐹
𝑥𝑥
− 𝑈
𝜋

𝑥𝑥
) 𝑥
2
𝑙𝜋
2

+
1

2
(𝐹
𝑙𝑙
− 𝑈
𝜋

𝑙𝑙
) 𝜎
2
𝑙 + (𝐹
𝑥𝑙
− 𝑈
𝜋

𝑥𝑙
) 𝜌𝜎𝑥𝑙𝜋} = 0,

𝐹 (𝑇, 𝑥, 𝑙) = 𝑓 (𝑇, 𝑥, 𝑙, 𝑥, 𝑥
2
) ,

(21)

where

𝐺
𝑡
+ 𝐺
𝑥
[𝑟𝑥 + 𝜆𝑙𝑥𝜋 + 𝑃

𝜔 − 𝜔
0
− 2𝑡

𝜔 − 𝜔
0
− 𝑡

] + 𝑘 (𝜃 − 𝑙) 𝐺
𝑙

+
1

2
𝑥
2
𝑙𝜋
2
𝐺
𝑥𝑥
+
1

2
𝜎
2
𝑙𝐺
𝑙𝑙
+ 𝜌𝜎𝑥𝑙𝜋𝐺

𝑥𝑙
= 0,

𝐺 (𝑇, 𝑥, 𝑙) = 𝑥,

(22)

𝐻
𝑡
+ 𝐻
𝑥
[𝑟𝑥 + 𝜆𝑙𝑥𝜋 + 𝑃

𝜔 − 𝜔
0
− 2𝑡

𝜔 − 𝜔
0
− 𝑡

] + 𝑘 (𝜃 − 𝑙)𝐻
𝑙

+
1

2
𝑥
2
𝑙𝜋
2
𝐻
𝑥𝑥
+
1

2
𝜎
2
𝑙𝐻
𝑙𝑙
+ 𝜌𝜎𝑥𝑙𝜋𝐻

𝑥𝑙
= 0,

𝐻 (𝑇, 𝑥, 𝑙) = 𝑥
2
,

𝑈
𝜋

𝑥𝑥
:= 𝑓
𝑥𝑥
+ 2𝑓
𝑥𝑦
𝑦
𝜋

𝑥
+ 2𝑓
𝑥𝑧
𝑧
𝜋

𝑥
+ 𝑓
𝑦𝑦
(𝑦
𝜋

𝑥
)
2

+ 𝑓
𝑧𝑧
(𝑧
𝜋

𝑥
)
2

+ 2𝑓
𝑦𝑧
𝑦
𝜋

𝑥
𝑧
𝜋

𝑥
,

𝑈
𝜋

𝑙𝑙
:= 𝑓
𝑙𝑙
+ 2𝑓
𝑦𝑙
𝑦
𝜋

𝑙
+ 2𝑓
𝑧𝑙
𝑧
𝜋

𝑙
+ 𝑓
𝑦𝑦
(𝑦
𝜋

𝑙
)
2

+ 𝑓
𝑧𝑧
(𝑧
𝜋

𝑙
)
2

+ 2𝑓
𝑦𝑧
𝑦
𝜋

𝑙
𝑧
𝜋

𝑙
,

𝑈
𝜋

𝑥𝑙
:= 𝑓
𝑥𝑙
+ 𝑓
𝑥𝑦
𝑦
𝜋

𝑙
+ 𝑓
𝑥𝑧
𝑧
𝜋

𝑙
+ 𝑓
𝑦𝑙
𝑦
𝜋

𝑥
+ 𝑓
𝑧𝑙
𝑧
𝜋

𝑥
+ 𝑓
𝑦𝑦
𝑦
𝜋

𝑥
𝑦
𝜋

𝑙

+ 𝑓
𝑦𝑧
𝑦
𝜋

𝑥
𝑧
𝜋

𝑙
+ 𝑓
𝑦𝑧
𝑦
𝜋

𝑙
𝑧
𝜋

𝑥
+ 𝑓
𝑧𝑧
𝑧
𝜋

𝑥
𝑧
𝜋

𝑙
.

(23)

Then𝑉(𝑡, 𝑥, 𝑙) = 𝐹(𝑡, 𝑥, 𝑙), 𝑦𝜋
∗

(𝑡, 𝑥, 𝑙) = 𝐺(𝑡, 𝑥, 𝑙), 𝑧𝜋
∗

(𝑡, 𝑥, 𝑙) =

𝐻(𝑡, 𝑥, 𝑙) for the optimal investment strategy 𝜋∗.
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Proof. The way to prove the theorem is completely similar to
Li et al. [8], so we omit the details here.

Theorem 2. For the optimal control problem (17), there exist
unique optimal time-consistent strategy

𝜋
∗
=

𝜆

𝑥𝛾𝑒𝑟(𝑇−𝑡)
⋅ [1 − 𝜌𝜎𝜆

(1 − 𝑒(𝑡−𝑇)(𝑘+𝜆𝜌𝜎))

𝑘 + 𝜆𝜌𝜎
] (24)

and the optimal value function

𝐹 (𝑡, 𝑥, 𝑙) = 𝑒
𝑟(𝑇−𝑡)

𝑥 +
𝐵 (𝑡)

𝛾
+
𝐶 (𝑡)

𝛾
, (25)

where 𝐵(𝑡) and 𝐶(𝑡) are given by (40) and (41) explicitly. 𝛾 > 0
denotes the risk aversion coefficient.

Proof. According to (20), we have

𝑓
𝑡
= 𝑓
𝑥
= 𝑓
𝑙
= 𝑓
𝑥𝑥
= 𝑓
𝑥𝑦
= 𝑓
𝑥𝑧
= 𝑓
𝑦𝑧

= 𝑓
𝑥𝑙
= 𝑓
𝑦𝑙
= 𝑓
𝑧𝑙
= 𝑓
𝑧𝑧
= 𝑓
𝑙𝑙
= 0,

𝑓
𝑦
= 1 + 𝛾𝑦, 𝑓

𝑦𝑦
= 𝛾, 𝑓

𝑧
= −

𝛾

2
.

(26)

Plugging (26) into 𝑈𝜋
𝑥𝑥
, 𝑈𝜋
𝑙𝑥
, 𝑈𝜋
𝑙𝑙
, respectively,

𝑈
𝜋
∗

𝑥𝑥
= 𝛾𝐺
2

𝑥
, 𝑈

𝜋
∗

𝑙𝑙
= 𝛾𝐺
2

𝑙
, 𝑈

𝜋
∗

𝑥𝑙
= 𝛾𝐺
𝑥
𝐺
𝑙
. (27)

According to (21)

𝜋
∗
= −

𝜆 (𝐹
𝑥
− 𝑓
𝑥
) + 𝜌𝜎 (𝐹

𝑥𝑙
− 𝑈𝜋

∗

𝑥𝑙
)

𝑥 (𝐹
𝑥𝑥
− 𝑈𝜋

∗

𝑥𝑥
)

= −
𝜆𝐹
𝑥
+ 𝜌𝜎 (𝐹

𝑥𝑙
− 𝛾𝐺
𝑥
𝐺
𝑙
)

𝑥 (𝐹
𝑥𝑥
− 𝛾𝐺2
𝑥
)

.

(28)

Equation (21) turns into

𝐹
𝑡
+ 𝐹
𝑥
[𝑟𝑥 + 𝑃

𝜔 − 𝜔
0
− 2𝑡

𝜔 − 𝜔
0
− 𝑡

] + 𝑘 (𝜃 − 𝑙) 𝐹
𝑙

+
1

2
(𝐹
𝑙𝑙
− 𝛾𝐺
2

𝑙
) 𝜎
2
𝑙 −

𝑙

2

[𝜆𝐹
𝑥
+ 𝜌𝜎 (𝐹

𝑥𝑙
− 𝛾𝐺
𝑥
𝐺
𝑙
)]
2

𝐹
𝑥𝑥
− 𝛾𝐺2
𝑥

= 0,

𝐹 (𝑇, 𝑥, 𝑙) = 𝑓 (𝑇, 𝑥, 𝑙, 𝑥, 𝑥
2
) ,

(29)

and (22) becomes

𝐺
𝑡
+ 𝐺
𝑥
[𝑟𝑥 + 𝑃

𝜔 − 𝜔
0
− 2𝑡

𝜔 − 𝜔
0
− 𝑡

] + 𝑘 (𝜃 − 𝑙) 𝐺
𝑙
+
1

2
𝜎
2
𝑙𝐺
𝑙𝑙

− (𝜆𝑙𝐺
𝑥
+ 𝜌𝜎𝑙𝐺

𝑥𝑙
) [
𝜆𝐹
𝑥
+ 𝜌𝜎 (𝐹

𝑥𝑙
− 𝛾𝐺
𝑥
𝐺
𝑙
)

𝐹
𝑥𝑥
− 𝛾𝐺2
𝑥

]

+
1

2
𝑙𝐺
𝑥𝑥
[
𝜆𝐹
𝑥
+ 𝜌𝜎 (𝐹

𝑥𝑙
− 𝛾𝐺
𝑥
𝐺
𝑙
)

𝐹
𝑥𝑥
− 𝛾𝐺2
𝑥

]

2

= 0,

𝐺 (𝑇, 𝑥, 𝑙) = 𝑥.

(30)

The remainder of this section focuses on solving (29)w.r.t.
𝐹 and (30) w.r.t. 𝐺. Since the two equations are linear in 𝑥
and 𝑙, it is quite natural to conjecture the following forms of
𝐹(𝑡, 𝑥, 𝑙) and 𝐺(𝑡, 𝑥, 𝑙):

𝐹 (𝑡, 𝑥, 𝑙) = 𝐴 (𝑡) 𝑥 +
𝐵 (𝑡)

𝛾
𝑙 +

𝐶 (𝑡)

𝛾
,

𝐴 (𝑇) = 1, 𝐵 (𝑇) = 0, 𝐶 (𝑇) = 0,

𝐺 (𝑡, 𝑥, 𝑙) = 𝛼 (𝑡) 𝑥 +
𝛽 (𝑡)

𝛾
𝑙 +

Δ (𝑡)

𝛾
,

𝛼 (𝑇) = 1, 𝛽 (𝑇) = 0, Δ (𝑇) = 0,

(31)

and the corresponding partial derivatives are

𝐹
𝑡
= 𝐴
𝑡
𝑥 +

𝐵
𝑡

𝛾
𝑙 +

𝐶
𝑡

𝛾
, 𝐹

𝑥
= 𝐴 (𝑡) , 𝐹

𝑙
=
𝐵 (𝑡)

𝛾
,

𝐹
𝑥𝑥
= 0, 𝐹

𝑙𝑙
= 0, 𝐹

𝑥𝑙
= 0,

𝐺
𝑡
= 𝛼
𝑡
𝑥 +

𝛽
𝑡

𝛾
𝑙 +

Δ
𝑡

𝛾
, 𝐺

𝑥
= 𝛼 (𝑡) , 𝐺

𝑙
=
𝛽 (𝑡)

𝛾
,

𝐺
𝑥𝑥
= 0, 𝐺

𝑙𝑙
= 0, 𝐺

𝑥𝑙
= 0.

(32)

Plugging the above partial derivatives (32) correspond-
ingly into (29), (30), and (28), we obtain

𝐴
𝑡
𝑥 +

𝐵
𝑡

𝛾
𝑙 +

𝐶
𝑡

𝛾
+ 𝐴 (𝑡) [𝑟𝑥 + 𝑃

𝜔 − 𝜔
0
− 2𝑡

𝜔 − 𝜔
0
− 𝑡

]

+ 𝑘 (𝜃 − 𝑙)
𝐵 (𝑡)

𝛾
−
𝜎
2𝑙

2𝛾
𝛽
2
(𝑡)

+
𝑙[𝜆𝐴 (𝑡) − 𝜌𝜎𝛼 (𝑡) 𝛽 (𝑡)]

2

2𝛾𝛼2 (𝑡)
= 0,

𝐴 (𝑇) = 1, 𝐵 (𝑇) = 𝐶 (𝑇) = 0,

(33)

𝛼
𝑡
𝑥 +

𝛽
𝑡

𝛾
𝑙 +

Δ
𝑡

𝛾
+ 𝛼 (𝑡) [𝑟𝑥 + 𝑃

𝜔 − 𝜔
0
− 2𝑡

𝜔 − 𝜔
0
− 𝑡

]

+ 𝑘 (𝜃 − 𝑙)
𝛽 (𝑡)

𝛾
+
𝜆𝑙 [𝜆𝐴 (𝑡) − 𝜌𝜎𝛼 (𝑡) 𝛽 (𝑡)]

𝛾𝛼 (𝑡)
= 0,

𝛼 (𝑇) = 1, 𝛽 (𝑇) = Δ (𝑇) = 0,

(34)

and the optimal strategy

𝜋
∗
= −

𝜆𝐹
𝑥
+ 𝜌𝜎 (−𝛾𝐺

𝑥
𝐺
𝑙
)

𝑥 (−𝛾𝐺2
𝑥
)

=
𝜆𝐹
𝑥
− 𝜌𝜎𝛾𝐺

𝑥
𝐺
𝑙

𝑥𝛾𝐺2
𝑥

=
𝜆𝐴 (𝑡)

𝑥𝛾𝛼2 (𝑡)
−
𝜌𝜎𝛽 (𝑡)

𝑥𝛾𝛼 (𝑡)
.

(35)
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Equation (33) splits into three equations:

[𝐴
𝑡
+ 𝑟𝐴 (𝑡)] 𝑥 = 0, 𝐴 (𝑇) = 1,

[
𝐵
𝑡

𝛾
−
𝑘𝐵 (𝑡)

𝛾
+
𝜆
2

2𝛾

𝐴2 (𝑡)

𝛼2 (𝑡)
−
𝜎2𝛽2 (𝑡)

2𝛾
+
𝜌2𝜎2𝛽2 (𝑡)

2𝛾

−
𝜌𝜎𝜆𝐴 (𝑡) 𝛽 (𝑡)

𝛾𝛼 (𝑡)
] 𝑙 = 0, 𝐵 (𝑇) = 0,

𝐶
𝑡

𝛾
+ 𝐴 (𝑡) 𝑃

𝜔 − 𝜔
0
− 2𝑡

𝜔 − 𝜔
0
− 𝑡

+
𝑘𝜃𝐵 (𝑡)

𝛾
= 0, 𝐶 (𝑇) = 0.

(36)

Equation (34) splits into three equations:

[𝛼
𝑡
+ 𝑟𝛼 (𝑡)] 𝑥 = 0, 𝛼 (𝑇) = 1,

[
𝛽
𝑡

𝛾
−
𝑘𝛽 (𝑡)

𝛾
+
𝜆
2

𝛾

𝐴 (𝑡)

𝛼 (𝑡)
−
𝜌𝜎𝜆

𝛾
𝛽 (𝑡)] 𝑙 = 0, 𝛽 (𝑇) = 0,

Δ
𝑡

𝛾
+ 𝛼 (𝑡) 𝑃

𝜔 − 𝜔
0
− 2𝑡

𝜔 − 𝜔
0
− 𝑡

+
𝑘𝜃𝛽 (𝑡)

𝛾
= 0, Δ (𝑇) = 0.

(37)

To solve the above equations, we have

𝐴 (𝑡) = 𝛼 (𝑡) = 𝑒
𝑟(𝑇−𝑡)

, (38)

𝛽 (𝑡) =
(1 − 𝑒(𝑡−𝑇)(𝑘+𝜆𝜌𝜎)) 𝜆2

𝑘 + 𝜆𝜌𝜎
, (39)

𝐵 (𝑡)

= [2𝑘𝜌(𝑘 + 𝜆𝜌𝜎)
2

(𝑘 + 2𝜆𝜌𝜎)]
−1

⋅ 𝑒
−𝑘𝑇

𝜆
2

⋅ [−𝑒
𝑘(2𝑡−𝑇)+2(𝑡−𝑇)𝜆𝜌𝜎

𝑘𝜆
2
𝜌 (−1 + 𝜌

2
) 𝜎
2

+ 𝑒
𝑘𝑡
(𝑘𝜌 + 2𝜆𝜎) (𝑘 + 𝜆𝜌𝜎)

2

+ 𝑒
𝑘𝑇
𝜌 (𝑘 − 𝜆𝜎) (𝑘 + 𝜆𝜎) (𝑘 + 2𝜆𝜌𝜎)

− 2𝑒
𝑘𝑡+(𝑡−𝑇)𝜆𝜌𝜎

𝑘 (𝑘𝜌 + 𝜆𝜎) (𝑘 + 2𝜆𝜌𝜎)] ,

(40)

𝐶 (𝑡)

=
(−1 + 𝑒𝑟(−𝑡+𝑇)) 𝑃𝛾

𝑟
+ (2𝜌(𝑘 + 𝜆𝜌𝜎)

2

(𝑘 + 2𝜆𝜌𝜎))
−1

× 𝑒
−𝑘𝑇

𝜃𝜆
2

⋅ [−
(𝑒
𝑘𝑇
− 𝑒
𝑘(2𝑡−𝑇)+2(𝑡−𝑇)𝜆𝜌𝜎

) 𝑘𝜆
2
𝜌 (−1 + 𝜌

2
) 𝜎
2

2 (𝑘 + 𝜆𝜌𝜎)

+
(−𝑒𝑘𝑡 + 𝑒𝑘𝑇) (𝑘𝜌 + 2𝜆𝜎) (𝑘 + 𝜆𝜌𝜎)

2

𝑘

+ 𝑒
𝑘𝑇
(−𝑡 + 𝑇) 𝜌 (𝑘 − 𝜆𝜎) (𝑘 + 𝜆𝜎) (𝑘 + 2𝜆𝜌𝜎)

+
2 (−𝑒𝑘𝑇+ 𝑒𝑘𝑡+(𝑡−𝑇)𝜆𝜌𝜎) 𝑘 (𝑘𝜌 + 𝜆𝜎) (𝑘 + 2𝜆𝜌𝜎)

𝑘 + 𝜆𝜌𝜎
]

− ∫
𝑇

𝑡

𝛾𝑝
𝜏

𝜔 − 𝜔
0
− 𝜏

𝑒
𝑟(𝑇−𝜏)d𝜏,

(41)
Δ (𝑡)

=
(−1 + 𝑒

𝑟(−𝑡+𝑇)
) 𝑃𝛾

𝑟
− ∫
𝑇

𝑡

𝛾𝑝
𝜏

𝜔 − 𝜔
0
− 𝜏

𝑒
𝑟(𝑇−𝜏)d𝜏

+
𝑘𝜃𝜆2 (−1 + 𝑒(𝑡−𝑇)(𝑘+𝜆𝜌𝜎) + (−𝑡 + 𝑇) (𝑘 + 𝜆𝜌𝜎))

(𝑘 + 𝜆𝜌𝜎)
2

.

(42)

After some simple calculations, the optimal investment
strategy (35) becomes

𝜋
∗
=
1

𝑥𝛾
⋅ [𝛼 (𝑡)]

−1
⋅ [𝜆 − 𝜌𝜎𝛽 (𝑡)]

=
𝜆

𝑥𝛾𝑒𝑟(𝑇−𝑡)
⋅ [1 − 𝜌𝜎𝜆

(1 − 𝑒(𝑡−𝑇)(𝑘+𝜆𝜌𝜎))

𝑘 + 𝜆𝜌𝜎
] ,

𝐺 (𝑡, 𝑥, 𝑙) = 𝑒
𝑟(𝑇−𝑡)

𝑥 +
(1 − 𝑒(𝑡−𝑇)(𝑘+𝜆𝜌𝜎)) 𝜆2

𝛾 (𝑘 + 𝜆𝜌𝜎)
𝑙 +

Δ (𝑡)

𝛾
,

𝐹 (𝑡, 𝑥, 𝑙) = 𝑒
𝑟(𝑇−𝑡)

𝑥 +
𝐵 (𝑡)

𝛾
𝑙 +

𝐶 (𝑡)

𝛾
.

(43)

Theorems 1 and 2 imply that

𝐹 (𝑡, 𝑥, 𝑙) = 𝑉 (𝑡, 𝑥, 𝑙) = 𝑓 (𝑡, 𝑥, 𝑙, 𝑦
𝜋
∗

, 𝑧
𝜋
∗

)

= E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇)] −

𝛾

2
{E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇)
2
]

− (E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇)])
2

}

= 𝐺 (𝑡, 𝑥, 𝑙) −
𝛾

2
[𝐻 (𝑡, 𝑥, 𝑙) − 𝐺(𝑡, 𝑥, 𝑙)

2
] ,

(44)

E
𝑡,𝑥,𝑙

[𝑋
𝜋
∗

(𝑇)] = 𝐺 (𝑡, 𝑥, 𝑙) . (45)

Since

Var
𝑡,𝑥,𝑙

[𝑋
𝜋
∗

(𝑇)] = E
𝑡,𝑥,𝑙
[𝑋
𝜋
∗

(𝑇)]
2

− (E
𝑡,𝑥,𝑙
𝑋
𝜋
∗

(𝑇))
2

,

(46)
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(44) and (46) imply that

Var
𝑡,𝑥,𝑙

[𝑋
𝜋
∗

(𝑇)]

=
2

𝛾
[𝐺 (𝑡, 𝑥, 𝑙) − 𝐹 (𝑡, 𝑥, 𝑙)]

=
2

𝛾2
[(𝛽 (𝑡) − 𝐵 (𝑡)) 𝑙 + (Δ (𝑡) − 𝐶 (𝑡))]

= (2𝑘𝛾
2
𝜌(𝑘 + 𝜆𝜌𝜎)

3

(𝑘 + 2𝜆𝜌𝜎))
−1

𝑒
−𝑘𝑇

𝜆
2
⋅ Υ,

(47)

where

Υ = {− 2𝑒
𝑘𝑡
(𝑙 − 𝜃) (𝑘𝜌 + 2𝜆𝜎) (𝑘 + 𝜆𝜌𝜎)

3

− 4𝑒
𝑘𝑡+(𝑡−𝑇)𝜆𝜌𝜎

𝑘𝜆 (−1 + 𝜌
2
) 𝜎 (𝑘 + 2𝜆𝜌𝜎)

× (𝑘 (𝑙 − 𝜃) + 𝑙𝜆𝜌𝜎)

+ 𝑒
𝑘(2𝑡−𝑇)+2(𝑡−𝑇)𝜆𝜌𝜎

𝑘𝜆
2
𝜌 (−1 + 𝜌

2
) 𝜎
2

× (2𝑘𝑙 − 𝑘𝜃 + 2𝑙𝜆𝜌𝜎)

+ 𝑒
𝑘𝑇
𝜌 (𝑘 + 2𝜆𝜌𝜎)

× [2𝑘
3
(𝑙 + (−1 − 𝑘𝑡 + 𝑘𝑇) 𝜃)

+ 6𝑘
2
(𝑙 + (−1 − 𝑘𝑡 + 𝑘𝑇) 𝜃) 𝜆𝜌𝜎

+ 𝑘𝜆
2
(𝑙 (2 + 4𝜌

2
)

− 𝜃 (5 + 𝜌
2
+2𝑘 (𝑡 − 𝑇) (1 + 2𝜌

2
))) 𝜎
2

+2 (𝑙 + (−1 − 𝑘𝑡 + 𝑘𝑇) 𝜃) 𝜆
3
𝜌𝜎
3
]} .

(48)

Putting (45) and (47) together, the efficient frontier is
rewritten as

E
𝑡,𝑥,𝑙

[𝑋
𝜋
∗

(𝑇)]

= 𝑒
𝑟(𝑇−𝑡)

𝑥 +
(1 − 𝑒(𝑡−𝑇)(𝑘+𝜆𝜌𝜎)) 𝜆2

𝛾 (𝑘 + 𝜆𝜌𝜎)
𝑙 +

Δ (𝑡)

𝛾

+ 𝛾√Var
𝑡,𝑥,𝑙

[𝑋𝜋
∗

(𝑇)]

− √2 [(𝛽 (𝑡) − 𝐵 (𝑡)) 𝑙 + (Δ (𝑡) − 𝐶 (𝑡))],

(49)

where (𝑡),𝐵(𝑡),𝐶(𝑡), andΔ(𝑡) are given by (39), (40), (41), and
(42), respectively.

3.2.TheDistribution Phase after Retirement. According to the
recent research paper, such as Bjork and Murgoci [10] and
so forth, the mean-variance optimal control problem in the

distribution phase is equivalent to the following Markovian
time inconsistent stochastic optimal control problem:

𝐽 (𝑡, 𝑥, 𝑙, 𝜋)

= E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇 + 𝑁)] −

𝛾

2
Var
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇 + 𝑁)] ,

= E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇 + 𝑁)] −

𝛾

2
{E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇 + 𝑁)

2
]

−(E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇 + 𝑁)])

2

} ,

�̂� (𝑡, 𝑥, 𝑙) = sup
𝜋∈∏

𝐽 (𝑡, 𝑥, 𝑙, 𝜋) .

(50)

Denote

𝑦
𝜋
(𝑡, 𝑥, 𝑙) = E

𝑡,𝑥,𝑙
[𝑋
𝜋
(𝑇 + 𝑁)] ,

𝑧
𝜋
(𝑡, 𝑥, 𝑙) = E

𝑡,𝑥,𝑙
[𝑋
𝜋
(𝑇 + 𝑁)

2
] ,

(51)

and the value function

�̂� (𝑡, 𝑥, 𝑙) = sup
𝜋∈∏

{𝑓 (𝑡, 𝑥, 𝑙, 𝑦
𝜋
(𝑡, 𝑥, 𝑙) , 𝑧

𝜋
(𝑡, 𝑥, 𝑙))} , (52)

where

𝑓 (𝑡, 𝑥, 𝑙, 𝑦, 𝑧) = 𝑦 −
𝛾

2
(𝑧 − 𝑦

2
) . (53)

Theorem 3 (verification theorem). If there exist three real
functions 𝐹, 𝐺, �̂� : [0, 𝑇]×𝑅×𝑅 → 𝑅 satisfying the following
extended HJB equations:

sup
𝜋

{𝐹
𝑡
− 𝑓
𝑡
+ (𝐹
𝑥
− 𝑓
𝑥
) [𝑟𝑥 + 𝜆𝑙𝑥𝜋 − 𝜁]

+ (𝐹
𝑙
− 𝑓
𝑙
) 𝑘 (𝜃 − 𝑙) +

1

2
(𝐹
𝑥𝑥
− �̂�
𝜋

𝑥𝑥
) 𝑥
2
𝑙𝜋
2

+
1

2
(𝐹
𝑙𝑙
− �̂�
𝜋

𝑙𝑙
) 𝜎
2
𝑙 + (𝐹

𝑥𝑙
− �̂�
𝜋

𝑥𝑙
) 𝜌𝜎𝑥𝑙𝜋} = 0,

𝐹 (𝑇 + 𝑁, 𝑥, 𝑙) = 𝑓 (𝑇 + 𝑁, 𝑥, 𝑙, 𝑥, 𝑥
2
) ,

(54)

where

𝐺
𝑡
+ 𝐺
𝑥
[𝑟𝑥 + 𝜆𝑙𝑥𝜋 − 𝜁] + 𝑘 (𝜃 − 𝑙) 𝐺

𝑙

+
1

2
𝑥
2
𝑙𝜋
2
𝐺
𝑥𝑥
+
1

2
𝜎
2
𝑙𝐺
𝑙𝑙
+ 𝜌𝜎𝑥𝑙𝜋𝐺

𝑥𝑙
= 0,

𝐺 (𝑇 + 𝑁, 𝑥, 𝑙) = 𝑥,

(55)

�̂�
𝑡
+ �̂�
𝑥
[𝑟𝑥 + 𝜆𝑙𝑥𝜋 − 𝜁] + 𝑘 (𝜃 − 𝑙) �̂�

𝑙

+
1

2
𝑥
2
𝑙𝜋
2
�̂�
𝑥𝑥
+
1

2
𝜎
2
𝑙�̂�
𝑙𝑙
+ 𝜌𝜎𝑥𝑙𝜋�̂�

𝑥𝑙
= 0,

�̂� (𝑇 + 𝑁, 𝑥, 𝑙) = 𝑥
2
,

�̂�
𝜋

𝑥𝑥
:= 𝑓
𝑥𝑥
+ 2𝑓
𝑥𝑦
𝑦
𝜋

𝑥
+ 2𝑓
𝑥𝑧
𝑧
𝜋

𝑥

+ 𝑓
𝑦𝑦
(𝑦
𝜋

𝑥
)
2

+ 𝑓
𝑧𝑧
(𝑧
𝜋

𝑥
)
2

+ 2𝑓
𝑦𝑧
𝑦
𝜋

𝑥
𝑧
𝜋

𝑥
,
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�̂�
𝜋

𝑙𝑙
:= 𝑓
𝑙𝑙
+ 2𝑓
𝑦𝑙
𝑦
𝜋

𝑙
+ 2𝑓
𝑧𝑙
𝑧
𝜋

𝑙

+ 𝑓
𝑦𝑦
(𝑦
𝜋

𝑙
)
2

+ 𝑓
𝑧𝑧
(𝑧
𝜋

𝑙
)
2

+ 2𝑓
𝑦𝑧
𝑦
𝜋

𝑙
𝑧
𝜋

𝑙
,

�̂�
𝜋

𝑥𝑙
:= 𝑓
𝑥𝑙
+ 𝑓
𝑥𝑦
𝑦
𝜋

𝑙
+ 𝑓
𝑥𝑧
𝑧
𝜋

𝑙
+ 𝑓
𝑦𝑙
𝑦
𝜋

𝑥
+ 𝑓
𝑧𝑙
𝑧
𝜋

𝑥

+ 𝑓
𝑦𝑦
𝑦
𝜋

𝑥
𝑦
𝜋

𝑙
+ 𝑓
𝑦𝑧
𝑦
𝜋

𝑥
𝑧
𝜋

𝑙
+ 𝑓
𝑦𝑧
𝑦
𝜋

𝑙
𝑧
𝜋

𝑥
+ 𝑓
𝑧𝑧
𝑧
𝜋

𝑥
𝑧
𝜋

𝑙
.

(56)

Then �̂�(𝑡, 𝑥, 𝑙) = 𝐹(𝑡, 𝑥, 𝑙), 𝑦𝜋
∗

(𝑡, 𝑥, 𝑙) = 𝐺(𝑡, 𝑥, 𝑙), 𝑧𝜋
∗

(𝑡, 𝑥, 𝑙) =

�̂�(𝑡, 𝑥, 𝑙) for the optimal investment strategy 𝜋∗.

Proof. The way to prove the theorem is completely similar to
Li et al. [8], so we omit the details here.

Theorem 4. For the optimal control problem (50), there exist
unique optimal time-consistent strategy

𝜋
∗
=

𝜆

𝑥𝛾𝑒𝑟(𝑁+𝑇−𝑡)
⋅ [1 − 𝜌𝜎𝜆

(1 − 𝑒−(𝑁−𝑡+𝑇)(𝑘+𝜆𝜌𝜎))

𝑘 + 𝜆𝜌𝜎
] (57)

and the optimal value function

𝐹 (𝑡, 𝑥, 𝑙) = 𝑒
𝑟(𝑁+𝑇−𝑡)

𝑥 +
𝐵 (𝑡)

𝛾
+
𝐶 (𝑡)

𝛾
, (58)

where𝐵(𝑡) and𝐶(𝑡) are given by (72) and (74), explicitly. 𝛾 > 0
denotes the risk aversion coefficient.

Proof. According to (53), we have

𝑓
𝑡
= 𝑓
𝑥
= 𝑓
𝑙
= 𝑓
𝑥𝑥
= 𝑓
𝑥𝑦
= 𝑓
𝑥𝑧
= 𝑓
𝑦𝑧

= 𝑓
𝑥𝑙
= 𝑓
𝑦𝑙
= 𝑓
𝑧𝑙
= 𝑓
𝑧𝑧
= 𝑓
𝑙𝑙
= 0,

𝑓
𝑦
= 1 + 𝛾𝑦, 𝑓

𝑦𝑦
= 𝛾, 𝑓

𝑧
= −

𝛾

2
.

(59)

Substituting (59) into �̂�𝜋
𝑥𝑥
, �̂�𝜋
𝑙𝑥
, �̂�𝜋
𝑙𝑙

�̂�
𝜋
∗

𝑥𝑥
= 𝛾𝐺
2

𝑥
, �̂�

𝜋
∗

𝑙𝑙
= 𝛾𝐺
2

𝑙
, �̂�

𝜋
∗

𝑥𝑙
= 𝛾𝐺
𝑥
𝐺
𝑙
. (60)

Taking derivative for (54) with respect to 𝜋, according to
the first-order necessary condition, we have

(𝐹
𝑥
− 𝑓
𝑥
) 𝜆𝑙𝑥 + (𝐹

𝑥𝑥
− �̂�
𝜋

𝑥𝑥
) 𝑥
2
𝑙𝜋 + (𝐹

𝑥𝑙
− �̂�
𝜋

𝑥𝑙
) 𝜌𝜎𝑥𝑙 = 0,

(61)

so

𝜋
∗
= −

(𝐹
𝑥
− 𝑓
𝑥
) 𝜆 + (𝐹

𝑥𝑙
− �̂�𝜋
𝑥𝑙
) 𝜌𝜎

(𝐹
𝑥𝑥
− �̂�𝜋
𝑥𝑥
) 𝑥

=
𝜆𝐹
𝑥
− 𝜌𝜎𝛾𝐺

𝑥
𝐺
𝑙

𝛾𝑥𝐺2
𝑥

.

(62)

The remainder of this section focuses on solving (54)w.r.t.
𝐹 and (55) w.r.t. 𝐺. Since the two equations are linear in 𝑥

and 𝑙, it is quite natural to conjecture the following forms of
𝐹(𝑡, 𝑥, 𝑙) and 𝐺(𝑡, 𝑥, 𝑙):

𝐹 (𝑡, 𝑥, 𝑙) = 𝐴 (𝑡) 𝑥 +
𝐵 (𝑡)

𝛾
𝑙 +

𝐶 (𝑡)

𝛾
,

𝐴 (𝑇 + 𝑁) = 1, 𝐵 (𝑇 + 𝑁) = 0, 𝐶 (𝑇 + 𝑁) = 0,

𝐺 (𝑡, 𝑥, 𝑙) = �̂� (𝑡) 𝑥 +
𝛽 (𝑡)

𝛾
𝑙 +

Δ̂ (𝑡)

𝛾
,

�̂� (𝑇 + 𝑁) = 1, 𝛽 (𝑇 + 𝑁) = 0, Δ̂ (𝑇 + 𝑁) = 0,

(63)

and the corresponding partial derivatives are

𝐹
𝑡
= 𝐴
𝑡
𝑥 +

𝐵
𝑡

𝛾
𝑙 +

𝐶
𝑡

𝛾
, 𝐹

𝑥
= 𝐴 (𝑡) ,

𝐹
𝑙
=
𝐵 (𝑡)

𝛾
, 𝐹

𝑥𝑥
= 0, 𝐹

𝑙𝑙
= 0, 𝐹

𝑥𝑙
= 0,

𝐺
𝑡
= �̂�
𝑡
𝑥 +

𝛽
𝑡

𝛾
𝑙 +

Δ̂
𝑡

𝛾
, 𝐺

𝑥
= �̂� (𝑡) ,

𝐺
𝑙
=
𝛽 (𝑡)

𝛾
, 𝐺

𝑥𝑥
= 0, 𝐺

𝑙𝑙
= 0, 𝐺

𝑥𝑙
= 0.

(64)

Plugging the above partial derivatives (64) correspond-
ingly into (54), (55), and (62), we obtain

𝐴
𝑡
𝑥 +

𝐵
𝑡

𝛾
𝑙 +

𝐶
𝑡

𝛾
+ 𝐴 (𝑡) [𝑟𝑥 − 𝜁] + 𝑘 (𝜃 − 𝑙)

𝐵 (𝑡)

𝛾

−
𝜎2𝑙

2𝛾
𝛽
2
(𝑡) +

𝑙[𝜆𝐴 (𝑡) − 𝜌𝜎�̂� (𝑡) 𝛽 (𝑡)]
2

2𝛾�̂�2 (𝑡)
= 0,

𝐴 (𝑇 + 𝑁) = 1, 𝐵 (𝑇 + 𝑁) = 𝐶 (𝑇 + 𝑁) = 0,

(65)

�̂�
𝑡
𝑥 +

𝛽
𝑡

𝛾
𝑙 +

Δ̂
𝑡

𝛾
+ �̂� (𝑡) [𝑟𝑥 − 𝜁] + 𝑘 (𝜃 − 𝑙)

𝛽 (𝑡)

𝛾

+
𝜆𝑙 [𝜆𝐴 (𝑡) − 𝜌𝜎�̂� (𝑡) 𝛽 (𝑡)]

𝛾�̂� (𝑡)
= 0,

�̂� (𝑇 + 𝑁) = 1, 𝛽 (𝑇 + 𝑁) = Δ̂ (𝑇 + 𝑁) = 0,

(66)

and the optimal strategy

𝜋
∗
= −

𝜆𝐹
𝑥
+ 𝜌𝜎 (−𝛾𝐺

𝑥
𝐺
𝑙
)

𝑥 (−𝛾𝐺2
𝑥
)

=
𝜆𝐹
𝑥
− 𝜌𝜎𝛾𝐺

𝑥
𝐺
𝑙

𝑥𝛾𝐺2
𝑥

=
𝜆𝐴 (𝑡)

𝑥𝛾�̂�2 (𝑡)
−
𝜌𝜎𝛽 (𝑡)

𝑥𝛾�̂� (𝑡)
.

(67)
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Equation (65) splits into three equations

[𝐴
𝑡
+ 𝑟𝐴 (𝑡)] 𝑥 = 0, 𝐴 (𝑇 + 𝑁) = 1,

[
𝐵
𝑡

𝛾
−
𝑘𝐵 (𝑡)

𝛾
+
𝜆
2

2𝛾

𝐴2 (𝑡)

�̂�2 (𝑡)
−
𝜎2𝛽2 (𝑡)

2𝛾
+
𝜌2𝜎2𝛽2 (𝑡)

2𝛾

−
𝜌𝜎𝜆𝐴 (𝑡) 𝛽 (𝑡)

𝛾�̂� (𝑡)
] 𝑙 = 0, 𝐵 (𝑇 + 𝑁) = 0,

𝐶
𝑡

𝛾
− 𝜁𝐴 (𝑡) +

𝑘𝜃𝐵 (𝑡)

𝛾
= 0, 𝐶 (𝑇 + 𝑁) = 0.

(68)

Equation (66) splits into three equations

[�̂�
𝑡
+ 𝑟�̂� (𝑡)] 𝑥 = 0, �̂� (𝑇 + 𝑁) = 1,

[
𝛽
𝑡

𝛾
−
𝑘𝛽 (𝑡)

𝛾
+
𝜆
2

𝛾

𝐴 (𝑡)

�̂� (𝑡)
−
𝜌𝜎𝜆

𝛾
𝛽 (𝑡)] 𝑙 = 0,

𝛽 (𝑇 + 𝑁) = 0,

Δ̂
𝑡

𝛾
− 𝜁�̂� (𝑡) +

𝑘𝜃𝛽 (𝑡)

𝛾
= 0, Δ̂ (𝑇 + 𝑁) = 0.

(69)

To solve the above equations, we have

𝐴 (𝑡) = �̂� (𝑡) = 𝑒
𝑟(𝑁+𝑇−𝑡)

, (70)

𝛽 (𝑡) =
(1 − 𝑒−(𝑁−𝑡+𝑇)(𝑘+𝜆𝜌𝜎)) 𝜆2

𝑘 + 𝜆𝜌𝜎
, (71)

𝐵 (𝑡)

= (2𝑘𝜌(𝑘 + 𝜆𝜌𝜎)
2

(𝑘 + 2𝜆𝜌𝜎))
−1

× 𝑒
−𝑘(3𝑁+2𝑡+3𝑇)−3(𝑁+𝑡+𝑇)𝜆𝜌𝜎

𝜆
2

⋅ [−𝑒
𝑘(𝑁+4𝑡+𝑇)+(𝑁+5𝑡+𝑇)𝜆𝜌𝜎

𝑘𝜆
2
𝜌 (−1 + 𝜌

2
) 𝜎
2

+ 𝑒
𝑘(2𝑁+3𝑡+2𝑇)+3(𝑁+𝑡+𝑇)𝜆𝜌𝜎

(𝑘𝜌 + 2𝜆𝜎)

× (𝑘 + 𝜆𝜌𝜎)
2

+ 𝑒
𝑘(3𝑁+2𝑡+3𝑇)+3(𝑁+𝑡+𝑇)𝜆𝜌𝜎

𝜌 (𝑘 − 𝜆𝜎) (𝑘 + 𝜆𝜎)

× (𝑘 + 2𝜆𝜌𝜎) − 2𝑒
𝑘(2𝑁+3𝑡+2𝑇)+2(𝑁+2𝑡+𝑇)𝜆𝜌𝜎

× 𝑘 (𝑘𝜌 + 𝜆𝜎) (𝑘 + 2𝜆𝜌𝜎) ] ,

(72)

Δ̂ (𝑡)

= (𝑟(𝑘 + 𝜆𝜌𝜎)
2

)
−1

𝑒
−𝑟𝑡−(𝑁+𝑇)(𝑘+𝜆𝜌𝜎)

⋅ [𝑒
𝑡(𝑘+𝑟+𝜆𝜌𝜎)

𝑘𝑟𝜃𝜆
2
− 𝑒
(𝑁+𝑇)(𝑘+𝑟+𝜆𝜌𝜎)

× 𝛾𝜁(𝑘 + 𝜆𝜌𝜎)
2

+ 𝑒
𝑟𝑡+(𝑁+𝑇)(𝑘+𝜆𝜌𝜎)

× [𝑘 (𝑘𝛾𝜁 + 𝑟 (−1 + 𝑘 (𝑁 − 𝑡 + 𝑇)) 𝜃𝜆
2
)

+ 𝑘𝜆 (2𝛾𝜁 + 𝑟 (𝑁 − 𝑡 + 𝑇) 𝜃𝜆
2
) 𝜌𝜎

+𝛾𝜁𝜆
2
𝜌
2
𝜎
2
]] ,

(73)

𝐶 (𝑡)

= (4𝑘𝑟𝜌(𝑘 + 𝜆𝜌𝜎)
3

(𝑘 + 2𝜆𝜌𝜎))
−1

⋅ { − 2𝑘
5
(2 (−1 + 𝑒

𝑟(𝑁−𝑡+𝑇)
) 𝛾𝜁

− 𝑟 (𝑁 − 𝑡 + 𝑇) 𝜃𝜆
2
) 𝜌

+ 4𝑒
−𝑘(𝑁−𝑡+𝑇)

(−1 + 𝑒
𝑘(𝑁−𝑡+𝑇)

) 𝑟𝜃𝜆
6
𝜌
3
𝜎
4

+ 2𝑘
4
𝜆𝜌 [−10 (−1 + 𝑒

𝑟(𝑁−𝑡+𝑇)
) 𝛾𝜁𝜌𝜎

+ 𝑟𝜃𝜆 (−1 − 𝑒
−𝑘(𝑁−𝑡+𝑇)

+ 2𝑒
−(𝑁−𝑡+𝑇)(𝑘+𝜆𝜌𝜎)

+ 3 (𝑁 − 𝑡 + 𝑇) 𝜆𝜌𝜎)]

− 2𝑒
−𝑘(𝑁−𝑡+𝑇)

𝑘𝜆
4
𝜌
2
𝜎
3

× [−4 (𝑒
𝑘(𝑁−𝑡+𝑇)

− 𝑒
(𝑘+𝑟)(𝑁−𝑡+𝑇)

) 𝛾𝜁𝜌
3
𝜎

+ 𝑟𝜃𝜆 (6 + 𝜌
2
− 𝑒
𝑘(𝑁−𝑡+𝑇)

× (6 + 𝜌
2
− 2 (𝑁 − 𝑡 + 𝑇) 𝜆𝜌𝜎) ) ]

+ 2𝑘
3
𝜆
2
𝜎

× [2𝑒
−(𝑁−𝑡+𝑇)(𝑘+𝜆𝜌𝜎)

𝑟𝜃𝜆 (1 + 2𝜌
2
)

− 𝑒
−𝑘(𝑁−𝑡+𝑇)

𝑟𝜃𝜆 (2 + 3𝜌
2
)

− 18𝑒
𝑟(𝑁−𝑡+𝑇)

𝛾𝜁𝜌
3
𝜎

+ 𝜌 (18𝛾𝜁𝜌
2
𝜎 + 𝑟𝜃𝜆

×(−𝜌 +(𝑁− 𝑡+𝑇) 𝜆 (−1+2𝜌
2
) 𝜎))]

+ 𝑒
−(𝑁−𝑡+𝑇)(3𝑘+2𝜆𝜌𝜎)

𝑘
2
𝜆
3
𝜌𝜎
2

× [8𝑒
(𝑁−𝑡+𝑇)(2𝑘+𝜆𝜌𝜎)

𝑟𝜃𝜆
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− 28𝑒
(𝑁−𝑡+𝑇)(3𝑘+𝑟+2𝜆𝜌𝜎)

𝛾𝜁𝜌
3
𝜎

+ 𝑒
𝑘(𝑁−𝑡+𝑇)

𝑟𝜃𝜆 (−1 + 𝜌
2
)

− 6𝑒
2(𝑁−𝑡+𝑇)(𝑘+𝜆𝜌𝜎)

𝑟𝜃𝜆 (2 + 𝜌
2
)

+ 𝑒
(𝑁−𝑡+𝑇)(3𝑘+2𝜆𝜌𝜎)

× (28𝛾𝜁𝜌
3
𝜎 + 𝑟𝜃𝜆

× (5 + 𝜌 (5𝜌 − 6 (𝑁 − 𝑡 + 𝑇) 𝜆𝜎)) )] } .

(74)

After simple calculation, the optimal investment strategy
(67) becomes

𝜋
∗
=
1

𝑥𝛾
⋅ [�̂� (𝑡)]

−1
⋅ [𝜆 − 𝜌𝜎𝛽 (𝑡)]

=
𝜆

𝑥𝛾𝑒𝑟(𝑁−𝑡+𝑇)
⋅ [1 − 𝜌𝜎𝜆

(1 − 𝑒−(𝑁−𝑡+𝑇)(𝑘+𝜆𝜌𝜎))

𝑘 + 𝜆𝜌𝜎
] ,

𝐺 (𝑡, 𝑥, 𝑙) = 𝑒
𝑟(𝑁−𝑡+𝑇)

𝑥 +
(1 − 𝑒−(𝑁−𝑡+𝑇)(𝑘+𝜆𝜌𝜎)) 𝜆2

𝛾 (𝑘 + 𝜆𝜌𝜎)
𝑙 +

Δ̂ (𝑡)

𝛾
,

𝐹 (𝑡, 𝑥, 𝑙) = 𝑒
𝑟(𝑁−𝑡+𝑇)

𝑥 +
𝐵 (𝑡)

𝛾
𝑙 +

𝐶 (𝑡)

𝛾
.

(75)

Theorem 3 andTheorem 4 imply that

𝐹 (𝑡, 𝑥, 𝑙) = �̂� (𝑡, 𝑥, 𝑙) = 𝑓 (𝑡, 𝑥, 𝑙, 𝑦
𝜋
∗

, 𝑧
𝜋
∗

)

= E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇 + 𝑁)] −

𝛾

2

× {E
𝑡,𝑥,𝑙

[𝑋
𝜋
(𝑇 + 𝑁)

2
] − (E

𝑡,𝑥,𝑙
[𝑋
𝜋
(𝑇 + 𝑁)])

2

}

= 𝐺 (𝑡, 𝑥, 𝑙) −
𝛾

2
[�̂� (𝑡, 𝑥, 𝑙) − 𝐺(𝑡, 𝑥, 𝑙)

2
] ,

(76)

E
𝑡,𝑥,𝑙

[𝑋
𝜋
∗

(𝑇 + 𝑁)] = 𝐺 (𝑡, 𝑥, 𝑙) . (77)

Since

Var
𝑡,𝑥,𝑙

[𝑋
𝜋
∗

(𝑇 + 𝑁)]

= E
𝑡,𝑥,𝑙
[𝑋𝜋
∗

(𝑇 + 𝑁)]
2

− (E
𝑡,𝑥,𝑙
𝑋𝜋
∗

(𝑇 + 𝑁))
2

,

(78)

(76) and (78) imply that

Var
𝑡,𝑥,𝑙

[𝑋
𝜋
∗

(𝑇 + 𝑁)]

=
2

𝛾
[𝐺 (𝑡, 𝑥, 𝑙) − 𝐹 (𝑡, 𝑥, 𝑙)]

=
2

𝛾2
[(𝛽 (𝑡) − 𝐵 (𝑡)) 𝑙 + (Δ̂ (𝑡) − 𝐶 (𝑡))]

= (2𝑘𝛾
2
𝜌(𝑘 + 𝜆𝜌𝜎)

3

(𝑘 + 2𝜆𝜌𝜎))
−1

× 𝑒
−2(𝑁+𝑇)(𝑘+𝜆𝜌𝜎)

𝜆
2
⋅ Θ,

(79)

where

Θ = {− 2𝑒
𝑘(𝑁+𝑡+𝑇)+2(𝑁+𝑇)𝜆𝜌𝜎

(𝑙 − 𝜃) (𝑘𝜌 + 2𝜆𝜎) (𝑘 + 𝜆𝜌𝜎)
3

− 4𝑒
(𝑁+𝑡+𝑇)(𝑘+𝜆𝜌𝜎)

𝑘𝜆 (−1 + 𝜌
2
) 𝜎 (𝑘 + 2𝜆𝜌𝜎)

× (𝑘 (𝑙 − 𝜃) + 𝑙𝜆𝜌𝜎)

+ 𝑒
2𝑡(𝑘+𝜆𝜌𝜎)

𝑘𝜆
2
𝜌 (−1 + 𝜌

2
) 𝜎
2
(2𝑘𝑙 − 𝑘𝜃 + 2𝑙𝜆𝜌𝜎)

+ 𝑒
2(𝑁+𝑇)(𝑘+𝜆𝜌𝜎)

𝜌 (𝑘 + 2𝜆𝜌𝜎)

× [2𝑘
3
(𝑙 + (−1 + 𝑘 (𝑁 − 𝑡 + 𝑇)) 𝜃)

+ 6𝑘
2
(𝑙 + (−1 + 𝑘 (𝑁 − 𝑡 + 𝑇)) 𝜃) 𝜆𝜌𝜎

+ 2 (𝑙 + (−1 + 𝑘 (𝑁 − 𝑡 + 𝑇)) 𝜃) 𝜆
3
𝜌𝜎
3

+ 𝑘𝜆
2
(𝑙 (2 + 4𝜌

2
)

+ 𝜃 ( − 5 − 𝜌
2
+ 2𝑘 (𝑁 − 𝑡 + 𝑇)

× (1 + 2𝜌
2
))) 𝜎
2
]} .

(80)

Putting (77) and (79) together, the efficient frontier is
rewritten as

E
𝑡,𝑥,𝑙

[𝑋
𝜋
∗

(𝑇 + 𝑁)]

= 𝑒
𝑟(𝑁−𝑡+𝑇)

𝑥 +
(1 − 𝑒−(𝑁−𝑡+𝑇)(𝑘+𝜆𝜌𝜎)) 𝜆2

𝛾 (𝑘 + 𝜆𝜌𝜎)
𝑙 +

Δ̂ (𝑡)

𝛾

+ 𝛾√Var
𝑡,𝑥,𝑙

[𝑋𝜋
∗

(𝑇 + 𝑁)]

− √2 [(𝛽 (𝑡) − 𝐵 (𝑡)) 𝑙 + (Δ̂ (𝑡) − 𝐶 (𝑡))],

(81)

where 𝛽(𝑡), 𝐵(𝑡), Δ̂(𝑡), and 𝐶(𝑡) are given by (71), (72), (73),
and (74), respectively.

Remark 5. In a defined contribution pension plan, only the
contributions in the accumulation phase before retirement
are guaranteed, but the future benefits are undetermined.
Considering a annuity contract in the distribution phase after
retirement, it achieves the effect that both phases before and
after retirement are “defined,” which makes the pension plan
even more portable and of great convenience for insurers.

4. Numerical Analysis

In this section, some numerical analysis and graphics are
provided to illustrate our results. The main objectives are
two aspects: one is to explain the properties of the optimal
strategies derived in Section 2 and Section 3 and the other is
to illustrate the efficient frontier.

First, let us analyze the expression of the optimal time-
consistent investment strategy 𝜋∗ in the accumulation phase
before retirement. Analysis of the optimal time-consistent
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Figure 1: Evolutions of optimal investment strategy 𝜋∗ with differ-
ent risk aversion coefficients 𝛾.
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Figure 2: Evolutions of optimal investment strategy 𝜋∗ with
different risk-free interest rates 𝑟.

investment strategy in the distribution phase after retirement
is almost the same and we can get similar results, so it is
omitted:

𝜋
∗
=

𝜆

𝑥𝛾𝑒𝑟(𝑇−𝑡)
⋅ [1 − 𝜌𝜎𝜆

(1 − 𝑒(𝑡−𝑇)(𝑘+𝜆𝜌𝜎))

𝑘 + 𝜆𝜌𝜎
]

=
𝜆𝑒
𝑟(𝑡−𝑇)

𝑥𝛾 (𝑘 + 𝜆𝜌𝜎)
⋅ (𝑘 + 𝜆𝜌𝜎𝑒

(𝑡−𝑇)(𝑘+𝜆𝜌𝜎)
) .

(82)

The derivative of (82) w.r.t. 𝛾 is

𝜕𝜋
∗

𝜕𝛾
= −

𝜆

𝑥𝛾2
⋅
𝑒𝑟(𝑡−𝑇) (𝑘 + 𝑒(𝑡−𝑇)(𝑘+𝜆𝜌𝜎)𝜆𝜌𝜎)

(𝑘 + 𝜆𝜌𝜎)
. (83)
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Figure 3: Evolutions of optimal investment strategy 𝜋∗ with
different fund size 𝑥 for the same risk averse level.
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Figure 4: Evolutions of optimal investment strategy 𝜋∗ with
different correlation coefficients 𝜌.

Since

𝑒
𝑟(𝑡−𝑇)

(𝑘 + 𝑒
(𝑡−𝑇)(𝑘+𝜆𝜌𝜎)

𝜆𝜌𝜎)

(𝑘 + 𝜆𝜌𝜎)
> 0,

𝜆

𝑥𝛾2
> 0, (84)

then

𝜕𝜋∗

𝜕𝛾
< 0 (85)

which shows that the optimal investment policy decreases
with respect to the risk aversion level 𝛾, referring to Figure 1,
which is consistent with reality. In fact, the higher degree of
risk aversion, people should invest the less cash in risky assets
to avoid risk.
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Figure 5: (a) The efficient frontiers of different risk averse level 𝛾 when 𝑡 = 21. (b) The efficient frontiers of different risk averse level 𝛾 when
𝑡 = 28.

Similarly, the derivatives of (82) w.r.t. risk-free interest
rate 𝑟 and starting wealth level 𝑥 are given by

𝜕𝜋∗

𝜕𝑟
= −

𝑒𝑟(𝑡−𝑇) (𝑇 − 𝑡) 𝜆 (𝑘 + 𝑒
(𝑡−𝑇)𝜆𝜌𝜎 (𝑘 + 𝜆𝜌𝜎))

𝑥𝛾 (𝑘 + 𝜆𝜌𝜎)
< 0,

𝜕𝜋∗

𝜕𝑥
= −

𝑒𝑟(𝑡−𝑇)𝜆 (𝑘 + 𝑒(𝑡−𝑇)𝜆𝜌𝜎 (𝑘 + 𝜆𝜌𝜎))

𝑥2𝛾 (𝑘 + 𝜆𝜌𝜎)
< 0,

(86)

whichmean that the optimal investment policy also decreases
with respect to the risk-free interest rate 𝑟 and starting
wealth level 𝑥. See Figures 2 and 3, respectively. Obviously,
the higher the risk-free interest rate, people must increase
the investment on the risk-free asset because they can get
more profit without risk, and risk investment corresponds
to reduction. Furthermore, a risk-averse investor must strive
to control the investment amount of risk assets, if the initial
capital size 𝑥 increasing, only by reducing the proportion
𝜋 can make the investment amount of risk assets stay at a
relatively low level.

But for the derivative of (82) w.r.t. correlation coefficient
𝜌, which will be more complicated,

𝜕𝜋
∗

𝜕𝜌
=
𝑒𝑟(𝑡−𝑇)𝜆2𝜎 (−𝑘 + 𝑒(𝑡−𝑇)(𝑘 + 𝜆𝜌𝜎)

2

)

𝑥𝛾(𝑘 + 𝜆𝜌𝜎)
2

. (87)

If 𝑡 ∈ [0, 𝑇] is close enough to 𝑇, then

𝑒
(𝑡−𝑇)

(𝑘 + 𝜆𝜌𝜎)
2

> 𝑘,

−𝑘 + 𝑒
(𝑡−𝑇)

(𝑘 + 𝜆𝜌𝜎)
2

> 0,

(88)

so that
𝜕𝜋∗

𝜕𝜌
> 0 (89)

which means the optimal investment strategy 𝜋∗ increasing
with respect to the correlation coefficient 𝜌. However, as 𝑡 is
close enough to 0, especially for 𝑡 ∈ [0, 𝑇] small enough, then

𝑒
(𝑡−𝑇)

(𝑘 + 𝜆𝜌𝜎)
2

< 𝑘,

−𝑘 + 𝑒
(𝑡−𝑇)

(𝑘 + 𝜆𝜌𝜎)
2

< 0

(90)

which shows that the optimal investment strategy 𝜋∗

decreases with respect to the correlation coefficient 𝜌, refer-
ring to Figure 4 which illustrates our conclusion.

Second, we analyze the efficient frontier in the distribu-
tion phase after retirement. Analysis of the efficient frontier in
the accumulation phase before retirement is almost the same,
so it is omitted. We fix the time 𝑡 and take appropriate value
to 𝑥 and 𝑙 for the efficient frontier (49) which is a function
of variance as the independent variable. Drawing a picture
of the efficient frontier on the rectangular plane coordinate
system of variance (Var) and expected return (Exp) for the
different risk aversion levels 𝛾, referring to Figure 5, they are
convex curves and the expected return (Exp) smaller if the
time 𝑡 takes larger.

Taking derivatives of variance (47) and by similar analysis
as above we also have

𝜕Var
𝑡,𝑥,𝑙

[𝑋𝜋
∗

(𝑇)]

𝜕𝛾
< 0,

𝜕Var
𝑡,𝑥,𝑙

[𝑋𝜋
∗

(𝑇)]

𝜕𝑡
< 0. (91)

The inequalities in (91) show that the variance decreases with
respect to the risk aversion coefficient 𝛾 and time 𝑡 when the
fund size level and other parameters are fixed. Referring to
Figure 6 shows the correctness of our conclusion. Variance
as a measure of risk will be smaller if investor be more risk
averse. Meanwhile, for more longer time investment, a risk
aversion insurer will be more cautious, so the variance also
decreases with the investment time 𝑡.
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Figure 6: Variance with different risk aversion levels 𝛾.

Through detailed comparison of the above figures, we
also discover that different risk aversion levels can lead
to surprising difference of the fund size variance (seeing
Figure 6) and themore strict correlation of Brownianmotions
may result in fierce variation (seeing Figure 4) of the optimal
investment strategy especially when time 𝑡 is close enough to
𝑇. So we should control risk aversion level and correlation
coefficient of Brownian motions at an appropriate level for a
DC pension plan.

5. Conclusion

Themain innovation of this paper is merging defined contri-
butionwith annuity contract as a whole pension plan to study
both accumulation phase before retirement and distribution
phase after retirement in the mean-variance framework with
the return of premiums clauses, which achieves the effect
that both phases before and after retirement are “defined”
to make the defined contribution plans even more portable
and great convenience for insurance companies.The return of
premiums clauses following the formulation of He and Liang
[12], the time-consistent framework according to Li et al. [8]
and inspired by the literature of Gao [1], we obtain the time-
consistent explicit solution by applying stochastic optimal
control techniques under Heston’s SV models. Numerical
analysis illustrates our results and also deepens our knowl-
edge or understanding of the research results.
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