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The generalized Cobb-Douglas production function has been derived from a general input-output relation based on fractality
assumptions. It was proved to be a useful self-affinemodel for geographical analysis. However, the ordinary least square calculation
is always an ineffectualmethod for theCobb-Douglasmodeling because of themulticollinearity in the logarithmic linear regression.
In this paper, a novel approach is proposed to build the geographical Cobb-Douglas models. Combining the concept of allometric
scaling with the linear regression technique, we obtain a simple algorithm that can be employed to estimate the parameters of the
Cobb-Douglas function. As a case, the algorithm and models are applied to the public transportation of China’s cities, and the
results validate the allometric algorithm. A conclusion can be drawn that the allometric analysis is an effective way of modeling
geographical systems with the general Cobb-Douglas function. This study is significant for integrating the notions of allometry,
fractals, and scaling into a new framework to form a quantitative methodology of spatial analysis.

1. Introduction

The well-known production function was proposed by Cobb
and Douglas [1] and consolidated by many economists.
Today, the Cobb-Douglas function was proved to be a tool
of geographical analysis because geographical systems are
always associated with economic systems [2, 3]. In fact, many
geographical theories such as central place theory came from
economics. By geographical assumptions, the generalized
Cobb-Douglas production model can be derived in a simple
way by using the ideas from fractals and scaling. Thus the
fractal concept and the production function were combined
to form a newmodel.Thismodelmay be useful for geograph-
ical information analysis in the future. Fractals are every-
where [4–6], and fractal dimension is related to information
entropy [7]. Fractal geometry can be employed to reveal
spatial information of geographical systems, especially, cities
as systems and systems of cities [8–25]. What is more, the
general Cobb-Douglas function can be applied to modeling
natural systems, for example, ecological systems [26].

A good mathematical model is always based on an
effective algorithm.However, the ordinary least square (OLS)
method cannot be used to estimate the parameter values

of the fractal-based Cobb-Douglas model in many cases
because of logarithmic multicollinearity. In other words,
there are allometric scaling relationships between any two
independent variables, which are employed to make models.
On the other hand, the allometric scaling is one of the basic
laws in geography. It can be utilized to make spatial analyses
for many geographical systems [2, 10, 27–35]. The key to
solving the problemof theCobb-Douglasmodeling rests with
the allometry. In this paper, the allometric analysis is adopted
to develop a new approach to evaluating the parameters of the
general production function.The other parts are organized as
follows. In Section 2, the allometric scaling is demonstrated
to be a way of estimating the parameters of the Cobb-Douglas
model. In Section 3, the model based on the allometric algo-
rithm is applied to the public transportation of Chinese cities,
and the empirical results validate the theoretical derivation.
Finally, in Section 4, the related questions are discussed, and
the paper is concluded with several pieces of comments.

2. Mathematical Models

2.1. New Form of the Production Function. In geography as
well as economics, the mathematical models similar to the

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2014, Article ID 910457, 10 pages
http://dx.doi.org/10.1155/2014/910457



2 Discrete Dynamics in Nature and Society

Cobb-Douglas production functions are widely employed to
describe the relationship of one output with many inputs.
Suppose that there are 𝑚 elements 𝑋

𝑖
in a geographical

system, and each element affects the output 𝑌 to some extent
(𝑖 = 1, 2, . . . , 𝑚). An assumption can be made as follows:the
geographical system is a fractal system in a broad sense.
That is, the relationships between the inputs represented by
elements𝑋

𝑖
and the output𝑌 satisfy some self-similar or self-

affine conditions [2]. Because all the elements contribute to
the output of the geographical system, the output as response
to the elements can be generally expressed as follows:

𝑌 = 𝑘𝑓 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑚
) , (1)

inwhich 𝑘 is a proportionality coefficient. Taking the complete
differential of (1) yields
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This result is easy to understand by the knowledge of com-
plete differential in highermathematics. Dividing (2) on both
sides with 𝑌gives

d𝑌
𝑌

=

𝑚

∑

𝑖=1

[(

𝜕𝑌

𝜕𝑋
𝑖

𝑋
𝑖

𝑌

)

d𝑋
𝑖

𝑋
𝑖

] =

𝑚

∑

𝑖=1

𝜎
𝑖

d𝑋
𝑖

𝑋
𝑖

. (3)

The precondition of (3) is that the system depicted by (1) is of
fractal structure. If and only if the system is of self-similar
or self-affine structure, the parameter 𝜎

𝑖
will be constant.

According to our assumption aforementioned, the fractal
parameter 𝜎

𝑖
can be defined by

𝜎
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=
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. (4)

This parameter is in fact an elastic coefficient. Apparently,
(4) reflects a partial scaling relation, just indicating that the
output 𝑌 depends to scale on the element 𝑋

𝑖
regardless of

other elements. Equation (3) can be equivalently expressed
as

d ln𝑌 =

𝑚

∑

𝑖=1

𝜎
𝑖
d ln𝑋

𝑖
. (5)

Then taking integral on both sides of (5) yields
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Apparently, from (6) it follows that

ln𝑌 =

𝑚

∑

𝑖=1

ln𝑋𝜎𝑖
𝑖
+ 𝐶, (7)

where 𝐶 refers to the integral constant. A simple mathemati-
cal transform of (7) yields

𝑌 = 𝐾

𝑚

∏

𝑖=1

𝑋
𝜎𝑖

𝑖
(8)

which is just the generalized Cobb-Douglas function indica-
tive of self-affine patterns [2, 3]. In the function, the constant
𝐾 = exp𝐶 refers to the output coefficient. If 𝑚 = 2 as given,
then (8) can be reduced to the common Cobb-Douglas
function

𝑌 = 𝐾𝑋
𝜎1

1
𝑋
𝜎2

2
, (9)

where 𝑋
1
and 𝑋

2
represent capital and labor, respectively. In

a city system, 𝑋
1
and 𝑋

2
can represent population size and

land-use area.
The traditional production function is a special case

of the generalized production function. It is clear that (8)
denotes a complete relation, while (4) represents a partial
relation. In this case, if (8) is true, we cannot integrate (4)
over 𝑋

𝑖
. Otherwise a contradiction will take place if we

take integral of (4). Now suppose that only 𝑋
𝑖
influences

𝑌 with other elements being invariable. Then the equation
d ln𝑌 = 𝜎

𝑖
d ln𝑋

𝑖
can be derived from (4), and integrating

this relation gives the following power function:

𝑌 = 𝐶
𝑖
𝑋
𝜎𝑖

𝑖
. (10)

This is a generalized allometric function [2, 36–38]. There
is a logical contradiction between (8) and (10). Comparing
(10) with (8) shows why (4) cannot be calculated the integral
when (10) holds. Evidently, we can get a multivariate linear
regression equation by taking logarithms on both sides of (8);
in the same way, a univariate linear regression equation can
be gotten by taking logs of (10). According to the knowledge
of statistics related, if a response variable depends on many
explanatory variables, but only one of which is considered,
then the estimation results of the parameters of the regression
equation will greatly deviate from the true values. In short,
(10) will be true if and only if others elements 𝑋

𝑗
(𝑗 ̸= 𝑖) are

all fixed.
A general allometric scaling relation can be derived

from the generalized Cobb-Douglas function. Taking two
elements, say,𝑋

𝑖
and𝑋

𝑗
, into consideration in terms of (10),

we have

𝑋
𝑖
∝ 𝑋

𝜎𝑗/𝜎𝑖

𝑗
. (11)

This is thewell-known allometric relation of any two elements
[28, 39]. Suppose the dimension of 𝑋

𝑖
is 𝐷
𝑖
, and the dimen-

sion of 𝑋
𝑗
is 𝐷
𝑗
. According to the principle of dimensional

homogeneity, we have

𝑋
𝑖
∝ 𝑋

𝐷𝑖/𝐷𝑗

𝑗
. (12)

The principle of dimensional homogeneity is also called the
“principle of dimension consistency” [29], which comes from
the proportion axiom in mathematics. Comparing (12) with
(11) yields a fractal parameter relation such as [2]

𝜎
𝑖
𝐷
𝑖
= 𝜎
𝑗
𝐷
𝑗
, (13)

which suggests that the ratio of two fractal dimensions equals
the ratio of two elastic coefficients, but a fractal dimension is
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reciprocally proportional to its corresponding elastic coeffi-
cient. Substituting (11) or (12) into (8) repeatedly yields

𝑌 = 𝑐
𝑖
𝑋
𝑑𝑖

𝑖
, (14)

where 𝑐
𝑖
is a proportionality coefficient and 𝑑

𝑖
is a generalized

allometric scaling exponent. Clearly, the scaling exponent
𝑑
𝑖
is relative to the fractal dimension 𝐷

𝑖
and 𝐷

𝑗
. Equation

(14) shares the same form as (10), but they have different
physical meaning. Equation (10) is true if and only if the final
output depends only on one element, whereas (14) is true
when the final output depends on many elements, between
which there exist allometric scaling relations. However, if
the allometric relation appears between any pair of urban
elements, the parameters of the log-linear expression of (8)
cannot be estimated by using theOLSmethod. Otherwise, we
will inevitably come across the problem of multicollinearity.
Thus we need a new algorithm for the Cobb-Douglas model-
ing of geographical systems.

2.2. Allometric Algorithm. The fractal-based Cobb-Douglas
equation can be formally solved by the OLS algorithm, but
the results may be unacceptable. Taking natural logarithm on
both sides of (8) gives

ln𝑌 = ln𝐾 + 𝜎
1
ln𝑋
1
+ 𝜎
2
ln𝑋
2
+ ⋅ ⋅ ⋅ + 𝜎

𝑚
ln𝑋
𝑚
, (15)

which is clearly a multivariable linear equation. It seems
as if the technique of multivariate linear regression can be
employed to estimate the values of model parameters. How-
ever, the independent variables are always related to one
another in practice so that the parameters cannot be properly
evaluated because of multicollinearity. A discovery is that the
allometric analysis can be used to solve the generalizedCobb-
Douglas equations. Let 𝑖 = 1, 2, . . . , 𝑚. Then multiplying (14)
by (14) again and again yields

𝑌 =
𝑚
√𝑐1

𝑐
2
⋅ ⋅ ⋅ 𝑐
𝑚
𝑋
𝑑1/𝑚

1
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2
⋅ ⋅ ⋅ 𝑋
𝑑𝑚/𝑚

𝑚
. (16)

This suggests a partial scaling relation. In fact, multiplying𝑋
𝑖

by a scale factor 𝜆 gives

𝑌 (𝜆𝑋
𝑖
) = 𝜆
𝜎𝑖
𝑌 (𝑋
𝑖
) , (17)

which suggest a self-affine fractal structure [3]. Comparing
(16) with (8) shows

𝜎
𝑖
=

𝑑
𝑖

𝑚

. (18)

An allometric algorithm can be presented for solving the
generalized production model. In fact, (14) and (16) indicate
a new approach to estimate model parameters, and (18)
suggests a simple method of evaluating the partial scaling
exponents. In short, by means of the allometric scaling rela-
tions between each independent variable and the dependent
variable, we can replace the multiple log-linear regression
with a set of simple log-linear regressions to estimate the
model parameters and then build the Cobb-Douglas model.

2.3. Fractal Meaning of Model Parameters. It is necessary
to demonstrate that the parameters of the Cobb-Douglas
model are associated with fractal dimension. The Hausdorff
dimension has been proved to be equivalent to Shannon’s
information entropy [7]. Revealing the dimension meaning
of the model parameters is helpful for spatial analysis of geo-
graphical systems. The key to understanding the property of
fractional dimension of the Cobb-Douglasmodel parameters
lies in the geometric measure relation, which is also termed
fractal measure relation [40]. Suppose that 𝐷

𝑌
denotes the

dimension of 𝑌. Comparing (14) with the geometric measure
relation based on the principle of dimensional consistency

𝑌 ∝ 𝑋
𝐷𝑌/𝐷𝑖

𝑖
, (19)

we have

𝑑
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= 𝑚𝜎
𝑖
. (20)

This suggests that the parameter 𝑑
𝑖
has fractal dimension

property in a broad sense. In fact, the generalized allometric
scaling exponent is a ratio of the dimension of the output
variable to that of an input variable. It is obvious that (12) can
be derived from (19). Thus a generalized fractal dimension
equation can be obtained as follows:

𝐷
𝑌
= 𝑑
𝑖
𝐷
𝑖
= 𝑑
𝑗
𝐷
𝑗
= 𝑚𝜎
𝑖
𝐷
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= 𝑚𝜎
𝑗
𝐷
𝑗
, (21)

which gives the mathematical relationships between different
fractal dimensions, different elastic coefficients, and different
allometric scaling exponents.

The fractal parameter equations are revealing for us the
idea to link the generalized Cobb-Douglas function with
allometric analysis. Although the scaling exponent in (16)
may not be equivalent to the corresponding parameters in (8),
the ratio of these parameters equals each other. For example,
considering two elements𝑋

𝑖
and𝑋

𝑗
, we have

𝑑
𝑖

𝑑
𝑗

=

𝜎
𝑖

𝜎
𝑗

, (22)

which suggests that the ratio of two allometric scaling
exponents equals the ratio of two elastic coefficients, but an
allometric scaling exponent is be directly proportional to its
corresponding elastic coefficient. This relation is important
for fractal study of geographical systems. In fact, when we
make an allometric analysis of different components in a
system, what we are really concerned with is the ratio of two
fractal dimensions instead of each fractal dimension [3, 28].
Therefore, we can explore the ratio of dimensions by substi-
tuting (14) for (8). That is, a fractal study can be made from
allometric analysis to the Cobb-Douglas modeling.

The main points of the mathematical process can be
summarized as follows [3]. First, the Cobb-Douglas function
is a fractal model indicating self-affinity. Second, the model
parameters are relative to the fractal dimension in a broad
sense.Third, the relationships between one element and other
elements follow the law of allometric growth. Last but not the
least, if the input-output relations of a geographical system
can be characterizedwith theCobb-Douglas function, we can
investigate the systemby using only a few variables, which can
simplify the analytical process to a great extent.
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Figure 1: A sketch map of 31 regions including the 27 provinces, autonomous regions, and 4 municipalities directly under the Central
Government of China.

3. Empirical Analysis

3.1. Materials and Methods. A case study can be made by
applying the general Cobb-Douglas model and allometric
algorithm to the public transportation of Chinese cities. The
study area includes the whole mainland of China (Figure 1).
Urban transportation is one of important aspects of new
science of cities [41].The observational data come fromChina
Statistical Yearbook of National Bureau of Statistics of the
People’s Republic of China. Three variables are adopted in
this statistics as follows: first, the year-end number of public
vehicles in operation (unit), which is abbreviated to “vehicle
number”; second, the total length of roads in operation (km),
which is represented by “road length” for short; third, the
volume of passengers transported by public traffic vehicles
(10000 person-times), which is abbreviated to “passenger
volume.” The three variables fall into two types: two input
(independent) variables and one output (dependent) variable
(Table 1). The public transportation can be divided into two
groups: the major group includes bus and trolley bus, and
the miner group includes subways, light rail, and streetcar.

Based on these variables, partial basic statistical datasets on
the public transportation of China’s cities are tabulated by
region as follows (Table 2).

Using log-linear regression analysis and allometric anal-
ysis, we can build two kinds of Cobb-Douglas model for
the urban transportation of China. One is for the whole
transportation, including the major group and minor group
(global analysis); the other is for the major group, including
bus and trolley bus (local analysis). Because of the incomplete
statistical dataset, we do not make models for the minor
group including subway, light rail, and streetcar. First of all, a
structural analysis is made; then, a simple dynamical analysis
is implemented. All these analyses are based on the cross-
sectional datasets of the public transportation of China’s
cities.

3.2. Results. For comparison, let us examine the wrong
approach to modeling the urban transportation in the first
place. If the multivariable log-linear regression is employed
to estimate the model parameters, the results will be deviant.
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Table 1: The input variables and output variable for quantitative analysis of the public transportation of China’s cities (2006–2012).

Type Variable Abbreviation Measurement unit Symbol
Input
(independent variables)

Year-end number of public vehicles in operation Vehicle number unit 𝑥
1

Total length of roads in operation Road length km 𝑥
2

Output
(dependent variable) Volume of passengers transported by public traffic vehicles Passenger volume 10000 person-times 𝑦

Table 2: Basic datasets on the public transportation in China’s cities by region (2012).

Region Global datasets (public transportation) Local datasets (bus and trolley bus)
Vehicle number Road length Passenger volume Vehicle number Road length Passenger volume

Anhui 11992.0 10535.0 212719.0 11992.0 10535.0 212719.0
Beijing 25831.0 19989.0 761578.0 22146.0 19547.0 515416.0
Chongqing 8540.0 8959.0 201331.0 7982.0 8828.0 176968.0
Fujian 11823.0 15627.0 224703.0 11823.0 15627.0 224703.0
Gansu 5214.0 4907.0 102846.0 5214.0 4907.0 102846.0
Guangdong 53089.0 87797.0 1003098.0 50729.0 87384.0 739359.0
Guangxi 7430.0 9323.0 142505.0 7430.0 9323.0 142505.0
Guizhou 5031.0 5305.0 132200.0 5031.0 5305.0 132200.0
Hainan 2614.0 5600.0 43306.0 2614.0 5600.0 43306.0
Hebei 16493.0 18812.0 203954.0 16493.0 18812.0 203954.0
Heilongjiang 14364.0 15087.0 223956.0 14364.0 15087.0 223956.0
Henan 18137.0 18337.0 263718.0 18137.0 18337.0 263718.0
Hubei 16982.0 17354.1 338901.0 16670.0 17298.0 330613.0
Hunan 13148.0 14132.0 272165.0 13148.0 14132.0 272165.0
Inner Mongolia 5586.0 10650.0 96349.0 5586.0 10650.0 96349.0
Jiangsu 30956.0 49903.2 470233.0 30380.0 49793.0 427578.0
Jiangxi 7852.0 11648.0 127961.0 7852.0 11648.0 127961.0
Jilin 10912.0 11254.5 170561.0 10532.0 11200.0 165336.0
Liaoning 20968.0 21520.8 428367.0 20500.0 21384.0 401457.0
Ningxia 3042.0 4813.0 37441.0 3042.0 4813.0 37441.0
Qinghai 2067.0 1937.0 39135.0 2067.0 1937.0 39135.0
Shaanxi 10948.0 9206.9 254599.0 10840.0 9187.0 248687.0
Shandong 32869.0 44682.0 398268.0 32869.0 44682.0 398268.0
Shanghai 19825.0 23658.2 507933.0 16695.0 23190.0 280360.0
Shanxi 7851.0 13369.0 124838.0 7851.0 13369.0 124838.0
Sichuan 19628.0 19179.5 357333.0 19388.0 19140.0 347025.0
Tianjin 9031.0 12870.7 129951.0 8405.0 12732.0 118721.0
Tibet 396.0 834.0 7139.0 396.0 834.0 7139.0
Xinjiang 8155.0 7568.0 151397.0 8155.0 7568.0 151397.0
Yunnan 8187.0 16329.0 148409.0 8187.0 16329.0 148409.0
Zhejiang 23060.0 40606.0 311024.0 22892.0 40558.0 310463.0
Source: [43].

For the global modeling (public transportation), the mathe-
matical expression is as follows:

𝑦 = 26.9052𝑥
1.3306

1
𝑥
−0.3663

2
, (23)

where 𝑥
1
refers to vehicle number, 𝑥

2
refers to road length,

and 𝑦-hat refers to passenger volume. The hat symbol “̂”
indicates “predicted value.” For the local modeling (bus and
trolley bus), the model is

𝑦 = 36.7876𝑥
1.2959

1
𝑥
−0.3690

2
, (24)

inwhich the notation is the same as in (23).Themain statistics
for these models are displayed in Table 3. Obviously, based

on the statistics, the levels of confidence of the two models
are both greater than 99%. However, the scaling exponents
are abnormal because the elasticity of 𝑥

2
versus 𝑦 is minus. If

the models are true, this will suggest that the length of roads
makes a negative contribution towards the traffic volume of
passengers. This case cannot take place in the real world. The
deviant parameter values mean that the multivariable linear
regression is improper and it is necessary to adopt a valid
approach to evaluating model parameters.

In contrast, if we employ the allometric analysis based on
the simple linear regression to estimate model parameters,
the result will be different and convincing. The relationship
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Table 3: Main statistics based on the multiple linear regressions for two types of models on the public transportation of China’s cities (2012).

Item Global modeling (public transportation) Local modeling (bus and trolley bus)
Type Object Statistic 𝑃 values (sig.) Statistic 𝑃 values (sig.)
Multiple 𝑅2 Model 0.9606 — 0.9703 —
Standard error 𝑠 Model 0.2009 — 0.1642 —
𝐹 statistics Model 341.5719 2.1518 ∗ 10−20 457.8210 4.1012 ∗ 10−22

Parameter and statistic
Constant 8.6391 2.1902 ∗ 10−9 11.5756 3.4669 ∗ 10−12

𝑥
1

10.5482 2.9246 ∗ 10−11 12.3132 8.0917 ∗ 10−13

𝑥
2

−2.7743 0.0097 −3.3900 0.0021
The standard error 𝑠 is for the linear regression prediction;𝑃 value or sig. implies the corresponding significance of𝐹 and 𝑡 statistics, that is, a kind of probability
for null hypothesis.
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Figure 2: The allometric scaling relations between vehicles/roads and passengers: global modeling of the urban public transportation of
China (2012).

between vehicle number and road length as well as passenger
volume follows the law of allometric scaling (Figures 2 and 3).
This is a kind of cross-sectional allometric growth [28]. Using
(14) to make log-linear regression analyses, we can estimate
the parameter values of the Cobb-Douglas function easily.
According to the mathematical process from (14) to (16), two
allometric models can be integrated into a Cobb-Douglas
model. The first step is to calculate the allometric scaling
exponents, and the second step is to evaluate the parameters
of the general production function. For the global modeling
(public transportation), the allometric models are as follows:

𝑦 = 18.3409𝑥
0.9972

1
, (25)

𝑦 = 20.8673𝑥
0.9604

2
. (26)

The values of the goodness of fit are 𝑅2 = 0.9498 and 𝑅2 =
0.8042, respectively (Figure 2).Multiplying (25) by (26) yields
the following global modeling result:

𝑦 = 19.5633𝑥
0.4986

1
𝑥
0.4802

2
. (27)

For the local modeling (bus and trolley bus), the allometric
models are as follows:

𝑦 = 25.8559𝑥
0.9558

1
, (28)

𝑦 = 32.1484𝑥
0.9088

2
. (29)

The determination coefficient values are 𝑅2 = 0.9581 and
𝑅
2
= 0.8097, respectively (Figure 3). Multiplying (28) by (29)

gives the local modeling result in the following form:

𝑦 = 28.8310𝑥
0.4779

1
𝑥
0.4544

2
. (30)
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Figure 3:The allometric scaling relations between vehicles/roads and passengers: local modeling of the urban public transportation of China
(2012).

Table 4: Parameters and main statistics based on allometric scaling for two types of models on public transportation of China’s cities (2012).

Parameter and statistic Global modeling (public transportation) Local modeling (bus and trolley bus)
𝑥
1
versus 𝑦 𝑥

2
versus 𝑦 𝑥

1
versus 𝑦 𝑥

2
versus 𝑦

Proportionality coefficient 𝑐 18.3409 20.8673 25.8559 32.1484
Scaling exponent 𝑑 0.9972 0.9604 0.9558 0.9088
Determination coefficient 𝑅2 0.9498 0.8042 0.9581 0.8097
Cross elastic coefficient 𝜎 0.4986 0.4802 0.4779 0.4544

So far, we have finished the process of mathematical
modeling from the allometric scaling relations to the Cobb-
Douglas function.The twomodels, (27) and (30), are fair and
reasonable and thus acceptable. In the models, a proportion-
ality coefficient of the Cobb-Douglas model is the geomet-
rical average of allometric proportionality coefficients, and
each cross elastic coefficient is the corresponding allometric
scaling exponent divided by the number of independent
variables (Table 4).

Before using the parameter values to explain the systemof
China’s public urban transportation, we clarify the relation-
ships between the parameters and the geographical system.
Generally speaking, it is a measurement that makes a link
between mathematical models and empirical phenomena
[42]. In theory, each system can bemade ameasurement, and
thus we have one or more measure values (e.g., length, area,
size, density); each measure corresponds to a dimension, and
thus we have one ormore dimension values (e.g., 1, 2, 3, 1.262,
1.585). If a systemhas a characteristic scale, the dimensionwill
be an integer (0, 1, 2, 3) and will give no useful information,
andwe can use themeasure values tomake an analysis; on the
contrary, if a system has no characteristic scale, the measure
values will be uncertain, and we can use the dimension values

to make an analysis [2]. In the latter case, the dimension
will be a fractional value instead of an integral number. In
this case study, the spatial measures that we employ are
vehicle number, road length, and passenger volume, as indi-
cated above. Because human geographical systems bear no
characteristic scale, we had better utilize fractal dimensions
or scaling exponents based on these measures to make
analyses. The relationships between the scaling exponents,
elastic coefficient, and fractal dimension are shown by (13),
(20), (21), and (22), which have been explained above. The
best approach to understanding the mathematical models
and parameters is the mathematical process. According to
these equations, we can understand the fractal parameters,
and using these fractal parameters, especially the scaling
exponents, we can research into a geographical system.

In terms of the modeling processes and the scaling
exponent values, we can reveal the geographical features of
public transportation of China’s cities. First, the system of
public urban transportation follows the allometric scaling law.
Thus the system can be described with generalized fractal
dimension. As far as the case in 2012 is concerned, according
to the allometric scaling exponent values (Figures 2 and 3),
the fractal dimension of passenger volume is greater than that
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Table 5: Parameters and statistics of allometric models on public transportation of China’s cities (2006–2012).

Model parameter 2006 2007 2008 2009 2010 2011 2012

Vehicle and passenger
𝑐 3.8349 11.3699 42.1560 12.1662 6.1807 20.6520 18.3409
𝑑 1.1445 1.0344 0.9083 1.0393 1.1115 0.9841 0.9972
𝑅
2 0.8393 0.9137 0.7235 0.8471 0.9240 0.9524 0.9498

Road and passenger
𝑐 1112.9227 4890.0248 7285.5613 3182.1909 13.5510 21.4487 20.8673
𝑑 0.5763 0.4150 0.3908 0.4609 1.0025 0.9573 0.9604
𝑅
2 0.3358 0.3151 0.2682 0.2322 0.8084 0.8064 0.8042

Before 2006, the datasets are not incomplete; that is, there is no observational data for the total length of roads in operation.

of vehicle number and road length, and the fractal dimension
of vehicle number is less than that of road length. The less
fractal dimension indicates a larger developing space. This
suggests that the volume of passengers depends more on
the number of vehicles than on the length of roads, and
increasing a unit of vehicles or roads can lead to increasing
less than one unit of passengers. Second, the allometric scaling
and the Cobb-Douglas relation are all evolutive patterns rather
than inherent patterns. From 2010 on, both the vehicle-
passenger relation and the road-passenger relation follow
the allometric scaling law; thus the datasets can be fitted
to the Cobb-Douglas function. However, before 2009, the
relationships between the road length and passenger volume
did not conform to the law of allometric growth, and the
Cobb-Douglas model cannot be built for early public urban
transportation (Table 5). What is more, the goodness of fit
of the allometric regression modeling has been escalating
in a fluctuant way (Figure 4). From the above analyses, two
conclusions can be drawn as follows. First, the structure of
the public transportation of China’s cities has been improved
year after year; second, it is more efficient to optimize vehicles
than to increase roads of Chinese urban transportation.

4. Discussion and Conclusions

The Cobb-Douglas production function comes from eco-
nomic problems, but it can be applied to many kinds of
systems such as city systems and ecosystems [2, 3, 26]. In
otherwords, theCobb-Douglas function is a universalmodel,
which can be used to describe the input-output relations of
natural and social systems in various fields. In this sense,
the abovementioned results of derivation can be generalized
to other fields, and the precondition is that the systems
which will be studied have self-affine fractality. Compared
with the previous works [3], the novelty of this study is that
a simple allometric algorithm is advanced to estimate the
parameters of the Cobb-Douglas models for geographical
analysis. The case of public transportation of cities shows the
effect of this algorithm. The limitation of this study lies in a
lack of dynamical analysis based on time series despite the
estimated values of the allometric scaling exponent based on
the temporal dimension.

From the theoretical derivation and empirical evidence,
the main conclusions of this study can be reached as follows.
First, the allometric scaling is associatedwith theCobb-Douglas
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Figure 4: A histogram of the goodness of fit for the allometric
scaling relations between vehicle/road and passenger (2006–2012).

function. The cross elastic coefficients of the generalized
production function are correlated with the allometric scal-
ing exponents. The allometric analysis provides an efficient
approach to estimate the parameters of the Cobb-Douglas
model. Second, both fractal dimension and scaling exponent
are important indexes for the geographical analysis using
the Cobb-Douglas function. An allometric scaling exponent
is a ratio of generalized fractal parameters. If the fractal
dimension cannot be directly evaluated for a geographical
system, the scaling exponents can be used as substitutes.
Third, fractal geometry, allometric scaling, and the production
function can be integrated into a new framework. Based on this
framework, we can develop an effective method for spatial
analysis of geographical systems. It is hard to explain every
question in a few lines of words. Due to limited space, the
related problems remain to be solved in future studies.
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