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We present an innovative approach to study the interaction between oblique solitons, using nonlinear transmission lines, based on
Cellular Neural Network (CNN) paradigm. A single transmission line consists of a 1D array of cells that interact with neighboring
cells, through both linear and nonlinear connections. Each cell is controlled by a nonlinear Ordinary Differential Equation, in
particular the Korteweg de Vries equation, which defines the cell status and behavior. Two typologies of CNN transmission lines
are modelled: crisscross and ring lines. In order to solve KdV equations two different methods are used: 4th-order Runge-Kutta and
Forward Euler methods.This is done to evaluate their accuracy and stability with the purpose of implementing CNN transmission
lines on embedded systems such as FPGA andmicrocontrollers. Simulation/analysis Graphic User Interface platforms are designed
to conduct numerical simulations and to display elaboration results. From this analysis it is possible both to identify the presence
and the propagation of soliton waves on the transmission lines and to highlight the interaction between solitons and rich nonlinear
dynamics. With this approach it is possible to simulate and develop the transmission and processing of information within large
brain networks and high density sensor systems.

1. Introduction

In the scientific literature in the last 40 years, the presence of
solitons in Nonlinear Transmission Lines (NLTL) has been
extensively studied, both theoretically and experimentally [1–
4]. In the continuous case, the Korteweg de Vries (KdV)
equation [5] can be easily deduced, by using the reductive
perturbation methods [6]. It is well known that this equation
has solutions of soliton type, the behavior of which has been
extensively studied both numerically [7, 8] and analytically
[9, 10]. Also some interesting related negative-order inte-
grable equations, including the negative-order KdV equation
and some associated properties, were obtained, such as the
results in [11–13]. Since the early work in NTLs [1, 14, 15],
these solitons are still subject to studies [16–20]. Recently, the
first robust electrical oscillator has been built, the dynamics
of which is based on soliton waves [21, 22].

Recent works present a completely different approach
[23–26], based on a Cellular Neural Network (CNN). Intro-
duced in 1988 by Chua and Yang [27, 28], CNN consists of
a lattice of individual cells, which interact with neighboring
cells, usually to perform very advanced sensory recognition
tasks. In general, the state of the CNN cells evolves in compli-
ancewith nonlinearOrdinaryDifferential Equations (ODEs),
and it is well known that the behavior of such systems is very
rich with striking manifestations of chaos. Nonlinear ODEs
describe a set of physical and biological phenomena, funda-
mental in contemporary scientific research and dynamical
systems theory.

Thenonlinear dynamics of theCNN is extremely complex
and is used in contexts of real-time image processing [29],
to study the emergent behaviors of complex systems (e.g.,
Turing patterns), or as metamodel to simulate other math-
ematical systems, such as Cellular Automata (CA) [30, 31].
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Figure 1: Each cell interacts in both linear (blue lines) and nonlinear fashion (red lines) with their adjacent cells but just in a linear way with
neighboring not adjacent cells.
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Figure 2: CNN circuits. The linear connections are made using active and passive resistances; whereas, non-linear connections are modeled
using non-linear piece-wise functions.

CNNs can be easily implemented in hardware and, therefore,
capable of processing large amounts of information very
quickly and in parallel. They can potentially be used to build
artificial organs, such as retinas or other sensory systems,
to be embodied in artificial robots, to analyze vast amounts
of data automatically coming from Magnetic Resonance
Imaging (MRI), for patients with degenerative diseases [32].

In [33] CNN NLTL have been presented and imple-
mented on FPGA.This FPGA system, called DCMARK (Dis-
tributed Computing Micro-ARCHitecture), allows solving
complex differential equations using less time than other sys-
tems. DCMARK uses the 1D KdV equation just as a bench-
mark to evaluate and test the proper working of the system.
Ultimately, it can produce a complex nonlinear dynamics
and show soliton waves. One of the main problems in the
soliton theory is the interaction between solitons in multiple
dimensions [34–37], due to its connection with application.
For example, this problem is of fundamental importance in
optical computing [38].

This approach allows the introduction of crisscrossed
transmission lines for studying the interaction among soliton
waves. Unlike traditional models based on PDEs that do
not permit studying the intersection of oblique solitons, this
approach allows crossing the lines of propagation in a very
simple way and observing the behavior of solitons, when
they cross another line or when they collide with each other.
Throughout this paper, wewill see how this nonlinear dynam-
ics is extremely rich and varied, as it presents unexpected and
unpredictable behaviour. Such dynamics, never observed in
these contexts, may be useful for engineering applications,
specifically dedicated to physical systems for transmitting
information. In this paper, we deal with the following:
the general concept of CNN transmission and typologies
of NLTL investigated in Section 2, the simulation/analysis
software environments used in Section 3, the evaluation
of simulation results in Section 4, and the conclusions in
Section 5.

2. CNN Transmission Lines

As already introduced before, a CNN transmission line can
be seen as a 1D cellular structure of𝑁 elements, called “cells,”
which interact through both linear and nonlinear connection
with their adjacent cells and through only linear connection
with the other neighbours as in Figure 1.

Let us suppose that the dynamics of each cell can be
modeled through the following ODE:

̇𝑢
𝑖
= 𝑃 (𝑢

𝑖=±1) + 𝐿 (𝑢𝑖=±2) , (1)

where

𝑃 (𝑥) = 𝑎𝑥+ 𝑏𝑥
2
+ ⋅ ⋅ ⋅ (2)

is a polynomial function of 𝑥 and 𝐿(𝑥) = 𝑠𝑥 is a linear
function of 𝑥. If we restrict our attention to polynomials of
second degree, (1) can be written as

̇𝑢
𝑖
=

+2
∑

𝑗=−2𝑖 ̸=𝑗
𝛼
𝑖+𝑗
𝑢
𝑖+𝑗
+

+1
∑

𝑗=−1𝑖 ̸=𝑗
𝛽
𝑖+𝑗
𝑢
2
𝑖+𝑗
, (3)

where𝛼
𝑖+𝑗

(with 𝑗 = −2; −1; +1; +2),𝛽
𝑖+𝑗

(with 𝑗 = −1; +1) are
coefficients. In (3),𝛼

𝑖
= 𝛽
𝑖
= 0.Assuming that𝛼

𝑖+𝑗
and𝛽
𝑖+𝑗

do
not depend on the 𝑖th cell, that is, we consider homogeneous
networks, then (3) depends on 6 parameters 𝛼

−2, 𝛼−1, 𝛼1,
𝛼2, 𝛽−1, and 𝛽1, representing the genome of the network.
Equation (3) differs from the standard CNN, because of the
presence of a reaction-diffusion term and because it is a state-
controlled network.

These networks can be easily implemented in hardware
Figure 2, using single-cell capacitors and resistors for active
and passive connections, respectively. Nonlinear connections
can be modeled through Piecewise Linear (PWL) functions.

Considering 𝛼
−2 = 1/2ℎ3, 𝛼

−1 = −1/ℎ
3, 𝛼1 = 1/ℎ3, 𝛼2 =

−1/2ℎ3, 𝛽
−1 = 1/2ℎ, and 𝛽1 = −1/2ℎ, where ℎ is a constant



Discrete Dynamics in Nature and Society 3

−1

0
0

0

2
1

3
4

5
6

7
850

100

150

200

250

300

2
4
6

i
t

u
i
(t
)

2
1

3
44

5
6

t

100

150

200

250

i

Figure 3: The initial Gaussian data decomposed into a series of
localized travelling waves.

parameter that depends on the number of cells and on the
spatial interval, (3) becomes

̇𝑢
𝑖
=

1
2ℎ3

[𝑢
𝑖−2 − 2𝑢𝑖−1 + 2𝑢𝑖+1 −𝑢𝑖+2]

−
3
2ℎ
[𝑢

2
𝑖+1 −𝑢

2
𝑖−1] .

(4)

This is the spatial discretized version of 1D KdV equation.
In fact, (4) in the continuum limit ℎ → 0 approximates to the
following 1D KdV equation:

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
= − 3𝜕 [𝑢 (𝑡, 𝑥)]

2

𝜕𝑥
−
𝜕
3
𝑢 (𝑡, 𝑥)

𝜕𝑥3
. (5)

Equation (4) is getting solving of Kirchhoff ’s law as in
[25].

Simulating (4) and assuming an initial function such as
a Gaussian function, we observe the emergence of traveling
waves as shown in Figure 3.

Simulating a CNN transmission line of 300 cells and
fixing properly the boundary conditions, traveling soliton
waves are shown. In fact, as the classical solitons of the
KdV equation, they have very well-defined profiles, with a
particular relationship between amplitude, width, and veloc-
ity of propagation. The taller and slimmer solitons travel
faster than the lower and wider ones, and they maintain their
distinctive character in the interaction with the others, as it
will be explained later.

If we consider 𝛼
𝑖
< 0 in (4), a new linear damping term

is added. In this case, this equation becomes a modified KdV
equation, due to the presence of inhomogeneity. If 𝛼

𝑖
= 1/2𝑡,

(4) becomes, in the continuous case, just the cylindrical KdV
equation.

Model (1), whose corresponding patterns are plotted in
Figure 3, gives rise to a rich environment, in which the
nonlinear dynamics can be studied.

On the basis of the same reasoning, with some modi-
fications, it is possible to simulate the crisscross of two 1D
CNN transmission lines analysing the interaction between

solitons belonging to different lines. Even if the interaction
of oblique solitons is a classic problem, it is still far from
being solved. The main obstacle to its solution is that the
equations at its basis are rare, and no approximation seems
to be convincing. The interest of researchers in this area is
very high, especially in the context of optical computing,
because these studies may provide a significant input for
new forms of computation. Now, numerical models based
on CNN transmission lines can provide new and natural
approaches to solve this long-standing problem.

Considering two transmission lines that intersect in a
given cell (𝑎, 𝑏), called cross cell, as in Figure 4, the state of
each cell, except for cross cell (𝑎, 𝑏), is governed by (4). Not
only does the neighborhood of cross cell (𝑎, 𝑏) consist of the
two cells at its left and right, respectively but also it is made up
of its upper and lower cells. As before, the neighboring cells,
up and down, have a linear excitatory synaptic connection,
whereas the other connection is nonlinear. Upper or lower
cells have rather inhibitory synaptic connections.

Froma circuital point of view, this leads to a configuration
similar to that in Figure 5.

All the cells of the two CNN transmission lines have
(4) as spatial discretized state equation; just at the point of
intersection between the two lines, cross cell (𝑎, 𝑏) is ruled by
the following spatial discretized state equation:

̇𝑢
𝑎,𝑏
=

1
2ℎ3

(𝑢
𝑎−2,𝑏 −𝑢𝑎+2,𝑏 − 2𝑢𝑎−1,𝑏 + 2𝑢𝑎+1,𝑏)

−
3
2ℎ
(𝑢

2
𝑎+1,𝑏 −𝑢

2
𝑎−1,𝑏)

+
1
2ℎ3

(𝑢
𝑎,𝑏−2 −𝑢𝑎,𝑏+2 − 2𝑢𝑎,𝑏−1 + 2𝑢𝑎,𝑏+1)

−
3
2ℎ
(𝑢

2
𝑎,𝑏+1 −𝑢

2
𝑎,𝑏−1) .

(6)

This equation that governs the behavior of the cross cell
could be obtained as done for (4) in [25], solving Kirchhoff ’s
law for the circuit in Figure 5 and finding the expression of
current through the capacitor (𝑎, 𝑏). The state 𝑢(𝑎, 𝑏) of the
cross cell and the voltage across the capacitor is represented
by 𝑅, the inhibitory synaptic connection, 𝑅, the excitatory
synaptic connection, and 𝑅, the coefficient of the nonlinear
term. Then the equation of the state of the cross cell (𝑎, 𝑏)
becomes

𝑢
𝑎−2,𝑏 − 𝑢𝑎,𝑏

𝑅
−
𝑢
𝑎−1,𝑏 − 𝑢𝑎,𝑏

𝑅
+
𝑢
2
𝑎−1,𝑏 − 𝑢

2
𝑎,𝑏

𝑅

+
𝑢
𝑎,𝑏−2 − 𝑢𝑎,𝑏

𝑅
−
𝑢
𝑎,𝑏−1 − 𝑢𝑎,𝑏

𝑅
+
𝑢
2
𝑎,𝑏−1 − 𝑢

2
𝑎,𝑏

𝑅

=
𝑢
𝑎+2,𝑏 − 𝑢𝑎,𝑏

𝑅
−
𝑢
𝑎+1,𝑏 − 𝑢𝑎,𝑏

𝑅
+
𝑢
2
𝑎+1,𝑏 − 𝑢

2
𝑎,𝑏

𝑅

+
𝑢
𝑎,𝑏+2 − 𝑢𝑎,𝑏

𝑅
−
𝑢
𝑎,𝑏+1 − 𝑢𝑎,𝑏

𝑅
+
𝑢
2
𝑎,𝑏+1 − 𝑢

2
𝑎,𝑏

𝑅

+𝐶
𝑑𝑢
𝑎,𝑏

𝑑𝑡

(7)
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Figure 4: Block diagram representation of the crisscrossed lines structure at the point of intersection between the two lines (red and yellow
lines for nonlinear interactions, blue and violet lines for linear interactions).
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from which

𝐶
𝑑𝑢
𝑎,𝑏

𝑑𝑡
=
𝑢
𝑎+2,𝑏 − 𝑢𝑎−2,𝑏

𝑅
−
𝑢
𝑎+1,𝑏 − 𝑢𝑎−1,𝑏

𝑅

+
𝑢
2
𝑎+1,𝑏 − 𝑢

2
𝑎−1,𝑏

𝑅
+
𝑢
𝑎,𝑏+2 − 𝑢𝑎,𝑏−2

𝑅

−
𝑢
𝑎,𝑏+1 − 𝑢𝑎,𝑏−1

𝑅
+
𝑢
2
𝑎,𝑏+1 − 𝑢

2
𝑎,𝑏−1

𝑅

(8)

taking 𝑅 = 𝑅/2, 𝑅𝐶 = 2ℎ2, and 𝑅𝐶 = 2ℎ/3, where ℎ
= cost, and grouping together equation terms state equation
(6) is obtained. ℎ is a normalization parameter by which it
is possible to tune the system model to improve convergence
and stability.

The dynamics of cross cell is regulated by the state of
eight neighboring cells, with radius 2. Neighboring cells, with
radius 1, interact with the state of the cell in both linear and
nonlinear ways.

Hence the soliton interaction is studied in two different
scenarios: a ring line on which there are a single soliton
propagating and a crisscross of two lines with a soliton on
both lines. The motivation for the choice of these two topo-
logical setups sprang from facility for analysis and detection
of soliton dynamics. In particular, the second one (relating
to crisscross setup) is the best for analyzing the interaction
between oblique solitons, very useful for highlighting typical
dynamical behaviors of interaction, without any complica-
tions related to topology.

In order to simulate the presence of a soliton, we can
use, as an initial condition, a function such as a Gaussian
function or a square hyperbolic secant functionwith different
magnitudes.

Considering a square hyperbolic secant function as initial
condition:

𝑠 (𝑥) = 𝐴 ⋅ sech2𝑥. (9)

This function avoids divergence integration problems,
thanks to its zero-tangent envelope for 𝑥 → ±∞.

According to [7] if one considers the following initial
condition:

𝑢 (𝑥, 0) = 𝑝 (𝑝 + 1) ⋅ sech2𝑥 with 𝑝 > 0, (10)

the eigenvalues of Schrodinger equation spectrum to which
every Korteweg de Vries solution is related are

𝜆
𝑛
= (𝑝− 𝑛)

2

with 𝑛 = 0, 1, . . . , 𝑁 (index of eigenvalue).
(11)

So, if 𝑝 is an integer number, there will be the birth of
𝑝 solitons from the initial state, otherwise there will be 𝑝
solitons with a radiation tail coming after.

The magnitude of solitons is

𝐴
𝑛
= 2𝜆
𝑛 (12)

and the velocity of propagation is

𝑐
𝑛
= 4𝜆
𝑛
= 2𝐴
𝑛
. (13)

As already introduced, amplitude, width, and velocity are
connected. For example, amplitude is directly proportional
to velocity of propagation. Higher amplitude corresponds to
higher velocity of propagation.

In order to increase slightly the stability and accuracy of
Forward Euler method which will be firstly validated using a
custom MATLAB tool and then implemented on embedded
platforms, a particular handling is done on discretized state
equations.

Starting from (4) and sorting the equation terms,𝑁 single
equations [39] are obtained from the KdV equation:

𝜕𝑢
𝑖

𝜕𝑡
=

1
2Δ𝑥3

[𝑢
𝑖−2 −𝑢𝑖+2 + 2 (𝑢𝑖+1 −𝑢𝑖−1)]

+
3

2Δ𝑥
[𝑢

2
𝑖−1 −𝑢

2
𝑖+1] ,

(14)

where 𝑖 = 0, . . . , 𝑁 is the space iteration index and Δ𝑥 is the
spatial step of the discrete grid. This numerical discretization
of spatial derivative terms of (5) has been done using a space-
centered finite difference method [40].

For the time derivative term of (5), just for the first
iteration, we used a forward-time finite difference method as
in [7, 41] because there is no preceding value at the first step
of numerical integration process, obtaining (13). Hence, for
the other iterations, we used a centered-time finite difference
method, obtaining (14). We set 𝐾

𝑖1 = 1/2Δ𝑥3, 𝐾
𝑖2 = 3/2Δ𝑥

and𝐾1 = 1/Δ𝑥3, 𝐾2 = 3/Δ𝑥:

𝑢
𝑘+1
𝑖

= 𝑢
𝑘

𝑖
+Δ𝑡 {𝐾

𝑖1 [𝑢
𝑘

𝑖−2 −𝑢
𝑘

𝑖+2 + 2 (𝑢
𝑘

𝑖+1 −𝑢
𝑘

𝑖−1)]

+𝐾
𝑖2 (𝑢
𝑘

𝑖−1
2
−𝑢
𝑘

𝑖+1
2
)} ,

𝑢
𝑘+1
𝑖

= 𝑢
𝑘−1
𝑖
+Δ𝑡 {𝐾1 [𝑢

𝑘

𝑖−2 −𝑢
𝑘

𝑖+2 + 2 (𝑢
𝑘

𝑖+1 −𝑢
𝑘

𝑖−1)]

+𝐾2 [𝑢
𝑘

𝑖−1
2
−𝑢
𝑘

𝑖+1
2
+𝑢
𝑘

𝑖
(𝑢
𝑘

𝑖−1 −𝑢
𝑘

𝑖+1)]} ,

(15)

where 𝑘 = 0, . . . ,𝑀 are the time iteration index, 𝑖 = 0, . . . , 𝑁
are the spatial iteration index, and Δ𝑡 is the integration time.

The same considerations about the spatial and time dis-
cretization methods have also been done for the crisscrossed
lines scenario as well as the ring line scenario. Starting from
(6) and sorting the equation terms, the spatial discretized
state equation for the cross cell of intersection between the
two lines is obtained:

𝜕𝑢
𝑎,𝑏

𝜕𝑡
=

1
2Δ𝑥3

[𝑢
𝑎−2,𝑏 −𝑢𝑎+2,𝑏 +𝑢𝑎,𝑏−2 −𝑢𝑎,𝑏+2

+ 2 (𝑢
𝑎+1,𝑏 −𝑢𝑎−1,𝑏 +𝑢𝑎,𝑏+1 −𝑢𝑎,𝑏−1)]

+
3

2Δ𝑥
[𝑢

2
𝑎−1,𝑏 −𝑢

2
𝑎+1,𝑏 +𝑢

2
𝑎,𝑏−1 −𝑢

2
𝑎,𝑏+1] ,

(16)

where 𝑎, 𝑏 = 0, . . . , 𝑁 are the spatial iteration index for
the two lines and Δ𝑥 is the space step of the discrete grid.
Equation (16) is the equation in which the forward-time finite
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Figure 6: C++ SIMANSOL GUI tool for simulation and analysis.

difference method is applied while in (17) the centred-time
difference method is used, for time discretization:

𝑢
𝑘+1
𝑎,𝑏

= 𝑢
𝑘

𝑎,𝑏
+Δ𝑡 {𝐾

𝑖1 [𝑢
𝑘

𝑎−2,𝑏 −𝑢
𝑘

𝑎+2,𝑏 +𝑢
𝑘

𝑎,𝑏−2 −𝑢
𝑘

𝑎,𝑏+2

+ 2 (𝑢𝑘
𝑎+1,𝑏 −𝑢

𝑘

𝑎−1,𝑏 +𝑢
𝑘

𝑎,𝑏+1 −𝑢
𝑘

𝑎,𝑏−1)]

+𝐾
𝑖2 [𝑢
𝑘

𝑎−1,𝑏
2
−𝑢
𝑘

𝑎+1,𝑏
2
+𝑢
𝑘

𝑎,𝑏−1
2
−𝑢
𝑘

𝑎,𝑏+1
2
]} ,

(17)

𝑢
𝑘+1
𝑎,𝑏

= 𝑢
𝑘−1
𝑎,𝑏
+Δ𝑡 {𝐾1 [𝑢

𝑘

𝑎−2,𝑏 −𝑢
𝑘

𝑎+2,𝑏 +𝑢
𝑘

𝑎,𝑏−2 −𝑢
𝑘

𝑎,𝑏+2

+ 2 (𝑢𝑘
𝑎+1,𝑏 −𝑢

𝑘

𝑎−1,𝑏 +𝑢
𝑘

𝑎,𝑏+1 −𝑢
𝑘

𝑎,𝑏−1)]

+𝐾2 [𝑢
𝑘

𝑎−1,𝑏
2
−𝑢
𝑘

𝑎+1,𝑏
2
+𝑢
𝑘

𝑎,𝑏−1
2
−𝑢
𝑘

𝑎,𝑏+1
2

+𝑢
𝑘

𝑎,𝑏
(𝑢
𝑘

𝑎−1,𝑏 −𝑢
𝑘

𝑎+1,𝑏 +𝑢
𝑘

𝑎,𝑏−1 −𝑢
𝑘

𝑎,𝑏+1)]} ,

(18)

where 𝑘 = 0, . . . ,𝑀 is the time iteration index, 𝑎, 𝑏 = 0, . . . , 𝑁
are the spatial iteration index for the two lines, and Δ𝑡 is the
integration time.

Using this combined approach a stable propagation of a
soliton through all cells for all time cycles is obtained. This
kind of discretization is less accurate than other types, but it
is also the best technique in terms of implementation easiness
and resources saving on embedded systems.

3. Simulation/Analysis
Settings and Environment

In the literature, there are many numerical methods to solve
state ODEs. In this work, two methods are used for two dif-
ferent aims: a 4th-order Runge-Kutta (RK4) method in order
to conduct accurate high level analysis and a simpler For-
ward Euler (FE)method to be implemented, after a validation
phase, on embedded platforms such as FPGAs, microcon-
trollers, DSP, or ASIC. FE method is chosen in order to relax
the computing load of embedded platforms to the detriment
of accuracy and stability.

With the goal of conducting extensive simulations and
analysis, two Graphic User Interface (GUI) environments

Figure 7: MATLAB SIMANSOL GUI tool for simulation and anal-
ysis.

have been designed (SIMulation-ANalysis-SOLiton tools).
The first, called C++ SIMANSOL, has been designed using
C++ language (Figure 6); the latter, called ML SIMANSOL
[42], instead has been designed in MATLAB environment
(Figure 7). C++ SIMANSOL tool has been used mainly
for fast and accurate analysis while ML-SIMANSOL tool
has been used for validation and investigation in order to
verify the efficiency, accuracy, and stability of FE method.
MATLAB is preferred to other high level languages because
of its optimal aptitude to handle matrices and vectors easily.
Having these two high level environments allows both to
compare their respective simulation results and to validate
the ODE solving process. A comparison between Forward
Euler method and Runge-Kutta method is not to show an
evident difference between these two methods trivially but
just for verifying if the stability and accuracy of Forward
Euler method are acceptable using a limited number of CNN
cells with respect to Runge-Kutta method. The impossibility
of implementing on FPGA one 1D CNN, formed by a huge
number of computing processors (one for each cell), causes
problems of equation solution instability and divergence. So,
it was very important to understand the minimum number
of processors to implement on FPGA in order to minimize



Discrete Dynamics in Nature and Society 7

Table 1: Ring line simulation settings.

ML-SIMANSOL 1st test 2nd test 3rd test
Number of cells (𝑁) 100 400 400
Amplitude (𝐴) 2 6 12
Time step (Δ𝑡) 0.01 s 0.00001 s 0.00001 s
Spatial step (Δ𝑥) 0.5 0.05 0.05
Number of iterations 10000 400000 400000

these problems. In addition, implementing a Forward Euler
method for numerical integration permits saving a lot of
FPGA resources guaranteeing the possibility to implement
larger and larger Cellular Neural Network on the FPGA [26],
allowing facing more complex dynamics problems.

In the C++ SIMANSOL tool (Figure 6), there are three
different windows: initial input function window, simulation
setup window, and multiwires grid setup window. It is possi-
ble to control all simulation parameters such as integration
method (Euler, RK4th, RK2th, RK45, and RKAdaptive),
boundaries (periodic, zero flux, and fixed), number of cells,
number of iterations, initial input function (Gaussian, hyper-
bolic secant, sin, soliton, impulse, etc.), time step, spatial step,
and simulation scenario (single line, crisscrossed lines, and
grid network).

Instead MATLAB SIMANSOL tool (Figure 7) consists of
only one main window from which it is possible to control
several simulation parameters such as number of cells, num-
ber of iterations, soliton amplitude, time step, spatial step,
analysis type (time, spatial or time/spatial), simulation sce-
nario (ring line or crisscross lines), and plot simulation
results. This tool, as already said, implements the FE integra-
tion method.

Using these tools it is possible to give a complete vision
and to understand complex dynamics phenomena. Three
types of graphs can be displayed: a state cell variable versus
time graph, in which the time evolution of the state variable
associated with a certain cell of the ring line is shown; a
state cell variable versus space graph, where the value of all
state cell variable associated with all cells is displayed for
a well-defined time step; a time/space graph, in which the
time and space evolution of the state cell variable of all cells
is highlighted. This last graph is very interesting because
it allows getting a global vision about the propagation of
solitons and their interaction.

4. Simulation Setup and Results

4.1. Ring Line Analysis. In the first scenario, a ring line
of 100–400 cells is considered according to what was said
previously. The ring-fashion feature is obtained simply by
imposed periodic boundary conditions. Three MATLAB
simulations using the MATLAB (ML) SIMANSOL tool have
been conducted under the following conditions (Table 1).

4.1.1. 1st Test: Soliton with Magnitude 2. In Figure 8 the state
variable of 10th cell in function of time (number of iterations)
is shown. A single soliton with magnitude 2 propagates
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Figure 8: A single soliton with magnitude 2 which propagates
through the ring line in correspondence with the 10th cell.
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Figure 9: A Space/Time graph in which a single soliton with mag-
nitude 2 propagates through the ring line.

through the ring line performing several loops. This soliton
has a velocity of propagation of 4 according to (9), completing
a single loop in about 1250 iterations or rather 12.5 s.There are
not any numerical instability or divergence problems during
simulations. This simulation allows verifying the quality of
Forward Euler method to be used for implementation of
soliton ring line on embedded devices [26, 33].

As shown in Figure 9, the narrow parallel lines with
slope of 4 represent the single soliton which performs loops
through the ring.

As already explained in Section 2, with an amplitude of 2,
according to [7], just a single soliton is foreseen.

4.1.2. 2nd Test: Soliton with Magnitude 6. This time the state
cell variable of 200th cell is analysed (Figure 10). The soliton
now having an amplitude of 6 generates two solitons. Hence
at the 150000th iteration, it is possible to see the interaction
between the two solitons with magnitudes 8 and 2, respec-
tively. These two solitons come from a single soliton with
initial magnitude 6 which propagates through the ring line.
They have a velocity of propagation of 16 and 4, respectively.
This interaction is possible because of different velocity of two
solitons.

From Figure 11 it is possible to understand the velocity of
solitons on the basis of straight lines.Thenarrow parallel lines
with slope of 16 represent the faster soliton withmagnitude of
8 while the large line with slope of 4 represents the soliton
with magnitude of 2. In this graph, the soliton interaction
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Figure 10: The two solitons which propagate and interact through
the ring line in correspondence with the 200th cell.
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Figure 11: A Space/Time graph in which a single soliton with mag-
nitude 6 propagates through the ring line and is divided into two
solitons.
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Figure 12: The generation and propagation through the ring line of
two solitons from a single soliton with magnitude 6.

points are evident. When there is an interaction between
solitons, it is possible to see a phase shift that is shown in
the graph as a shift of lines. The slow soliton has a phase shift
larger than fast soliton, and the direction of phase shift is pos-
itive for slow soliton.

It is also interesting to see in Figure 12 the generation and
propagation through the ring line of the two solitons coming
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Figure 13: The three solitons which propagate and interact through
the ring line in correspondence with the 150th cell.
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Figure 14: A Space/Time graph in which a single soliton with mag-
nitude 12 propagates through the ring line and is divided into three
solitons.

from a single soliton (blue) with magnitude 6. It is possible to
see the soliton generation at five different time iterations.

4.1.3. 3th Test: Soliton withMagnitude 12. In this case, follow-
ing the time evolution of state cell variable of 150th cell more
interactions between solitons can be seen (Figure 13). At the
110000th iteration, there is an interaction between the soliton
with magnitude 18 and the soliton with magnitude 2; at the
150000th iteration, it is possible to see the interaction between
the two solitons with magnitudes 8 and 2, respectively, while
at the 270000th iteration we find an interaction between
solitons with magnitudes 18 and 8, respectively. These three
solitons come from a single soliton with initial magnitude 12
which propagates through the ring line.These solitons have a
velocity of propagation of 36, 16, and 4, respectively.

Also in this case from Figure 14 it is interesting to see
the different velocity of solitons and the soliton interaction
points. The narrow parallel lines with slope of 36 represent
the faster soliton with magnitude of 18 while the other lines
with slope of 16 and 4 represent the solitons with magnitude
of 2 and 8, respectively. In this graph, the soliton interaction
points are evident. When there is an interaction between
solitons, it is possible to see a phase shift that is shown in the
graph as a shift of lines as in the other cases seen previously.

From Figure 15 the generation and propagation through
the ring line of three solitons coming from a single soliton
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Figure 15: The generation and propagation through the ring line of
three solitons from a single soliton with magnitude 12.

Table 2: Simulation settings: crisscross scenario.

C++ SIMANSOL 1st test 2nd test 3rd test
Line 𝑎 input Soliton None Soliton
Line 𝑏 input Soliton Soliton Soliton (delayed)
Time step (Δ𝑡) 0.0001 s 0.0001 s 0.0001 s
Spatial step (Δ𝑥) 0.5 0.5 0.5
Number of cells on 𝑎/𝑏 lines 300 300 300
Soliton magn. (𝐴) 1 1 1
ML-SIMANSOL 1st test 2nd test 3rd test
Line 𝑎 input Soliton Soliton Soliton
Line 𝑏 input Soliton None Soliton (delayed)
Time step (Δ𝑡) 0.0001 s 0.0001 s 0.0001 s
Spatial step (Δ𝑥) 0.5 0.5 0.5
Number of cells on 𝑎/𝑏 lines 100 100 100
Soliton magn. (𝐴) 2 2 2

(blue) with magnitude 12 are shown. It is possible to see the
soliton evolution at five different time iterations as in the pre-
vious cases.

4.2. Crisscross Lines Analysis. In this section some simula-
tions of crisscross transmission lines are shown.Also for these
simulations the SIMANSOL tools are used. In both tools
periodic boundary conditions are chosen, building a sort of
crossed rings.Three different types of test are conducted.The
initial conditions for these simulations are summarized in
Table 2.

With the C++ SIMANSOL tool, solitons that propagate
along the lines before and after the crossing point are shown
on the graph while using ML-SIMANSOL tool the Space/
Time graphs for lines 𝑎 and 𝑏 are plotted.

4.2.1. 1st Test: One Soliton on Both Lines 𝑎 and 𝑏. As it can
be seen in Figures 16 and 17, two solitons belonging to
different lines meet in the crossing point and separate again,

propagating on their own line as if this interaction never
happened. After the interaction, they preserve their distinc-
tiveness. The only observed phenomenon is the presence of
a small dispersive track and reflected solitons, linked to the
periodic boundary conditions, rather than to the interaction
between the two solitons.

4.2.2. 2nd Test: Just One Soliton on Line 𝑎. The second
experiment involves the presence of a single soliton passing
through the points of intersection between the two lines.
When the soliton reaches the point of intersection, it slows
down, while on the two lines disturbances occur. After
crossing the interaction point, two new solitons emerge, one
for each line; it is possible to see two wave trains as well, one
for each line, but traveling in the opposite direction compared
to solitons, as shown in Figures 18 and 19.

There is also a decreasing of magnitude of the two sol-
itons; on line 𝑎, after the crossing point, soliton has magni-
tudes 0.6 on line 𝑎 and 0.5 on line 𝑏 for simulation with C++
SIMANSOL tool, while 1.3 and 0.5, respectively, on average
for simulation with ML-SIMANSOL tool. The larger soliton
is the one that resides on the same line as the one of the
incoming soliton. In addition, it is possible to see phenomena
of dispersive tracks and reflected solitons too.

4.2.3. 3th Test: One Soliton on Line 𝑎 and One Delayed Soliton
on Line 𝑏. The third experiment concerns the interaction
between two solitons of the same amplitude but phase-
shifted. The first soliton reaches the intersection cell before
the other one and undergoes a process of division, similar
to that described in the previous experiment. When the
second soliton reaches the point of intersection, it moves in
an unstable environment. The second soliton undergoes a
process of division and, at the end of the interaction, a total
of 4 new solitons emerge. Figures 20 and 21 show the second
soliton while going through the intersection cell. Again, we
note that there is no symmetry between the two pairs of
solitons. On the line of the soliton, which first crosses the
intersection cell, an emerging pair is generated, which has a
width slightly larger than the second pair.

The generation of two small solitons and dispersive tails
on both lines is also evident.

The results that emerge from this series of experiments
are extremely interesting. Using both simulation tools, it is
possible to see the same results, even if there are numerical
mismatches because of the two different integrationmethods.
They show that the interaction of oblique solitons is very rich
and diverse. In Table 3, the results of the experiments are
shown.

In the first case, two identical solitons interact and emerge
unchanged after crossing. In the second case, a soliton is split
into two smaller and different solitons. In the third case, two
identical but phase-shifted solitons splits into four solitons,
slightly different from each other.

This kind of results, even if it is still under research,
could give, also, some ideas about a possible utilization of
these CNN transmission lines in terms of digital logic gates,
making the most of their nonlinear and innovative features.
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Figure 16: Simulation with C++ SIMANSOL tool: two identical solitons meet and cross with no interaction.
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Figure 17: Simulation with ML-SIMANSOL tool: Space/Time graphs for line 𝑎 (left) and line 𝑏 (right). One soliton on each line.
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smaller solitons.
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Figure 19: Simulation with ML-SIMANSOL tool: Space/Time graphs for line 𝑎 (left) and line 𝑏 (right). Only one soliton on line 𝑎.
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Figure 20: Simulation with C++ SIMANSOL tool: solitons (one on line 𝑏with a negative delay) before and after they crossed the intersection
cell.

Table 3: Results table: crisscross scenario.

C++ SIMANSOL 1st test 2nd test 3rd test
Line 𝑎 input Soliton (𝐴 = 1) None Soliton (𝐴 = 1)
Line 𝑏 input Soliton (𝐴 = 1) Soliton (𝐴 = 1) Soliton (delayed)
Line 𝑎 output Soliton (𝐴 = 1) Soliton (𝐴 = 0.5) Two solitons (𝐴 = 0.4, 0.3)
Line 𝑏 output Soliton (𝐴 = 1) Soliton (𝐴 = 0.6) Two solitons (𝐴 = 0.4, 0.3)
ML-SIMANSOL 1st test 2nd test 3rd test
Line 𝑎 input Soliton (𝐴 = 2) Soliton (𝐴 = 2) Soliton (𝐴 = 2)
Line 𝑏 input Soliton (𝐴 = 2) None Soliton (delayed)
Line 𝑎 output Soliton (𝐴 = 2) Soliton (𝐴 = 1.3) Two solitons (𝐴 = 1.4, 0.7)
Line 𝑏 output Soliton (𝐴 = 2) Soliton (𝐴 = 0.5) Two solitons (𝐴 = 1.4, 0.7)
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Figure 21: Simulation with ML-SIMANSOL tool: Space/Time graphs for line 𝑎 (left) and line 𝑏 (right). One soliton on line 𝑎 and one soliton
with a negative spatial delay of 25 cells on line 𝑏.

5. Conclusions

In this work, a new approach to the transmission lines based
on nonlinear CNN is presented. After providing the basic
equation that governs the status of each cell, the presence
and the interaction of solitary waves have been detected.
These waves interact with each other, while maintaining their
distinctiveness.This behavior is not surprising, because in the
case where the network is continuous the equation of state
just becomes the well-known KdV equation. The introduc-
tion of nonhomogeneous terms provides a new approach to
the study of wave propagation inmultidimensional nonlinear
and dispersive media. Furthermore, this approach allows
dealing very effectively with the problems related to inter-
action between oblique solitons. Several simulations in two
different scenarios (ring line and crisscross lines) have been
conducted with the help of two custom simulation tools. The
possibility to implement a simple Forward Euler method for
solving KdV ODE on embedded systems has been validated.
The results have great potential applications, especially in the
construction of information transmission lines, embodied
into other artificial intelligent media, such as automatic
expert systems and robotic agents.There aremany advantages
using CNNs for designing transmission lines. CNNs can be
easily implemented in silicon performing multiple processes
in parallel, at very high speed. They constitute a very flexible
simulation environment by which we investigate nonlinear
dynamics and carry out a huge number of trials with different
initial data. Using traditional systems, the direct observation
of solitons behavior could be very complicated. Such an
approach may guarantee a technological environment for
developing new and unconventional forms of computation,
which exploit fully nonlinear dynamics, opening interesting
perspectives for the study of multidimensional solitons, with
reference to optical computing applications. In addition, this

innovative approach allows simulating neuromorphic sys-
tems, creating new simulation hardware for the development
of brain-like physical agents.
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“Modulated waves and pattern formation in coupled discrete
nonlinear LC transmission lines,” Physical Review E, vol. 78,
Article ID 016606, pp. 1–13, 2008.

[19] S. I. Mostafa, “Analytical study for the ability of nonlinear
transmission lines to generate solitons,” Chaos, Solitons & Frac-
tals, vol. 39, no. 5, pp. 2125–2132, 2009.

[20] E. Kengne and R. Vaillancourt, “Propagation of solitary waves
on lossy nonlinear transmission lines,” International Journal of
Modern Physics B, vol. 23, no. 1, pp. 1–18, 2009.

[21] D. S. Ricketts, X. Li, and D. Ham, “Electrical soliton oscillator,”
IEEE Transactions onMicrowaveTheory and Techniques, vol. 54,
no. 1, pp. 373–382, 2006.

[22] T. H. Lee, “Device physics: electrical solitons come of age,”
Nature, vol. 440, no. 7080, pp. 36–37, 2006.

[23] T. Roska, L. O. Chua, D.Wolf, T. Kozek, R. Tetzlaff, and F. Puffer,
“Simulating nonlinear waves and partial differential equations
via CNN. I. Basic techniques,” IEEETransactions onCircuits and
Systems I: Fundamental Theory and Applications, vol. 42, no. 10,
pp. 807–815, 1995.

[24] L. Fortuna, A. Rizzo, and M. G. Xibilia, “Modeling complex
dynamics via extended PWL-based CNNs,” International Jour-
nal of Bifurcation andChaos inApplied Sciences andEngineering,
vol. 13, no. 11, pp. 3273–3286, 2003.

[25] E. Bilotta and P. Pantano, “Cellular nonlinear networks meet
KdV equation: a newparadigm,” International Journal of Bifur-
cation and Chaos, vol. 23, no. 1, Article ID 1330003, 2013.

[26] G. Borgese, C. Pace, P. Pantano, and E. Bilotta, “FPGA-based
distributed computing microarchitecture for complex physical
dynamics investigation,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 24, no. 9, pp. 1390–1399, 2013.

[27] L.O.Chua andL. Yang, “Cellular neural networks: theory,” IEEE
Transactions on Circuits and Systems, vol. 35, no. 10, pp. 1257–
1272, 1988.

[28] L. O. Chua, A Paradigm for Complexity, World Scientific Series
on Nonlinear Science, World Scientific, Singapore, 1996.

[29] L. O. Chua and T. Roska, Cellular Neural Networks and Visual
Computing: Foundations and Applications, Cambridge Univer-
sity Press, Cambridge, UK, 2004.

[30] E. Bilotta, P. Pantano, and S. Vena, “Artificial micro-worlds.
Part I: a new approach for studying life-like phenomena,” Inter-
national Journal of Bifurcation and Chaos, vol. 21, no. 2, pp. 373–
398, 2011.

[31] E. Bilotta and P. Pantano, “Artificial micro-worlds part II:
cellular automata growth dynamics,” International Journal of
Bifurcation and Chaos, vol. 21, no. 3, pp. 619–645, 2011.

[32] A. Cerasa, E. Bilotta, A. Augimeri et al., “A cellular neural net-
work methodology for the automated segmentation of multiple
sclerosis lesions,” Journal of Neuroscience Methods, vol. 203, no.
1, pp. 193–199, 2012.

[33] G. Borgese, C. Pace, P. Pantano, and E. Bilotta, “Reconfigurable
implementation of a CNN-UM platform for fast dynamical
systems simulation,” in Applications in Electronics Pervading
Industry, Environment and Society, vol. 289 of Lecture Notes in
Electrical Engineering, Springer, Berlin, Germany, 2014.

[34] F. Kako and N. Yajima, “Interaction of ion-acoustic solitons in
two-dimensional space,” Journal of the Physical Society of Japan,
vol. 49, no. 5, pp. 2063–2071, 1980.

[35] J. N. Dinkel, C. Setzer, S. Rawal, and K. E. Lonngren, “Soliton
propagation and interaction on a two-dimensional nonlinear
transmission line,”Chaos, Solitons and Fractals, vol. 12, no. 1, pp.
91–96, 2001.

[36] A. A. Alexeyev, “A multidimensional superposition principle:
classical solitons,” Physics Letters. A, vol. 335, no. 2-3, pp. 197–
206, 2005.

[37] T. Soomere, “Solitons interactions,” in Encyclopedia of Complex-
ity and Systems Science, pp. 8479–8505, Springer, NewYork, NY,
USA, 2009.

[38] B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spa-
tiotemporal optical solitons,” Journal of Optics B: Quantum and
Semiclassical Optics, vol. 7, no. 5, pp. R53–R72, 2005.

[39] L. Fortuna, M. Frasca, and A. Rizzo, “Generating solitons in
lattices of nonlinear circuits,” in Proceedings of the IEEE Inter-
national Symposium on Circuits and Systems (ISCAS ’01), vol. 2,
pp. 680–683, Sydney, Australia, May 2001.

[40] A. C. Vliegenthart, “On finite-difference methods for the Kor-
teweg-de Vries equation,” Journal of Engineering Mathematics,
vol. 5, no. 2, pp. 137–155, 1971.

[41] R. Courant, K. Friedrichs, and H. Lewy, “On the partial
difference equations of mathematical physics,” IBM Journal of
Research and Development, vol. 11, pp. 215–234, 1967.

[42] G. Borgese, “MATLAB SIMANSOL GUI,” http://esg.unical.it/
share/MSIMANSOL GUI.rar.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


