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The slider-crankmechanism (SCM) is one of themost importantmechanisms inmodern technology. It appears inmost combustion
engines including those of automobiles, trucks, and other small engines. The SCM model considered here is an index-three
nonlinear systemof differential-algebraic equations (DAEs), and therefore difficult to integrate numerically. In this work, we present
the application of the differential transform method (DTM) to obtain an approximate analytical solution of the SCM model in
convergent series form. In addition, we propose a posttreatment of the power series solution with the Padé resummation method
to extend the domain of convergence of the approximate series solution. The main advantage of the proposed technique is that it
does not require an index reduction and does not generate secular terms or depend on a perturbation parameter.

1. Introduction

The slider-crank mechanism (SCM) is one of the most
employed mechanisms in modern technology. We find it in
most combustion engines including those of automobiles,
trucks, and other small engines. It is also applied in the area
of robotics [1, 2]. The SCM has been studied from different
angles as vibration effect [3, 4], energy-based control for
the rotation velocity [5], dynamic behaviour with clearance
[6], transient and steady state dynamic response [7, 8], and
simultaneous shaking force/shaking moment balancing and
torque compensation [9]. Other studies have been done on a
fuzzy neural network sliding-mode controller [10], lubricated
planar SCM with friction and Hertz contact effects [11],
kinematic and dynamic analyses of a novel intermittent SCM
[4], dynamic instability of a SCM with an inextensible elastic
coupler [12], and dynamics of a flexible SCM driven by a
nonideal source of energy [13]. We find also some studies
on the kinematic and dynamic analysis of a modified SCM
with an additional eccentric link between connecting rod and
crank pin [14], a method to design SCM [15, 16], among other
studies.

The function of the SCM is to transform a linear motion
into a circular motion or vice versa. This is achieved by
means of a rotating driving beam, a connection rod, and a
sliding body.Themodelling of a SCMoften leads to an index-
three nonlinear second order system of differential-algebraic
equations (DAEs). In general terms, DAEs are mixed systems
of ordinary differential equations and algebraic equations.
This type of equations is known to be difficult to solve
due to its complex structure. The solution of an index-three
system is constrained for all time by some algebraic equations
where some of them are hidden in the structure of the
system. Therefore, initial conditions cannot be prescribed
arbitrarily for all solution components. To start the numer-
ical integration one has to compute some consistent initial
conditions, which is to determine those initial conditions
which satisfy all constraints in the system. Poor estimates
of initial conditions may cause the solution to drift-off from
the constraints manifold and lead to nonphysical solutions.
During the last decades, research has been focusing on the
numerical solution of DAEs using SPARKmethod [17], pseu-
dospectral method [18], and finite differences method [19].
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Other methods for solving DAEs are blended implicit meth-
ods [20], implicit Euler [21], Newton-Krylov method [22],
and Chebyshev polynomials [23], among others. DAEs are
characterized by means of indices which play an important
role in the treatment of these equations. There are various
definitions for the index of a DAE [24–27] but the most used
index is the differentiation index. This index is defined as the
minimum number of times that all or part of the DAE must
be differentiated with respect to time, in order to obtain an
ordinary differential equation [24]. Even a linear DAE can be
difficult to solve if its index is greater than one (a higher-index
DAE); what is more, this issue is more notorious when we
want to integrate nonlinear higher-index DAEs.

A common technique to solve higher-index DAEs is
to transform them first into index-one systems and then
apply numerical integrationmethods. Nonetheless, the index
reduction can be a complex task and may change the
properties of the solution of the original problem. Therefore,
higher-index DAEs arising in engineering or physics require
new techniques to solve them efficiently.

In recent years, approximation methods have been devel-
oped to solve DAEs. Among such approaches we can find
Adomian decompositionmethod (ADM) [28, 29], homotopy
perturbation method (HPM) [30, 31], variational iteration
method (VIM) [32], homotopy analysis method (HAM) [33],
Padé method [34], and the differential transform method
(DTM) [35].

Therefore, in this work we present the DTM as a useful
technique for solving the SCM model. The developed pro-
cedure by no means depends on complicated tools like a
perturbation parameter, trial function, or Lagrangian mul-
tiplier as required for perturbation method (PM), HPM, or
VIM, respectively. This can be seen as the most important
advantage over the other methods. It is worth mentioning
that the proposed algorithm is a straightforward procedure
easy to apply to a wide variety of problems.

In this work, we present the application of DTM with
a posttreatment based on the Padé approximant [36–40] to
obtain approximate solutions for the SCM model. Firstly,
using DTM, we obtain convergent power series for the
solution of the SCM model and, finally, we apply the Padé
resummation method to obtain an approximate solution for
the problem. This combination of methods will be denomi-
nated as PDTM.ThePadé posttreatment enlarges the domain
of convergence of the truncated power series.

The procedure of PDTM is applied to the SCMmodel. It is
important to remark that PDTM can obtain an approximate
analytical solution of this higher-indexDAEproblemwithout
requiring an index reduction.The proposedmethod does not
produce noise terms also known as secular terms like the
homotopy perturbation based techniques [30]. This property
of the DTM greatly reduces the volume of computation and
improves the efficiency of the method in comparison to
the perturbation based methods. Finally, PDTM is straight-
forward and can be programmed using computer algebra
packages like Maple or Mathematica.

The rest of this paper is organized as follows. In the
next section, we illustrate the basic concept of the DTM. In
Section 3, we give the basic concept of the Padé resummation

method. In Section 4,we apply the PDTMto SCMmodel and,
in Section 5, we give a brief discussion. Then, a concluding
remark is drawn in Section 6. Finally, in Nomenclature
section the nomenclature of this work is presented.

2. Differential Transform Method

Thebasic definitions and fundamental operations of differen-
tial transform method are given in [41–47]. For convenience
of the reader, we will give a review of the DTM. We will also
describe the DTM to solve systems of ordinary differential
equations.

Definition 1. If a function 𝑢(𝑡) is analytical with respect to 𝑡
in the domain of interest [0, 𝑇], then

𝑈 (𝑘) =

1

𝑘!

[

𝑑
𝑘
𝑢(𝑡)

𝑑𝑡
𝑘
]

𝑡=0

, (1)

is the transformed function of 𝑢(𝑡).

Definition 2. The differential inverse transform of the set
{𝑈(𝑘)}

𝑛

𝑘=0
is defined by

𝑢 (𝑡) =

∞

∑

𝑘=0

𝑈 (𝑘) 𝑡
𝑘
. (2)

Substituting (1) into (2), we deduce that

𝑢 (𝑡) =

∞

∑

𝑘=0

1

𝑘!

[

𝑑
𝑘
𝑢(𝑡)

𝑑𝑡
𝑘
]

𝑡=0

𝑡
𝑘
. (3)

From Definitions 1 and 2, it is easy to see that the concept
of the DTM is obtained from the power series expansion.
To illustrate the application of the proposed DTM to solve
systems of ordinary differential equations, we consider the
system

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝑓 (𝑢 (𝑡) , 𝑡) , 𝑡 ≥ 0, (4)

where 𝑓(𝑢(𝑡), 𝑡) is a nonlinear smooth function.
System (4) is supplied with some initial conditions:

𝑢 (0) = 𝑢0. (5)

DTM establishes that the solution of (4) can be written as

𝑢 (𝑡) =

∞

∑

𝑘=0

𝑈 (𝑘) 𝑡
𝑘
, (6)

where 𝑈(0), 𝑈(1), . . . are unknowns to be determined by
DTM.

Applying theDTMto the initial conditions (5) and system
(4), respectively, we obtain the transformed initial conditions:

𝑈 (0) = 𝑢0, (7)

and the recursion system

(1 + 𝑘)𝑈 (𝑘 + 1) = 𝐹 (𝑈 (0) , . . . , 𝑈 (𝑘) , 𝑘) , 𝑘 = 0, 1, 2, . . . ,

(8)
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Table 1: Main operations of DTM.

Function Differential transform
𝛼𝑢(𝑡) ± 𝛽V(𝑡) 𝛼𝑈(𝑘) ± 𝛽𝑉(𝑘)

𝑢(𝑡)V(𝑡)
𝑘

∑

𝑟=0

𝑈 (𝑟)𝑉 (𝑘 − 𝑟)

𝑑
𝑛

𝑑𝑡
𝑛
[𝑢(𝑡)] (𝑘 + 1) ⋅ ⋅ ⋅ (𝑘 + 𝑛)𝑈 (𝑘 + 𝑛)

𝑡
𝑛

𝛿(𝑘 − 𝑛) =

{
{

{
{

{

1, 𝑘 = 𝑛,

0, 𝑘 ̸= 𝑛

sin 𝑢(𝑡) 𝑆(𝑘) =

{
{
{

{
{
{

{

sin (𝑈 (0)) , 𝑘 = 0,

(

1

𝑘

)

𝑘−1

∑

𝑟=0

(𝑘 − 𝑟) 𝐶(𝑟)𝑈(𝑘 − 𝑟), 𝑘 ≥ 1

cos 𝑢(𝑡) 𝐶(𝑘) =

{
{
{

{
{
{

{

cos (𝑈 (0)) , 𝑘 = 0,

− (

1

𝑘

)

𝑘−1

∑

𝑟=0

(𝑘 − 𝑟) 𝑆(𝑟)𝑈(𝑘 − 𝑟) , 𝑘 ≥ 1

where 𝐹(𝑈(0), . . . , 𝑈(𝑘), 𝑘) is the differential transforms of
𝑓(𝑢(𝑡), 𝑡).

Using (7) and (8), we determine the unknowns 𝑈(𝑘), 𝑘 =
0, 1, 2, . . .. Then, the differential inverse transformation of the
set of values {𝑈(𝑘)}𝑛

𝑘=0
gives the approximate solution

𝑢𝑛 (𝑡) =

𝑛

∑

𝑘=0

𝑈 (𝑘) 𝑡
𝑘
, (9)

where 𝑛 is the approximation order of the solution.The exact
solution of problem (4)-(5) is then given by

𝑢 (𝑡) =

∞

∑

𝑘=0

𝑈 (𝑘) 𝑡
𝑘
. (10)

If 𝑈(𝑘) and 𝑉(𝑘) are the differential transforms of 𝑢(𝑡) and
V(𝑡), respectively, then the main operations of DTM are
shown in Table 1.

The process of DTM can be described as follows.

(1) Apply the differential transform to the initial condi-
tions (5).

(2) Apply the differential transform to the differential
system (4) to obtain a recursion system for the
unknowns 𝑈(0), 𝑈(1), . . ..

(3) Use the transformed initial conditions (7) and the
recursion system (8) to determine the unknowns
𝑈(0), 𝑈(1), . . ..

(4) Use the differential inverse transform formula (9) to
obtain an approximate solution for the initial value
problem (4)-(5).

The solutions series obtained from DTM may have lim-
ited regions of convergence, even if we take a large number of
terms.Therefore, we propose to apply the Padé resummation
method to DTM truncated series to enlarge the convergence
region as depicted in the next section.

3. Padé Resummation Method

Given an analytical function 𝑢(𝑡) with Maclaurin’s expansion

𝑢 (𝑡) =

∞

∑

𝑛=0

𝑢𝑛𝑡
𝑛
, 0 ≤ 𝑡 ≤ 𝑇, (11)

the Padé approximant to𝑢(𝑡)of order [𝐿,𝑀]whichwedenote
by [𝐿/𝑀]𝑢(𝑡) is defined by [48]

[

𝐿

𝑀

]

𝑢

(𝑡) =

𝑝0 + 𝑝1𝑡 + ⋅ ⋅ ⋅ + 𝑝𝐿𝑡
𝐿

1 + 𝑞1𝑡 + ⋅ ⋅ ⋅ + 𝑞𝑀𝑡
𝑀
, (12)

where we considered 𝑞0 = 1 and the numerator and denom-
inator have no common factors.

The numerator and the denominator in (12) are con-
structed so that𝑢(𝑡) and [𝐿/𝑀]𝑢(𝑡) and their derivatives agree
at 𝑡 = 0 up to 𝐿 +𝑀. That is,

𝑢 (𝑡) − [

𝐿

𝑀

]

𝑢

(𝑡) = 𝑂 (𝑡
𝐿+𝑀+1

) . (13)

From (13), we have

𝑢 (𝑡)

𝑀

∑

𝑛=0

𝑞𝑛𝑡
𝑛
−

𝐿

∑

𝑛=0

𝑝𝑛𝑡
𝑛
= 𝑂 (𝑡

𝐿+𝑀+1
) . (14)

From (14), we get the following algebraic linear systems:

𝑢𝐿𝑞1 + ⋅ ⋅ ⋅ + 𝑢𝐿−𝑀+1𝑞𝑀 = −𝑢𝐿+1,

𝑢𝐿+1𝑞1 + ⋅ ⋅ ⋅ + 𝑢𝐿−𝑀+2𝑞𝑀 = −𝑢𝐿+2,

.

.

.

𝑢𝐿+𝑀−1𝑞1 + ⋅ ⋅ ⋅ + 𝑢𝐿𝑞𝑀 = −𝑢𝐿+𝑀,

(15)

𝑝0 = 𝑢0,

𝑝1 = 𝑢1 + 𝑢0𝑞1,

.

.

.

𝑝𝐿 = 𝑢𝐿 + 𝑢𝐿−1𝑞1 + ⋅ ⋅ ⋅ + 𝑢0𝑞𝐿.

(16)

From (15), we calculate first all the coefficients 𝑞𝑛, 1 ≤ 𝑛 ≤ 𝑀.
Then, we determine the coefficients 𝑝𝑛, 0 ≤ 𝑛 ≤ 𝐿, from (16).

Note that for a fixed value of 𝐿 + 𝑀 + 1, the error (13)
is the smallest when the numerator and denominator of (12)
have the same degree or when the numerator has one degree
higher than the denominator.

Several approximation methods provide power series
solutions (polynomial). Nevertheless, sometimes, this type of
solutions lacks large domains of convergence.Therefore, Padé
[49–52] resummation method is often used to enlarge the
domain of convergence of approximate solutions or inclusive
to find exact solutions. The Padé resummation method con-
sists of converting the power series obtained from DTM into
a meromorphic function by forming its Padé approximant of
order [𝐿/𝑀]. The parameters 𝐿 and𝑀 are arbitrarily chosen,
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Figure 1: Planar slider-crank mechanism.

but they should be of smaller values than the order of the
power series. In this step, the Padé approximant extends the
domain of the truncated series solution to obtain a better
accuracy and convergence. This process is known as Padé
differential transformmethod (PDTM). Note that there is no
systematic way to choose the optimal Padé of order [𝐿/𝑀] for
a given problem. However, often, a few number of terms are
enough to obtain a highly accurate Padé approximation.

4. DAEs Approach for the Slider-Crank
Mechanism Model

In this section, we present a DAEs approach for solving
the slider-crank mechanism (SCM) model based on the
differential transform method (DTM) and Padé approxi-
mants. First, we describe the dynamic model of the SCM
and explain the difficulty in treating it numerically as an
index-three DAEs system. Then, we show how to compute
the consistent initial conditions for this index-three system
to start off the approximation method. After that, we present
an algorithm using the DTM to compute an approximate
analytical solution for the SCM. Finally, we combine theDTM
andPadé approximants to solve a numerical example and give
numerical simulations.

4.1. Dynamic Model of the Slider-Crank Mechanism. Figure 1
illustrates a planar two-link SCM, representing a two-body
dynamic system. All links are rigid, subjected to gravity of
magnitude 𝑔 in the negative 𝑦 direction. A planar SCM is
usually modelled as two linked bars (crank) and connecting
rod (piston) of lengths 𝑙1 and 𝑙2 > 𝑙1, and masses 𝑚1 and
𝑚2. The left end of the first bar is fixed to an origin 𝑂,
allowing only a plane rotation. The right end of the second
bar, representing the piston is constrained to slide in and
out along the 𝑥-axis in a cylinder. In real application, we are
interested in the position of the piston in the cylinder as a
function of the crank angle. We may also be interested in the
angle between the connecting rod (piston) and the cylinder,
since an excessive connecting rod angle will create undue
friction between the piston and cylinder. The equations of
motion for the SCM have the following (Euler-Lagrange
equations) form:

𝑀�̈� + 𝐺
T
(𝑢) 𝜆 = 𝐹 (𝑡) , (17)

0 = 𝑔 (𝑢) , 𝑡 ≥ 0, (18)

where �̈� stands for 𝑑2𝑢/𝑑𝑡2, 𝑢 = (𝑥1, 𝑦1, 𝜙1, 𝑥2, 𝑦2, 𝜙2)
T the

vector that specifies the positions and orientations of the
crank and connecting rod,𝑀 = diag(𝑚1, 𝑚1, 𝑚1𝑙

2

1
/3,𝑚2, 𝑚2,

𝑚2𝑙
2

2
/3) is a diagonal matrix, 𝜆(𝑡) = (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5)

T is
the vector of Lagrange multipliers, 𝑔 : R6 → R5, 𝐹(𝑡) =
(0, −𝑚1𝑔, 0, −𝑓(𝑡), −𝑚2𝑔, 0)

T define the kinematic con-
straints and applied forces, respectively, and 𝐺(𝑢) = 𝜕𝑔/𝜕𝑢.

Equation (17) is the equation of motion while (18) is the
position (kinematic) constraints. DAEs system (17)-(18) is
supplied with some consistent initial conditions:

𝑢 (0) = 𝑢0, �̇� (0) = 𝑢1. (19)

Note that no initial condition is prescribed to the variable 𝜆
as 𝜆(0) is determined by the DAE and (19).

A dynamic simulation of the SCM is obtained by solving
the DAEs initial-value problem (17)–(19) for 𝑢(𝑡) and 𝜆(𝑡).
DAEs system (17)-(18) is index-three since three-time dif-
ferentiations of the constraints (18) will lead to a system of
ordinary differential equations for 𝜆(𝑡). As a consequence,
this DAEs system is difficult to solve numerically due to
numerical instabilities.

4.2. Computing Consistent Initial Conditions. Since DAEs
system (17)-(18) is index-three, then initial conditions for
𝑢(𝑡), �̇�(𝑡), and𝜆(𝑡) cannot be prescribed arbitrarily.Theymust
be consistent, that is, satisfy all constraints in system (17)-(18).
Poor estimates of initial conditions may cause the solution to
drift-off from the constraints manifold and give nonphysical
solutions. For the SCMmodel under study here, the position
constraints (18) are given by the following set of nonlinear
algebraic equations:

𝑔 (𝑢) :=

[

[

[

[

[

[

[

[

[

𝑥1 − 𝑙1 cos𝜙1
𝑦1 − 𝑙1 sin𝜙1

−𝑥1 − 𝑙1 cos𝜙1 + 𝑥2 − 𝑙2 cos𝜙2
−𝑦1 − 𝑙1 sin𝜙1 + 𝑦2 − 𝑙2 sin𝜙2

𝑦2 + 𝑙2 sin𝜙2

]

]

]

]

]

]

]

]

]

= 0. (20)
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Differentiating (20) once with respect to time, we obtain the
velocity constraints which consist of five nonlinear algebraic
equations for the velocities and orientations angles 𝜙1 and 𝜙2:

𝑑

𝑑𝑡

[𝑔 (𝑢)] = 𝐺 (𝑢) �̇�

=

[

[

[

[

[

[

[

[

[

[

�̇�1 + 𝑙1
̇
𝜙1 sin𝜙1

̇𝑦1 − 𝑙1
̇
𝜙1 cos𝜙1

−�̇�1 + 𝑙1
̇
𝜙1 sin𝜙1 + �̇�2 + 𝑙2 ̇𝜙2 sin𝜙2

− ̇𝑦1 − 𝑙1
̇
𝜙1 cos𝜙1 + ̇𝑦2 − 𝑙2 ̇𝜙2 cos𝜙2
̇𝑦2 + 𝑙2

̇
𝜙2 cos𝜙2

]

]

]

]

]

]

]

]

]

]

= 0,

(21)

where the Jacobian matrix,

𝐺 (𝑢) =

[

[

[

[

[

[

[

[

[

1 0 𝑙1 sin𝜙1 0 0 0

0 1 −𝑙1 cos𝜙1 0 0 0

−1 0 𝑙1 sin𝜙1 1 0 𝑙2 sin𝜙2
0 −1 −𝑙1 cos𝜙1 0 1 −𝑙2 cos𝜙2
0 0 0 0 1 𝑙2 cos𝜙2

]

]

]

]

]

]

]

]

]

, (22)

is full row rank for all 𝜙1 and 𝜙2.
The position and velocity constraints (20)-(21) must be

satisfied by the solution for all 𝑡 ≥ 0 (including the initial
time 𝑡 = 0). In order to initiate the motion of the SCM and to
be able to solve initial-value problem (17)–(19) by the DTM,
we must completely specify a consistent initial configuration
of the SCM, that is, specify the initial condition 𝑢(0) and
�̇�(0) with the restriction that they satisfy all constraints in
system (17)-(18). The consistent initial condition 𝜆(0) will be
then determined from 𝑢(0) and �̇�(0) and system (17)-(18).
To obtain consistent initial conditions for the position and
velocity, we specify the crank orientation angle 𝜙1(0) = 𝜃0
and the crank angular velocity ̇𝜙1(0) = 𝜃1 then solve (20)-(21).
Equations (20) can be solved for 𝑥1(0), 𝑦1(0), 𝑥2(0), 𝑦2(0) and
𝜙2(0) in terms of 𝜙1(0). Thus, 𝜙1(0) is the only value required
to be known to completely define initial configuration of the
SCM and we have

𝑥1 (0) = 𝑙1 cos 𝜃0, 𝑦1 (0) = 𝑙1 sin 𝜃0,

𝑥2 (0) = 2𝑙1 cos 𝜃0 + 𝑙2√1 −
𝑙
2

1

𝑙
2

2

sin2𝜃0, 𝑦2 (0) = 𝑙1 sin 𝜃0,

𝜙2 (0) = 2𝜋 − sin
−1
(

𝑙1

𝑙2

sin 𝜃0) .

(23)

Similarly, (21) can be solved for �̇�1(0), ̇𝑦1(0), �̇�2(0), ̇𝑦2(0), and
̇
𝜙2(0) in terms of 𝜙1(0) and ̇

𝜙1(0). Thus, 𝜙1(0) and ̇
𝜙1(0) are

the only values required to be known to completely define
consistent initial velocities:

�̇�1 (0) = −𝑙1𝜃1 sin 𝜃0, ̇𝑦1 (0) = 𝑙1𝜃1 cos 𝜃0,

�̇�2 (0) = −2𝑙1𝜃1 sin 𝜃0 +
𝑙2𝜃1 sin 2𝜃0

2√𝑙
2

2
/𝑙
2

1
− sin2𝜃0

,

̇𝑦2 (0) = 𝑙1𝜃1 cos 𝜃0,

̇
𝜙2 (0) = −

𝜃1 cos 𝜃0
√𝑙
2

2
/𝑙
2

1
− sin2𝜃0

.

(24)

4.3. Solution of Slider-Crank Mechanism Model by DTM.
Applying DTM to the initial conditions (23)-(24), we have

𝑈3 (0) = 𝜃0,

𝑈1 (0) = 𝑙1 cos 𝜃0, 𝑈2 (0) = 𝑙1 sin 𝜃0,

𝑈4 (0) = 2𝑙1 cos 𝜃0 + 𝑙2√1 −
𝑙
2

1

𝑙
2

2

sin2𝜃0,

𝑈5 (0) = 𝑙1 sin 𝜃0,

𝑈6 (0) = 2𝜋 − sin
−1
(

𝑙1

𝑙2

sin 𝜃0) ,

(25)

𝑈3 (1) = 𝜃1,

𝑈1 (1) = −𝑙1𝜃1 sin 𝜃0, 𝑈2 (1) = 𝑙1𝜃1 cos 𝜃0,

𝑈4 (1) = −2𝑙1𝜃1 sin 𝜃0 +
𝑙2𝜃1 sin 2𝜃0

2√𝑙
2

2
/𝑙
2

1
− sin2𝜃0

,

𝑈5 (1) = 𝑙1𝜃1 cos 𝜃0,

𝑈6 (1) = −

𝜃1 cos 𝜃0
√𝑙
2

2
/𝑙
2

1
− sin2𝜃0

.

(26)

The equations of motion (17) can be written componentwise
as

𝑚1�̈�1 + 𝜆1 − 𝜆3 = 0,

𝑚1�̈�2 + 𝜆2 − 𝜆4 + 𝑚1𝑔 = 0,

(

𝑚1𝑙
2

1

3

) �̈�3 + 𝜆1𝑙1 sin 𝑢3 − 𝜆2𝑙1 cos 𝑢3

+ 𝜆3𝑙1 sin 𝑢3 − 𝜆4𝑙1 cos 𝑢3 = 0,
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𝑚2�̈�4 + 𝜆3 + 𝑓 (𝑡) = 0,

𝑚2�̈�5 + 𝜆4 + 𝜆5 + 𝑚2𝑔 = 0,

(

𝑚2𝑙
2

2

3

) �̈�6 + 𝜆3𝑙2 sin 𝑢6 − 𝜆4𝑙2 cos 𝑢6 + 𝜆5𝑙2 cos 𝑢6 = 0.

(27)

Applying DTM to system (27), we get

(𝑘 + 1) (𝑘 + 2)𝑚1𝑈1 (𝑘 + 2) + Λ 1 (𝑘) − Λ 3 (𝑘) = 0,

(𝑘 + 1) (𝑘 + 2)𝑚1𝑈2 (𝑘 + 2)

+ Λ 2 (𝑘) − Λ 4 (𝑘) + 𝑚1𝑔𝛿 (𝑘) = 0,

(

1

3

) (𝑘 + 1) (𝑘 + 2)𝑚1𝑙
2

1
𝑈3 (𝑘 + 2)

+ 𝑙1

𝑘

∑

𝑟=0

(Λ 1 (𝑘 − 𝑟) 𝑆1 (𝑟) − Λ 2 (𝑘 − 𝑟) 𝐶1 (𝑟)

+ Λ 3 (𝑘 − 𝑟) 𝑆1 (𝑟) − Λ 4 (𝑘 − 𝑟) 𝐶1 (𝑟))

= 0,

(𝑘 + 1) (𝑘 + 2)𝑚2𝑈4 (𝑘 + 2) + Λ 3 (𝑘) + 𝐹 (𝑘) = 0,

(𝑘 + 1) (𝑘 + 2)𝑚2𝑈5 (𝑘 + 2)

+ Λ 4 (𝑘) + Λ 5 (𝑘) + 𝑚2𝑔𝛿 (𝑘) = 0,

(

1

3

) (𝑘 + 1) (𝑘 + 2)𝑚2𝑙
2

2
𝑈6 (𝑘 + 2)

+ 𝑙2

𝑘

∑

𝑟=0

(Λ 3 (𝑘 − 𝑟) 𝑆2 (𝑟) − Λ 4 (𝑘 − 𝑟) 𝐶2 (𝑟)

+ Λ 5 (𝑘 − 𝑟) 𝐶2 (𝑟)) = 0, 𝑘 = 0, 1, 2, . . . ,

(28)

where 𝑈𝑖(𝑘), Λ 𝑗(𝑘), 𝑖 = 1, . . . , 6, 𝑗 = 1, . . . , 5, and 𝐹(𝑘) are
the differential transforms of 𝑢𝑖, 𝜆𝑖, and 𝑓(𝑡), respectively.

Then, we substitute 𝑘 by 𝑘 − 2 to get

𝑘 (𝑘 − 1)𝑚1𝑈1 (𝑘) + Λ 1 (𝑘 − 2) − Λ 3 (𝑘 − 2) = 0,

𝑘 (𝑘 − 1)𝑚1𝑈2 (𝑘) + Λ 2 (𝑘 − 2) − Λ 4 (𝑘 − 2)

+ 𝑚1𝑔𝛿 (𝑘 − 2) = 0,

(

1

3

) 𝑘 (𝑘 − 1)𝑚1𝑙
2

1
𝑈3 (𝑘)

+ 𝑙1

𝑘−2

∑

𝑟=0

(Λ 1 (𝑘 − 2 − 𝑟) 𝑆1 (𝑟) − Λ 2 (𝑘 − 2 − 𝑟) 𝐶1 (𝑟)

+ Λ 3 (𝑘 − 2 − 𝑟) 𝑆1 (𝑟) − Λ 4 (𝑘 − 2 − 𝑟) 𝐶1 (𝑟))

= 0,

𝑘 (𝑘 − 1)𝑚2𝑈4 (𝑘) + Λ 3 (𝑘 − 2) + 𝐹 (𝑘 − 2) = 0,

𝑘 (𝑘 − 1)𝑚2𝑈5 (𝑘) + Λ 4 (𝑘 − 2)

+ Λ 5 (𝑘 − 2) + 𝑚2𝑔𝛿 (𝑘 − 2) = 0,

(

1

3

) 𝑘 (𝑘 − 1)𝑚2𝑙
2

2
𝑈6 (𝑘)

+ 𝑙2

𝑘−2

∑

𝑟=0

(Λ 3 (𝑘 − 2 − 𝑟) 𝑆2 (𝑟) − Λ 4 (𝑘 − 2 − 𝑟) 𝐶2 (𝑟)

+ Λ 5 (𝑘 − 2 − 𝑟) 𝐶2 (𝑟)) = 0, 𝑘 = 2, 3, . . . ,

(29)

and, finally, we write this system as

𝑘 (𝑘 − 1)𝑚1𝑈1 (𝑘) + Λ 1 (𝑘 − 2) − Λ 3 (𝑘 − 2) = 0,

𝑘 (𝑘 − 1)𝑚1𝑈2 (𝑘) + Λ 2 (𝑘 − 2) − Λ 4 (𝑘 − 2)

= −𝑚1𝑔𝛿 (𝑘 − 2) ,

(

1

3

) 𝑘 (𝑘 − 1)𝑚1𝑙
2

1
𝑈3 (𝑘)

+ Λ 1 (𝑘 − 2) 𝑙1 sin𝑈3 (0) − Λ 2 (𝑘 − 2) 𝑙1 cos𝑈3 (0)

+ Λ 3 (𝑘 − 2) 𝑙1 sin𝑈3 (0) − Λ 4 (𝑘 − 2) 𝑙1 cos𝑈3 (0)

= −𝑙1

𝑘−2

∑

𝑟=1

(Λ 1 (𝑘 − 2 − 𝑟) 𝑆1 (𝑟) − Λ 2 (𝑘 − 2 − 𝑟) 𝐶1 (𝑟)

+ Λ 3 (𝑘 − 2 − 𝑟) 𝑆1 (𝑟) − Λ 4 (𝑘 − 2 − 𝑟) 𝐶1 (𝑟)) ,

𝑘 (𝑘 − 1)𝑚2𝑈4 (𝑘) + Λ 3 (𝑘 − 2) = −𝐹 (𝑘 − 2) ,

𝑘 (𝑘 − 1)𝑚2𝑈5 (𝑘) + Λ 4 (𝑘 − 2) + Λ 5 (𝑘 − 2)

= −𝑚2𝑔𝛿 (𝑘 − 2) ,

(

1

3

) 𝑘 (𝑘 − 1)𝑚2𝑙
2

2
𝑈6 (𝑘)

+ Λ 3 (𝑘 − 2) 𝑙2 sin𝑈6 (0) − Λ 4 (𝑘 − 2) 𝑙2 cos𝑈6 (0)

+ Λ 5 (𝑘 − 2) 𝑙2 cos𝑈6 (0)

= −𝑙2

𝑘−2

∑

𝑟=1

(Λ 3 (𝑘 − 2 − 𝑟) 𝑆2 (𝑟) − Λ 4 (𝑘 − 2 − 𝑟) 𝐶2 (𝑟)

+ Λ 5 (𝑘 − 2 − 𝑟) 𝐶2 (𝑟)) , 𝑘 = 2, 3, . . . .

(30)

Now applying DTM to the position constraints (20), we get

𝑈1 (𝑘) − 𝑙1𝐶1 (𝑘) = 0,

𝑈2 (𝑘) − 𝑙1𝑆1 (𝑘) = 0,

−𝑈1 (𝑘) − 𝑙1𝐶1 (𝑘) + 𝑈4 (𝑘) − 𝑙2𝐶2 (𝑘) = 0,

−𝑈2 (𝑘) − 𝑙1𝑆1 (𝑘) + 𝑈5 (𝑘) − 𝑙2𝑆2 (𝑘) = 0,

𝑈5 (𝑘) + 𝑙2𝑆2 (𝑘) = 0, 𝑘 = 0, 1, 2, . . . ,

(31)
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which yields for 𝑘 = 0

𝑈1 (0) − 𝑙1 cos𝑈3 (0) = 0,

𝑈2 (0) − 𝑙1 sin𝑈3 (0) = 0,

−𝑈1 (0) − 𝑙1 cos𝑈3 (0) + 𝑈4 (0) − 𝑙2 cos𝑈6 (0) = 0,

−𝑈2 (0) − 𝑙1 sin𝑈3 (0) + 𝑈5 (0) − 𝑙2 sin𝑈6 (0) = 0,

𝑈5 (0) + 𝑙2 sin𝑈6 (0) = 0,

(32)

and, for 𝑘 = 1, we obtain

𝑈1 (1) + 𝑙1𝑈3 (1) sin𝑈3 (0) = 0,

𝑈2 (1) − 𝑙1𝑈3 (1) cos𝑈3 (0) = 0,

− 𝑈1 (1) + 𝑙1𝑈3 (1) cos𝑈3 (0)

+ 𝑈4 (1) − 𝑙2𝑈6 (1) sin𝑈6 (0) = 0,

− 𝑈2 (1) − 𝑙1𝑈3 (1) cos𝑈3 (0)

+ 𝑈5 (1) − 𝑙2𝑈6 (1) cos𝑈6 (0) = 0,

𝑈5 (1) + 𝑙2𝑈6 (1) cos𝑈6 (0) = 0.

(33)

Equations (32) and (33) are satisfied by the values in (25) and
(26), respectively.

For 𝑘 ≥ 2, we have the recursion system

𝑈1 (𝑘) + (

𝑙1

𝑘

)

𝑘−1

∑

𝑟=0

(𝑘 − 𝑟) 𝑆1 (𝑟) 𝑈3 (𝑘 − 𝑟) = 0,

𝑈2 (𝑘) − (

𝑙1

𝑘

)

𝑘−1

∑

𝑟=0

(𝑘 − 𝑟) 𝐶1 (𝑟) 𝑈3 (𝑘 − 𝑟) = 0,

− 𝑈1 (𝑘) + 𝑈4 (𝑘)

+ (

1

𝑘

)

𝑘−1

∑

𝑟=0

(𝑙2 (𝑘 − 𝑟) 𝑆2 (𝑟) 𝑈6 (𝑘 − 𝑟)

+ 𝑙1 (𝑘 − 𝑟) 𝑆1 (𝑟) 𝑈3 (𝑘 − 𝑟)) = 0,

− 𝑈2 (𝑘) + 𝑈5 (𝑘)

− (

1

𝑘

)

𝑘−1

∑

𝑟=0

(𝑙2 (𝑘 − 𝑟) 𝐶2 (𝑟) 𝑈6 (𝑘 − 𝑟)

+ 𝑙1 (𝑘 − 𝑟) 𝐶1 (𝑟) 𝑈3 (𝑘 − 𝑟)) = 0,

𝑈5 (𝑘) + (

𝑙2

𝑘

)

𝑘−1

∑

𝑟=0

(𝑘 − 𝑟) 𝐶2 (𝑟) 𝑈6 (𝑘 − 𝑟) = 0,

(34)

which can be written as

𝑈1 (𝑘) + 𝑙1 sin𝑈3 (0) 𝑈3 (𝑘)

= −(

𝑙1

𝑘

)

𝑘−1

∑

𝑟=1

(𝑘 − 𝑟) 𝑆1 (𝑟) 𝑈3 (𝑘 − 𝑟) ,

𝑈2 (𝑘) − 𝑙1 cos𝑈3 (0) 𝑈3 (𝑘)

= (

𝑙1

𝑘

)

𝑘−1

∑

𝑟=1

(𝑘 − 𝑟) 𝐶1 (𝑟) 𝑈3 (𝑘 − 𝑟) ,

− 𝑈1 (𝑘) + 𝑙1 sin𝑈3 (0) 𝑈3 (𝑘) + 𝑈4 (𝑘) + 𝑙2 sin𝑈6 (0) 𝑈6 (𝑘)

= − (

1

𝑘

)

𝑘−1

∑

𝑟=1

(𝑙2 (𝑘 − 𝑟) 𝑆2 (𝑟) 𝑈6 (𝑘 − 𝑟)

+ 𝑙1 (𝑘 − 𝑟) 𝑆1 (𝑟) 𝑈3 (𝑘 − 𝑟)) ,

− 𝑈2 (𝑘) − 𝑙1 cos𝑈3 (0) 𝑈3 (𝑘) + 𝑈5 (𝑘) − 𝑙2 cos𝑈6 (0) 𝑈6 (𝑘)

= (

1

𝑘

)

𝑘−1

∑

𝑟=1

(𝑙2 (𝑘 − 𝑟) 𝐶2 (𝑟) 𝑈6 (𝑘 − 𝑟)

+ 𝑙1 (𝑘 − 𝑟) 𝐶1 (𝑟) 𝑈3 (𝑘 − 𝑟)) ,

𝑈5 (𝑘) + 𝑙2 cos𝑈6 (0) 𝑈6 (𝑘)

= −(

𝑙2

𝑘

)

𝑘−1

∑

𝑟=1

(𝑘 − 𝑟) 𝐶2 (𝑟) 𝑈6 (𝑘 − 𝑟) .

(35)

Combining (30) and (35), we have the following recursion
system for 𝑈(𝑘) and 𝜆(𝑘 − 2)

[

𝑘 (𝑘 − 1)𝑀 𝐺
T

𝐺 0

][

𝑈 (𝑘)

𝜆 (𝑘 − 2)

] = [

𝑄1 (𝑘)

𝑄2 (𝑘)

] , 𝑘 = 2, 3, . . . ,

(36)

where 𝑄1(𝑘) and 𝑄2(𝑘) are the right hand sides of (30) and
(35) and 𝐺 = 𝐺[𝑈(0)].

Since the Jacobian𝐺 has full row rank and thematrix𝑀 is
positive definite, then system (36) determines𝑈(𝑘) and 𝜆(𝑘−
2) uniquely for 𝑘 = 2, 3, . . ..

Solving the linear algebraic system (36) yields the follow-
ing solution:

𝜆 (𝑘 − 2) = (𝐺𝑀
−1
𝐺
T
)

−1

(𝐺𝑀
−1
𝑄1 (𝑘) − 𝑘 (𝑘 − 1)𝑄2 (𝑘)) ,

𝑈 (𝑘) =

1

𝑘 (𝑘 − 1)

𝑀
−1
(𝑄1 (𝑘) − 𝐺

T
𝜆 (𝑘 − 2)) ,

𝑘 = 2, 3, . . . .

(37)
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Then an approximate analytical solution of SCM model is
given by

𝑢𝑛 (𝑡) =

𝑛

∑

𝑘=0

𝑈 (𝑘) 𝑡
𝑘
,

𝜆𝑛 (𝑡) =

𝑛

∑

𝑘=0

𝜆 (𝑘) 𝑡
𝑘
,

(38)

where 𝑛 is the approximation order of the solution.

4.4. Numerical Simulation for the Slider-Crank Mechanism.
For the numerical simulation, the following data are used.
Consider a SCM that consists of a crank of length 𝑙1 = 0.1m,
a connecting rod of length 𝑙2 = 0.8m. The masses of the
crank and connecting rod are 𝑚1 = 0.5 kg, 𝑚2 = 0.1 kg,
respectively. The crank which is connected to the ground by
revolute joint 𝑂 is driven from initial position 𝜙1(0) = 𝜃0 =
𝜋/4 rad with an initial angular velocity ̇𝜙1(0) = 𝜃1 = 3 rad/s.
The force applied to the right end of the connecting rod is
𝑓(𝑡) = 4N. The consistent initial conditions are then given
by

𝑥1 (0) = 0.05
√2m, 𝑦1 (0) = 0.05

√2m,

𝑥2 (0) = 0.9382902288m, 𝑦2 (0) = 0.05
√2m,

𝜙2 (0) = 2𝜋 − sin
−1
(

𝑙1

𝑙2

sin 𝜃0) ≈ 6.194681465 rad,

�̇�1 (0) = −0.15
√2m/s, ̇𝑦1 (0) = 0.15

√2m/s,

�̇�2 (0) = −0.4430877428m/s, ̇𝑦2 (0) = 0.15
√2m/s,

̇
𝜙2 (0) = −0.2662069527 rad/s.

(39)

Using (25) and (26), we get

𝑈3 (0) =

𝜋

4

,

𝑈1 (0) = 0.05
√2, 𝑈2 (0) = 0.05

√2,

𝑈4 (0) = 0.9382902288, 𝑈5 (0) = 0.05
√2,

𝑈6 (0) = 6.194681465,

𝑈3 (1) = 3,

𝑈1 (1) = −0.15
√2, 𝑈2 (1) = 0.15

√2,

𝑈4 (1) = −0.4430877428, 𝑈5 (1) = 0.15
√2,

𝑈6 (1) = −0.2662069527.

(40)

Now, using (40) and the recursion system (37), we obtain the
four-order solution approximation:

𝑥1 (𝑡) ≅

4

∑

𝑘=0

𝑈1 (𝑘) 𝑡
𝑘

= 0.07071067810 − 0.2121320343𝑡

− 0.919247756879964𝑡
2
− 4.78975365869982𝑡

3

− 11.5823025180640𝑡
4
,

𝑦1 (𝑡) ≅

4

∑

𝑘=0

𝑈2 (𝑘) 𝑡
𝑘

= 0.07071067810 + 0.2121320343𝑡

+ 0.282851654079963𝑡
2
+ 1.18345542443940𝑡

3

− 12.8782144706668𝑡
4
,

𝜙1 (𝑡) ≅

4

∑

𝑘=0

𝑈3 (𝑘) 𝑡
𝑘

= 0.7853981635 + 3𝑡 + 8.50012645374368𝑡
2

+ 46.7369664941939𝑡
3
+ 29.0870877517442𝑡

4
,

𝑥2 (𝑡) ≅

4

∑

𝑘=0

𝑈4 (𝑘) 𝑡
𝑘

= 0.9382902288 − 0.4430877428𝑡

− 1.89205237718273𝑡
2
− 9.76108420333135𝑡

3

− 22.3931809777897𝑡
4
,

𝑦2 (𝑡) ≅

4

∑

𝑘=0

𝑈5 (𝑘) 𝑡
𝑘

= 0.07071067810 + 0.2121320343𝑡

+ 0.282851654060463𝑡
2
+ 1.18345542443836𝑡

3

− 12.8782144706668𝑡
4
,

𝜙2 (𝑡) ≅

4

∑

𝑘=0

𝑈6 (𝑘) 𝑡
𝑘

= 6.194681465 − 0.2662069527𝑡

− 0.358098001203644𝑡
2
− 1.49673513664703𝑡

3

+ 16.1073054941944𝑡
4
.

(41)

For the Lagrange multipliers, we have the fourth order
solution approximation:
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𝜆1 (𝑡) ≅

4

∑

𝑘=0

Λ 1 (𝑘) 𝑡
𝑘

= −2.70234176768349 + 20.2259114940531𝑡

+ 96.3656322855862𝑡
2
+ 240.944005003453𝑡

3

− 448.276602013566𝑡
4
,

𝜆2 (𝑡) ≅

4

∑

𝑘=0

Λ 2 (𝑘) 𝑡
𝑘

= −5.55554157119770 − 3.79984370973865𝑡

+ 86.2671232328927𝑡
2
+ 504.628847858748𝑡

3

+ 3493.06432799231𝑡
4
,

𝜆3 (𝑡) ≅

4

∑

𝑘=0

Λ 3𝑡
𝑘

= −3.62158952456345 + 5.85665052082748𝑡

+ 26.8718171744226𝑡
2
+ 58.8429141684867𝑡

3

− 201.493355657068𝑡
4
,

𝜆4 (𝑡) ≅

4

∑

𝑘=0

Λ 4𝑡
𝑘

= −0.367689917117733 − 0.249477437130528𝑡

+ 8.99783640580140𝑡
2
+ 55.5935511670394𝑡

3

+ 379.739804746290𝑡
4
,

𝜆5 (𝑡) ≅

4

∑

𝑘=0

Λ 5𝑡
𝑘

= −0.669880413694359 − 0.460595817390472𝑡

+ 6.45602095961687𝑡
2
+ 34.2135081713023𝑡

3

+ 242.925099904082𝑡
4
.

(42)

We compute the Padé approximants [2/2] of (41) to get

[

2

2

]

𝑥
1

≅

0.0707106781+0.592355000518745𝑡−8.41543780839351𝑡
2

1+11.3771647569414𝑡−71.8806421269112𝑡
2

,

[

2

2

]

𝑦
1

≅

0.0707106781+1.47989584113364𝑡+2.00125275253093𝑡
2

1+17.9288876998287𝑡−29.4848017028131𝑡
2

,

[

2

2

]

𝜙
1

≅

0.7853981635+6.58276736662088𝑡−0.201744716646354𝑡
2

1+4.56172109017273𝑡−28.5040575357906𝑡
2

,

[

2

2

]

𝑥
2

≅

0.9382902288+10.3183653765998𝑡−73.597210648397𝑡
2

1+11.46921580241𝑡−71.0049910834565𝑡
2

,

[

2

2

]

𝑦
2

≅

0.0707106781+1.47989584104385𝑡+2.00125275247867𝑡
2

1+17.928887698559𝑡−29.484801699467𝑡
2

,

[

2

2

]

𝜙
2

≅

6.194681465+110.323929870157𝑡−188.704183282641𝑡
2

1+17.8524331634632𝑡−29.6373016898475𝑡
2

.

(43)

Now we compute the Padé approximants [2/2] of (42) to
obtain

[
2

2
]
𝜆
1

≅
−2.70234176768349+39.9961509405157𝑡−113.609014800383𝑡

2

1 − 7.31596561282110𝑡 + 22.9440165004234𝑡2
,

[
2

2
]
𝜆
2

≅
−5.5555415711977+29.9185225438412𝑡+137.041238799040𝑡

2

1−6.06932120324511𝑡−4.98810839851897𝑡2
,

[
2

2
]
𝜆
3

≅
−3.62158952456345+32.3493765490523𝑡−101.139487135246𝑡

2

1−7.31522052638427𝑡+23.5169153285306𝑡2
,

[
2

2
]
𝜆
4

≅
−0.367689917117733+2.05737918254062𝑡+11.8278022399105𝑡

2

1−6.27391862620072𝑡−3.43975898059266𝑡2
,

[
2

2
]
𝜆
5

≅
−0.669880413694359+3.42037608958792𝑡+13.7634377100745𝑡

2

1−5.79352945337663𝑡−6.92502903722813𝑡2
.

(44)

Expressions (43)-(44) give approximations to the solution
components of the SCM and are shown in Figures 2, 3, and 4.

Calculating themean square residual (MSR) error for our
approximations, we find

𝑟 = (

1

11

)∫

0.12

0

11

∑

𝑖=1

(𝑔𝑖(𝑡)



𝑢
𝑗

)

2

𝑑𝑡 = 0.07632633995, (45)
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Figure 2: 𝑥 and 𝑦 plots.
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Figure 3: 𝜙 plots.

where 𝑔𝑖 (𝑖 = 1, 2, . . . , 11) represents each one of the six
differentials and five algebraic equations that compose the
DAE system, and 𝑢𝑗 (𝑗 = 1, 2, . . . , 11) represents each one of
the Padé [2/2] approximations of variables of theDAE system.

This MSR process requires the evaluation of each 𝑔𝑖 equation
using the Padé approximations. For the initial conditions
chosen in this case study, the region of convergence of the
solution is [0, 0.12].
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Figure 4: 𝜆-𝑡 plots.

For this case study the value of the MSR is small, which
shows the high accuracy of our approximations (43)-(44).

5. Discussion

Using a hybrid method (PDTM) that combines the differen-
tial transform method (DTM) and Padé approximants, we

obtained an approximate analytical solution for the slider-
crank mechanism (SCM) model. It should be noticed that
the high complexity of this problem (as a nonlinear index-
three DAEs problem) was effectively handled by the PDTM
due to the malleability of the DTM and the resummation
capability of the Padé method.This index-three problem was
solved without the need for a preprocessing step of index
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reduction. This is an important result given the fact that
a higher-index DAE is often difficult to treat numerically
without reducing its index to one and that the index reduction
can be very expensive and may change the properties of the
solution of the original problem. What is more, there is no
standard analytical or numerical method to solve higher-
index DAEs, converting the PDTMmethod into an attractive
tool to solve multibody problems and higher-index DAEs in
general. Calculating themean square residual (MSR) given by
(45), we find a small value which indicates the high accuracy
of our approximations. The approximations to the solution
components of the SCM are shown in Figures 2, 3, and 4.

On the one hand, semianalytical methods like HPM,
HAM, and VIM, among others, require an initial approxima-
tion for the solutions sought and the computation of one or
several adjustment parameters. If the initial approximation
is properly chosen then the results can be highly accurate.
Nonetheless, there is no generalmethod to choose such initial
approximation. This issue motivates the use of adjustment
parameters obtained by minimizing the least-squares error
with respect to the numerical solution. On the other hand,
DTM or PDTM methods do not require any trial equation
as requisite for starting the method. What is more, the DTM
obtains its coefficients using an easily computable straight-
forward procedure that can be implemented into programs
like, for example, Maple or Mathematica. Numerical and
theoretical treatments of higher-index DAEs are still difficult
tasks that require further research in order to extend the
domain of convergence of the Padé approximations beyond
the interval [0, 0.12].

6. Concluding Remark

This work presented PDTM method as a combination of the
DTM and a resummation method based on the Padé approx-
imants. Firstly, the solution of the SCM model is obtained in
convergent series form using DTM. Next, in order to enlarge
the domain of convergence of the truncated power series, a
posttreatment based on Padé approximants is applied. This
technique greatly improves DTM’s truncated series solution
in convergence rate. Additionally, DTM is an attractive tool,
because it does not require a perturbation parameter to
work and it does not generate secular terms (noise terms)
as other semianalytical methods like HPM, HAM, or VIM
do. By solving the SCM model which is a nonlinear index-
three DAEs system, we presented the PDTM as a handy
tool with great potential to solve multibody problems and
other nonlinear higher-index DAEs systems in general. Fur-
thermore, we obtained successfully the approximate solution
of the SCM highlighting the efficiency of PDTM. What is
more, the proposed method is based on a straightforward
procedure, suitable in particular for mechanical engineers
and physicists as mechanical systems often lead to higher-
index DAEs. Finally, further research should be performed to
solve other multibody problems and higher-index nonlinear
DAEs systems.

Nomenclature

(⋅): Derivative with respect to time
𝑙1, 𝑚1: Length and mass of the crank
𝑙2, 𝑚2: Length and mass of the connecting rod
𝑥1, 𝑦1: Position of the crank
𝑥2, 𝑦2: Position of the connecting rod
𝜙1: Orientation angle of the crank
𝜙2: Orientation angle of the connecting rod
𝑢: (𝑥1, 𝑦1, 𝜙1, 𝑥2, 𝑦2, 𝜙2)

T

𝑔: Vector function defining kinematic constraints
𝜆: Vector (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5)

T of Lagrange multipliers
𝑀: diag(𝑚1, 𝑚1, 𝑚1𝑙

2

1
/3,𝑚2, 𝑚2, 𝑚2𝑙

2

2
/3)

𝐺: Jacobian 𝜕𝑔/𝜕𝑢
𝑓: Force applied to the right end of the connecting rod
𝑔: Acceleration of gravity
𝐹: (0, −𝑚1𝑔, 0, −𝑓(𝑡), −𝑚2𝑔, 0)

T.
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