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With the recent development of biotechnologies, cDNA microarray chips are increasingly applied in cancer research. Microarray
experiments can lead to amore thorough grasp of themolecular variations among tumors because they can allow themonitoring of
expression levels in cells for thousands of genes simultaneously. Accordingly, how to successfully discriminate the classes of tumors
using gene expression data is an urgent research issue and plays an important role in carcinogenesis. To refine the large dimension of
the genes data and effectively classify tumor classes, this study proposes several hybrid discrimination procedures that combine the
statistical-based techniques and computational intelligence approaches to discriminate the tumor classes. A real microarray data
set was used to demonstrate the performance of the proposed approaches. In addition, the results of cross-validation experiments
reveal that the proposed two-stage hybridmodels aremore efficient in discriminating the acute leukemia classes than the established
single stage models.

1. Introduction

The recent development of cDNA microarray technologies
hasmade it possible to analyze thousands of genes simultane-
ously and has led to the prospect of providing an accurate and
efficient means for classifying and diagnosing human can-
cers [1–20]. Advances in microarray discrimination method
promise to greatly advance cancer diagnosis, especially in
situations where tumors are clinically atypical. The main
challenge of microarray analysis, however, is the overwhelm-
ing number of genes compared to the smaller number of
available tumor samples, that is, a very large number of
variables relative to the number of observations [10, 21–
23]. As a consequence, the issue of developing an accurate
discrimination method for tumor classification using gene
expression data has received considerable attention recently.

Many approaches have been proposed for tumor clas-
sification using microarray data [10, 22–33]. The existing
methods can be divided into two types, the statistical-
basedmethods [10, 22, 24–26] and computational intelligence

methods [22, 27–33]. Due to the fact that the dimension of the
genes data is very large, but there are only a few observations
available, it is a must to reduce and refine the whole data
set before we perform the classification tasks. While most
related works have focused on the use of a single technique
for tumor classification, little research has been done on the
integrated use of several techniques simultaneously to classify
tumor classes. To achieve the high accuracy for a particu-
lar classification problem with smaller computational time,
hybrid evolutionary computation algorithms are commonly
used for optimizing the resolution process [34–36]. As a
consequence, in this study, we aim to develop several effective
two-stage hybrid discrimination approaches that integrate
the framework of statistical methods and the computational
intelligence methods for tumors classification based on gene
expression data.

The remainder of this paper is structured as follows. The
second section reviews several existing approaches consid-
ered in our comparison study. The third section addresses
the proposed hybrid approaches for tumors classification.
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The fourth section shows classification results from the cross-
validation.The final section reports the research findings and
presents a conclusion to complete this study.

2. Review of Established Methods

Consider a two-class classification problem. Let 𝑥

̃
𝑖

= (𝑥
𝑖1,

𝑥
𝑖2, . . . , 𝑥𝑖𝑟) be the gene expression profile vector, where 𝑥

𝑖𝑗
is

the expression level of the 𝑗th gene in the 𝑖th tumor sample,
𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑟. Let 𝑌

𝑖
be a binary disease status

variable (1 for case group 𝜋1 and −1 for control group 𝜋2 as
a general example). Accordingly, the microarray data may be
summarized as the following set:

{(𝑌1, 𝑥
̃
1
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̃
2
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)} . (1)

The following sections briefly review several well-known
established microarray classification methods.

2.1. Fisher’s Linear Discriminant Analysis. With the use of
gene expression data, several studies proposed to apply
Fisher’s linear discriminant analysis (FLDA) to classify and
diagnose cancer [10, 22, 24]. Assume that independent
observation vectors 𝑧
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where

𝑛 = 𝑛1 + 𝑛2 − 2. (3)

To classify new observation 𝑧

̃
0, we can utilize the follow-

ing FLDA allocation rule:
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(4)

2.2. Logistic Regression. The microarray discrimination
approach with the use of logistic regression (LR) model
was also studied for disease classification [22, 25, 26].

The structure of the logistic regression model can be briefly
described as follows. Let

𝑃
𝑖
= Pr [𝑌

𝑖
= 1 | 𝑥

𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑟] , 𝑖 = 1, 2, . . . , 𝑛, (5)

be the conditional probability of event {𝑌
𝑖
= 1} under a given

series of independent variables (𝑥
𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑟). The logistic

regression model then is defined as follows:
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Collinearity diagnosis procedure should be conducted
first to exclude variables exhibiting high collinearity. After
collinearity diagnosis, the remaining variables are then used
for logistic regressionmodeling and testing. Afterward, using
logistic regression with Wald-forward method, we can iden-
tify significant independent variables, say, 𝑥
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∗
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, 𝑖 = 1, 2, . . . , 𝑛. (7)

2.3. Artificial Neural Network. Based on gene expression
profiles, the artificial neural network (ANN) has also been
used to discriminate the tumor classes [22, 27–29].The ANN
framework includes the input, the output, and the hidden
layers.The nodes in the input layer receive input signals from
an external source and the nodes in the output layer provide
the target output signals. For each neuron 𝑗 in the hidden
layer and neuron 𝑘 in the output layer, the net inputs are given
by

net
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(8)

where 𝑖 (𝑗) is a neuron in the previous layer, 𝑤
𝑗𝑖

(𝑤
𝑘𝑗
) is the

connection weight from neuron 𝑖 (𝑗) to neuron 𝑗 (𝑘), and
𝑜
𝑖
(𝑜
𝑗
) is the output of node 𝑖 (𝑗). The sigmoid functions are

given by
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where net
𝑗
(net
𝑘
) is the input signal from the external source

to the node 𝑗 (𝑘) in the input layer and 𝜃
𝑗
(𝜃
𝑘
) is a bias.

The conventional technique used to derive the connection
weights of the feedforward network is the generalized delta
rule [37].
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2.4. Support Vector Machine. To classify tumor classes using
microarray data, the discrimination method with the use
of support vector machine (SVM) has also been discussed
[22, 30–33].The structure of SVMalgorithm can be described
as follows. Let {(𝑦

𝑖
, 𝑥

̃
𝑖
)}
𝑛

𝑖=1, 𝑥
̃
𝑖

∈ 𝑅
𝑟, 𝑦
𝑖

∈ {−1, 1}, be the
training set with input vectors and labels, where 𝑛 is the
number of sample observations and 𝑟 is the dimension of
each observation, and 𝑦

𝑖
is known target. The algorithm is

to seek the hyperplane 𝑤

̃


⋅ 𝑥

̃
𝑖
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̃

is the vector
of hyperplane and 𝑏 is a bias term, to separate the data from
two classes with maximal margin width 2/‖𝑤

̃

‖
2. In order to

obtain the optimal hyperplane, the SVMwas used to solve the
following optimization problem:

Min Φ(𝑥

̃

) =

1
2




𝑤

̃






2

s.t. 𝑦
𝑖
(𝑤

̃


𝑥

̃
𝑖
+ 𝑏) ≥ 1, 𝑖 = 1, 2, . . . , 𝑛.

(10)

Because it is difficult to solve (10), SVM transforms
the optimization problem to be dual problem by Lagrange
method. The value of 𝛼 in the Lagrange method must be
nonnegative real coefficients. Equation (10) is transformed
into the following constrained form [38]:
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In (11), 𝐶 is the penalty factor and determines the degree
of penalty assigned to an error. Typically, it could not find
the linear separate hyperplane for all application data. For
problems that can not be linearly separated in the input space,
SVM employs the kernel method to transform the original
input space into a high dimensional feature space, where
an optimal linear separating hyperplane can be found. The
common kernel functions are linear, polynomial, radial basis
function (RBF), and sigmoid. Although several choices for
the kernel function are available, the most widely used kernel
function is the RBF which is defined as [39]
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2
) , 𝛾 ≥ 0, (12)

where 𝛾 denotes the width of the RBF. Consequently, the RBF
is used in this study and the multiclass SVM method is used
in this study [40].

2.5. Multivariate Adaptive Regression Splines. The multi-
variate adaptive regression splines (MARS) have also been
applied for tumor classification using gene expression data
[22, 30]. The general MARS function can be represented as
follows:
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where 𝑏
0
and 𝑏

𝑚
are the parameters, 𝑀 is the number of

basis functions (BF), 𝐾
𝑚
is the number of knots, 𝑆

𝑘𝑚
takes

on values of either 1 or −1 and indicates the right or left
sense of the associated step function, ](𝑘,𝑚) is the label of
the independent variable, and 𝑡

𝑘𝑚
is the knot location. The

optimal MARS model is chosen in a two-step procedure.
Firstly, construct a large number of basis functions to fit the
data initially. Secondly, basis functions are deleted in order
of least contribution using the generalized cross-validation
(GCV) criterion. Tomeasure the importance of a variable, we
can observe the decrease in the calculated GCV values when
a variable is removed from the model. The GCV is defined as
follows:

LOF (
̂
𝑓
𝑀
) = GCV (𝑀) =

(1/𝑛)∑𝑛
𝑖=1 [𝑦𝑖 −
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𝑀

(𝑥
𝑖
)]

2

[1 − 𝐶 (𝑀) /𝑛]
2 ,

(14)

where 𝑛 is the observations and 𝐶(𝑀) is the cost penalty
measures of a model containing𝑀 basis function.

3. The Proposed Hybrid
Discrimination Methods

The two-stage hybrid procedure is commonly used in various
fields such as financial distress warning system [41, 42],
medical area [43], statistical inference [44, 45], and statistical
process control [36, 46–48]. To obtain the best accuracy
for a specific classification problem, hybrid evolutionary
computation algorithms are commonly used to optimize the
resolution process [34–36]. In this section, several two-stage
hybrid discrimination methods that integrate the framework
of statistical-based approaches and computational intelli-
gence methods are proposed for tumor classification based
on gene expression microarray data.

The proposed methods include five components: the
FLDA, the LR model, the MARS model, the ANN, and
the SVM classifiers. The proposed hybrid discrimination
methods combine the statistical-based discrimination meth-
ods and computational intelligence methods. In stage 1,
influencing variables are selected using LR orMARS. In stage
2, the selected important influencing variables are then taken
as the input variables of FLDA, LR, ANN, SVM, or MARS.
The following sections address the proposed approaches.

3.1. Two-Stage Hybrid Method of LR and Various Classifiers

Stage 1. Substitute independent variables 𝑥
𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑟 and

dependent variable 𝑦
𝑖
into logistic regression. Apply logistic

regression with Wald-forward method to identify significant
independent variables, say, 𝑥∗

𝑖1, 𝑥
∗

𝑖2, . . . , 𝑥
∗

𝑖𝑘
.

Stage 2. Substitute the significant independent variables
𝑥
∗

𝑖1, 𝑥
∗

𝑖2, . . . , 𝑥
∗

𝑖𝑘
obtained in Stage 1 and dependent variable

𝑦
𝑖
into various classifiers such as FLDA, ANN, SVM, or

MARS. The obtained corresponding hybrid methods are
referred to as the LR-FLDA, LR-ANN, LR-SVM, and LR-
MARS, respectively.
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Table 1: The influencing genes selected by using two-sample 𝑡-test with a significance level of 0.0001.

Variables Gene description Mean S.D. 𝑃 value

𝑥1 CMKBR7 chemokine (C-C) receptor 7 AML 68.12 145.55 0.00005
ALL −48.02 82.69

𝑥2
LAMP2 lysosome-associated membrane protein 2 {alternative
products}

AML 171.60 113.80 0.00001
ALL 62.21 80.22

𝑥3 Quiescin (Q6) mRNA, partial cds AML 1534.92 1070.94 0.00006
ALL 715.77 559.19

𝑥4 Peptidyl-prolyl CIS-TRANS isomerase, mitochondrial precursor AML 299.44 270.60 0.00006
ALL 34.64 110.62

𝑥5 Transmembrane protein mRNA AML 90.04 72.82 0.00003
ALL 18.98 59.12

𝑥6 PGD phosphogluconate dehydrogenase AML 970.52 621.00 0.00002
ALL 480.91 313.41

𝑥7 Canalicular multispecific organic anion transporter (cMOAT) AML 42.56 63.05 0.00006
ALL 131.85 84.13

𝑥8 Huntingtin interacting protein (HIP1) mRNA AML −9.40 121.07 0.00000
ALL −136.09 120.05

𝑥9
ME491 gene extracted from H. sapiens gene for Me491/CD63
antigen

AML 2026.80 1658.10 0.00001
ALL 747.70 548.40

𝑥10
GB DEF = nonmuscle myosin heavy chain-B (MYH10) mRNA,
partial cds

AML 243.12 109.91 0.00002
ALL 486.81 330.69

𝑥11
P4HB procollagen-proline, 2-oxoglutarate 4-dioxygenase
(proline 4-hydroxylase), beta polypeptide

AML 2015.60 1384.83 0.00003
ALL 1015.83 503.40

3.2. Two-Stage Hybrid Method of MARS and
Various Classifiers

Stage 1. Substitute independent variables 𝑥
𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑟 and

dependent variable 𝑦
𝑖
into multivariate adaptive regression

splines. Use multivariate adaptive regression splines to iden-
tify significant independent variables, say, 𝑥∗

𝑖1, 𝑥
∗

𝑖2, . . . , 𝑥
∗

𝑖𝑘
.

Stage 2. Substitute the significant independent variables
𝑥
∗

𝑖1, 𝑥
∗

𝑖2, . . . , 𝑥
∗

𝑖𝑘
obtained in Stage 1 and dependent variable

𝑦
𝑖
into various classifiers such as FLDA, LR, ANN, or SVM.

The corresponding hybrid methods are referred to as the
MARS-FLDA, MARS-LR, MARS-ANN, and MARS-SVM,
respectively.

4. The Cross-Validation Experiments

This study performs a series of cross-validation experiments
to compare the proposed approaches with those previously
discussed in literature. This study considers a leukemia
dataset that was first described by Golub et al. [5] and was
examined in Dudoit et al. [10] and Lee et al. [22]. This
dataset contains 6817 human genes and was obtained from
Affymetrix high-density oligonucleotide microarrays. The
data consist of 25 cases of acutemyeloid leukemia (AML) and
47 cases of acute lymphoblastic leukemia (ALL).

Since the dimension of the data is very large (𝑟 = 6817)
but there are only a few observations (𝑛 = 72), it is essential
to reduce and refine the whole set of genes (independent
variables) before we can construct the discrimination model.

Table 2: Collinearity diagnosis for LR modeling.

Variables 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11

VIF 2.09 2.97 2.76 2.56 1.61 3.46 1.33 1.88 6.85 1.58 5.47

To refine the set of genes, Golub et al. [5], Dudoit et al. [10],
and Lee et al. [22] proposed the methods of subjective ratios
to select genes. It is well known that the two-sample 𝑡-test is
the most popular test to test for the differences between two
groups in means. For the sake of strictness, instead of using
a somewhat arbitrary criterion like that used in Golub et al.
[5], Dudoit et al. [10], or Lee et al. [22], this study applies the
two-sample 𝑡-test with a significance level of 0.0001 to select
the influencing genes. The results are given in Table 1.

The significant variables selected using two-sample 𝑡-test
are then served as the input variables of the established single
stage discrimination methods reviewed in Section 2 and the
proposed two-stage hybrid methods introduced in Section 3.
To examine the presence of collinearity, the variance inflation
factor (VIF) was calculated. As shown in Table 2, all the
values of VIFs are less than 10. Consequently, there is no high
collinearity among these variables. In addition, this study
adopts the suggestions of Dudoit et al. [10] and Lee et al. [22]
and performs a 2 : 1 cross-validation (training set : test set).

The difficulty with ANN is that the design parameters,
such as the number of hidden layers and the number of
neurons in each layer, have to be set before training process
can proceed. User has to select the ANN structure and set the
values of certain parameters for the ANN modeling process.
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> #Find the best parameter gamma&cost
> p<-seq(-1,1,1)
> obj<-tune.svm(y∼., data=train, sampling="cross", gamma=2∧(p), cost=2∧(p))
> obj
Parameter tuning of ‘svm’:
- sampling method: 10-fold cross validation
- best parameters:
gamma cost
0.5 2

> #Building the SVMmodel
> svm.model<-svm(y∼., data=train, type="C-classification", gamma=obj$best.parameters[[1]], cost=obj$best.parameters[[2]])
> #Classification capability: Train
> svm.pred<-predict(svm.model, train)
> tab<-table(predict=svm.pred, true=train[,1])
> tab

true
predict 0 1

0 17 0
1 0 31

> cat('Accurate Classification Rate = ',100∗sum(dig(tab))/sum(tab), '% \n')
Accurate Classification Rate = 100 %
> #Classification capability: Test
> svm.pred<-predict(svm.model, test)
> tab<-table(predict=svm.pred, true=test[,1])
> tab

true
predict 0 1

0 2 1
1 6 15

> cat('Accurate Classification Rate = ',100∗sum(dig(tab))/sum(tab), '% \n')
Accurate Classification Rate = 70.83333 %

Algorithm 1: The SVMmodeling output.

However, there is no general and explicit approach to select
optimal parameters for the ANN models [49]. Accordingly,
the selection of design parameters for ANNmay be based on
the trial and error procedure.

This study employs the highest accurate classification
rate (ACR) as the criterion for selecting the ANN topology.
The topology is defined as {𝑛

𝑖
-𝑛
ℎ
-𝑛
𝑜
-𝐿}, where it stands

for the number of neurons in the input layer, number of
neurons in the hidden layer, number of neurons in the
output layer, and learning rate, respectively. Actually, too few
hidden nodes would limit the network generation capability,
while too many hidden nodes may result in overtraining or
memorization by the network. Since there are 11 input nodes
and one output node used in this study, the numbers of
hidden nodes to test were selected as 9, 10, 11, 12, and 13. The
learning rates are chosen as 0.1, 0.01, or 0.001, respectively.
After performing the ANN modeling, this study found that
the {11-9-1-0.01} topology has the best ACR results.

This study also performed the SVM modeling to the
microarray dataset. The two parameters, 𝐶 and 𝛾, are the
most important factors to affect the performance of SVM.The
grid search method uses exponentially growing sequences of
𝐶 and 𝛾 to determine good parameters. The parameter set
of 𝐶 and 𝛾 which generates the highest ACR is considered

Table 3: The relative importance of four explanatory variables for
MARS modelling.

Function Variable Relative importance (%)
1 𝑥

2
100.0

2 𝑥
7

72.0
3 𝑥

8
42.7

4 𝑥
6

26.3

to be ideal set. Here, the best two parameter values for 𝐶

and 𝛾 are 2 and 0.5, respectively. The SVM package was
performed in running the dataset, and the corresponding
output is displayed in Algorithm 1. Observing Algorithm 1, in
the case of 𝐶 = 2 and 𝛾 = 0.5, we can have ACR = 100% for
the initial training stage. Consequently, in the testing stage,
we are able to obtain ACR = 25% and ACR = 93.75% for AML
and ALL, respectively, by using the same parameter settings
(i.e., 𝐶 = 2 and 𝛾 = 0.5). Accordingly, the ACR = 70.83% for
the case of full sample.

For MARS modeling, the results are displayed in Table 3.
During the selection process, four important explanatory
variables were chosen. The corresponding relative impor-
tance indicators are showed in Table 3. As a consequence,
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Table 4: ACRs for thirteen approaches using cross-validation.

Method ACR
AML ALL Full sample

Single stage
FLDA 37.50% 93.75% 75.00%
LR 62.50% 87.50% 79.17%
ANN 50.00% 93.75% 79.17%
SVM 25.00% 93.75% 70.83%
MARS 50.00% 75.00% 66.67%

Two-stage
LR-FLDA 62.50% 81.25% 75.00%
LR-ANN 50.00% 93.75% 79.17%
LR-SVM 75.00% 81.25% 79.17%
LR-MARS 62.50% 93.75% 83.33%
MARS-FLDA 75.00% 75.00% 75.00%
MARS-LR 75.00% 75.00% 75.00%
MARS-ANN 37.50% 93.75% 75.00%
MARS-SVM 62.50% 87.50% 79.17%

those four important variables would be served as the input
variables for hybridmodeling process. In addition, the results
of ACR for each modeling are listed in Table 4.

The rationale behind the proposed hybrid discrimination
method is to obtain the fewer but more informative variables
by performing the first stage LR or MARS modeling. The
selected significant variables are then served as the inputs for
the second stage of discrimination approach. In this study, the
significant variables selected by performing LR and MARS
modeling are variables 𝑥1, 𝑥2, 𝑥7, and 𝑥8 and variables 𝑥2, 𝑥6,
𝑥7, and 𝑥8, respectively. For the hybrid LR-ANN model, the
{4-6-1-0.01} topology provided the best ACR results. For the
MARS-ANN hybrid model, the {4-6-1-0.01} topology also
gave the best ACR results. Additionally, for both LR-SVMand
MARS-SVM modeling, the best two parameter values for 𝐶

and 𝛾 are the same and they are 2 and 0.5, respectively.
For each of the thirteen different approaches, FLDA,

LR, ANN, SVM, MARS, LR-FLDA, LR-ANN, LR-SVM, LR-
MARS, MARS-FLDA, MARS-LR, MARS-ANN, and MARS-
SVM, this study presents the corresponding ACRs in Table 4.
By comparing the ACR with AML, while the LR has highest
ACR (i.e., 62.50%) among the 5 single stage methods, both
LR-SVM and MARS-LR have the highest ACR (i.e., 75.00%)
among the 8 two-stage methods. Apparently, the two-stage
methods provide a better classification performance. By
comparing the ACR with ALL, the single stage methods of
FLDA, ANN, and SVM give the highest ACR (i.e., 93.75%),
and the two-stage methods of LR-ANN, LR-MARS, and
MARS-ANN have the same ACR (i.e., 93.75%). It seems that
the single stage and two-stage methods achieve a similar
performance. As shown in Table 4, it can be seen that, among
the thirteen methods mentioned above, the two-stage hybrid
model of LR-MARShas the highestACRs (i.e., 83.33%) for the
full sample. As a consequence, the proposed two-stage hybrid
approaches aremore efficient for tumor classification than the
established single stage methods.

Table 5: Overall averaged ACR and the associated standard error
(in parentheses) for single stage and two-stage methods.

Method
ACR

AML ALL Full sample

Single stage 45.00%
(14.25%)

88.75%
(8.15%)

74.17%
(5.43%)

Two-stage 62.50%
(13.36%)

85.16%
(8.14%)

77.61%
(3.10%)
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Figure 1: Improvement of the proposed approach in comparison
with the single stage method.

In addition, Table 5 lists the overall averaged ACRs and
the associated standard errors (in parentheses) for single
stage and two-stage methods. In comparison to the single
stage and the proposed two-stage methods in Table 5,
one is able to observe that our proposed methods almost
provide more accurate results than the single stage methods.
Although the single stage methods have larger averaged
ACR value than two-stage methods in classifying ALL, the
difference is not too significant. In addition, observing Table 5
it can be found that the proposed two-stage approaches have
the smaller standard errors for all the cases, which imply the
robustness of the mechanisms. Figure 1 provides a compar-
ison with respect to the overall improvement percentage in
the single stage method. From Figure 1, it can be seen that the
two-stage approaches are more robust than the single stage
method.

5. Conclusions

This study proposes several two-stage hybrid discrimination
approaches for tumor classification using microarray data.
The proposed approaches integrate the framework of several
frequently used statistical-based discriminationmethods and
computational intelligence classifying techniques. Based on
the results of cross-validation in Table 4, it can be easily
observed that the proposed hybridmethodLR-MARS ismore
appropriate for discriminating the tumor classes.

Computational intelligencemethodology is very useful in
many aspects of application and can deal with complex and
computationally intensive problems. With the use of several
computational intelligence techniques, this study develops
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two-stage hybrid discrimination approach for tumor classi-
fication.The proposed hybrid model is not the only discrimi-
nationmethod that can be employed. Based on our work fur-
ther research can be expanded. For example, one can combine
other computational intelligence techniques, such as rough
set theory [50] or extreme learning machine, with neural
networks or support vector machine to refine the structure
further and improve the classification accuracy. Extensions
of the proposed two-stage hybrid discrimination method to
other statistical techniques or to multistage discrimination
procedures are also possible. Such works deserve further
research and are our future concern.
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