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A modified predator-prey biological economic system with nonselective harvesting is investigated. An important mathematical
feature of the system is that the economic profit on the predator-prey system is investigated from an economic perspective.
By using the local parameterization method and Hopf bifurcation theorem, we analyze the Hopf bifurcation of the proposed
system. In addition, themodifiedmodel enriches the database for the predator-prey biological economic system. Finally, numerical
simulations illustrate the effectiveness of our results.

1. Introduction

At present, the increasingly serious problem of environmen-
tal degradation and resource shortage makes the analysis and
modeling of biological systems more interesting. From the
perspective of human needs, the exploitation of biological
resources and harvest of population are usually practiced in
the fields of wildlife, fishery, and forestry management. It is
well known that one of dominant themes in both ecology and
mathematical ecology is the dynamic relationship between
predators and their prey because of its universal existence
and importance in population dynamics. Many authors [1–
12] have studied the dynamics of predator-prey models with
harvesting and obtained various dynamic behaviors, such
as permanence, extinction, stability of equilibrium, Hopf
bifurcation, and limit cycle. Most of these discussions on
biological models are based on normal systems governed by
differential equations or difference equations.

In these years, it has been shown that harvesting has a
strong impact on dynamic evolution of a population; see [8–
16]. In fact, the harvesting should be a variable from real
world view, because it may vary with seasonality, market
demand, harvesting cost, and so on. On the other hand,
economic profit is a very important factor for governments,
merchants, and even every citizen, so it is necessary to
research biological economic systems with economic profit,
which can be described by differential-algebraic equations.

In particular, according to the economic principle in [5],
Zhang et al. [11–13] put forward a class of modified predator-
prey systems, which are established by differential-algebraic
equations. The advantages of the systems proposed in [11–13]
are that these models investigated the interactionmechanism
in the predator-prey ecosystem and offered a new cognitive
perspective for the harvested predator-prey biological system.
That is, the harvest effort on the predator-prey system can
be realized from an economic perspective. However, to our
knowledge, the systems in most of the articles on this subject
are with just one capture harvesting, such as the system
with predator harvesting or the system with prey harvesting;
so far there have been no attempts in the study of the
bifurcation of the predator-prey biological economic system
with nonselective harvesting.

The aimof this paper is to investigate theHopf bifurcation
of a predator-prey biological economic system with nonse-
lective harvesting by using bifurcation theory in [17, 18] and
center manifold theory in [17–19].

The rest of the paper is arranged as follows: a predator-
prey biological economic system with nonselective harvest-
ing is established in Section 2. We investigate the Hopf
bifurcation for this system in the closed positive cone 𝑅3

+

in Section 3. Numerical simulations will be performed to
illustrate the analytical results in Section 4. A brief discussion
is given in Section 5.
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2. Model

The basic model we consider is based on the following Lotka-
Volterra predator-prey model with harvest:

𝑑𝑥

𝑑𝑡̃
= 𝑟𝑥(1 −

𝑥

𝐾
) − 𝑎𝑥𝑦 − 𝐸𝑥,

𝑑𝑦

𝑑𝑡̃
= −𝑑𝑦 + 𝑏̃𝑥𝑦 − 𝐸𝑦,

(1)

where 𝑥 and 𝑦 denote prey and predator population densities
at time 𝑡̃, respectively. 𝑟 > 0, 𝑑 > 0 are the intrinsic growth
rate of prey and the death rate of predator in the absence of
food, respectively. 𝐾 > 0 is the carrying capacity of prey.
𝑎 > 0 and 𝑏̃ > 0 measure the effect of the interaction of the
two populations. 𝐸 represents harvesting effort. 𝐸𝑥 and 𝐸𝑦
indicate that the harvests for prey and predator population
are proportional to their densities at time 𝑡̃.

Based on the model system (1) and the economic theory
of fishery resource proposed by Gordon [5] in 1954, a
differential-algebraicmodel which consists of two differential
equations and an algebraic equation can be established as
follows:

𝑑𝑥

𝑑𝑡̃
= 𝑟𝑥(1 −

𝑥

𝐾
) − 𝑎𝑥𝑦 − 𝐸𝑥,

𝑑𝑦

𝑑𝑡̃
= −𝑑𝑦 + 𝑏̃𝑥𝑦 − 𝐸𝑦,

0 = 𝐸 (𝑝
𝑥
𝑥 − 𝑐
𝑥
) + 𝐸 (𝑝

𝑦
𝑦 − 𝑐
𝑦
) − 𝑚,

(2)

where 𝑝
𝑥
and 𝑝

𝑦
are harvesting reward per unit harvesting

effort for unit weight of prey and predator and 𝑐
𝑥
and 𝑐
𝑦

are harvesting cost per unit harvesting effort for prey and
predator, respectively. 𝑚 > 0 is the economic profit per unit
harvesting effort.

For convenience, substituting these dimensionless vari-
ables in system (2),

𝑥 =
𝑥

𝐾
, 𝑦 =

𝑎𝑦

𝑟
, 𝐸 =

𝐸

𝑟
, 𝑡 = 𝑟𝑡̃,

𝜇 = 𝑚, 𝑑 =
𝑑

𝑟
, 𝑏 =

𝑏̃𝐾

𝑟
, 𝑝

1
= 𝑟𝐾𝑝

𝑥
,

𝑝
2
=
𝑟
2

𝑎
𝑝
𝑦
, 𝑐

1
= 𝑟𝑐
𝑥
, 𝑐

2
= 𝑟𝑐
𝑦
,

(3)

and then obtain the following biological economic system
expressed by differential-algebraic equation:

𝑑𝑥

𝑑𝑡
= 𝑥 (1 − 𝑥 − 𝑦 − 𝐸) ,

𝑑𝑦

𝑑𝑡
= 𝑦 (−𝑑 + 𝑏𝑥 − 𝐸) ,

0 = 𝐸 (𝑝
1
𝑥 − 𝑐
1
) + 𝐸 (𝑝

2
𝑦 − 𝑐
2
) − 𝜇.

(4)

In this paper, we mainly discuss the effects of economic
profit on the dynamics of the system (4) in the region 𝑅3

+
=

{(𝑥, 𝑦, 𝐸) | 𝑥 > 0, 𝑦 > 0, 𝐸 > 0}.

For convenience, we let

𝑓 (𝜇,𝑋) = (

𝑓
1
(𝜇,𝑋)

𝑓
2
(𝜇,𝑋)

) = (

𝑥 (1 − 𝑥 − 𝑦 − 𝐸)

𝑦 (−𝑑 + 𝑏𝑥 − 𝐸)
) ,

𝑔 (𝜇,𝑋) = 𝐸 (𝑝
1
𝑥 + 𝑝
2
𝑦 − 𝑐
1
− 𝑐
2
) − 𝜇,

𝑋 = (𝑥, 𝑦, 𝐸)
𝑇
.

(5)

3. Hopf Bifurcation

In this section, we will present some analytical criteria for the
Hopf bifurcation of the bioeconomic system (4). In order to
obtain the criteria, we need the following preparations.

Now, we try to find all positive equilibrium points of the
system (4). The positive equilibrium point𝑋

0
= (𝑥
0
, 𝑦
0
, 𝐸
0
)
𝑇

of system (4) satisfies the following equations:

1 − 𝑥 − 𝑦 − 𝐸 = 0,

−𝑑 + 𝑏𝑥 − 𝐸 = 0,

𝐸 (𝑝
1
𝑥 − 𝑐
1
) + 𝐸 (𝑝

2
𝑦 − 𝑐
2
) − 𝜇 = 0.

(6)

By computing, we can easily obtain that the system (4) has an
equilibrium point𝑋

0
= (𝑥
0
, 𝑦
0
, 𝐸
0
)
𝑇
= ((1/𝑏)𝐸

0
+𝑑/𝑏, −((𝑏+

1)/𝑏)𝐸
0
+ (𝑏 − 𝑑)/𝑏, 𝐸

0
)
𝑇, where 𝐸

0
satisfies the equation

(𝑝
1
− 𝑝
2
− 𝑝
2
𝑏) 𝐸
2

+ (𝑝
1
𝑑 + 𝑝
2
𝑏 − 𝑝
2
𝑑 − 𝑏𝑐

1
− 𝑏𝑐
2
) 𝐸 − 𝑏𝜇 = 0.

(7)

Obviously,

𝐸
0
= ((𝑝

2
𝑑 + 𝑏𝑐

1
+ 𝑏𝑐
2
− 𝑝
1
𝑑 − 𝑝
2
𝑏)

± ((𝑝
1
𝑑 + 𝑝
2
𝑏 − 𝑝
2
𝑑 − 𝑏𝑐

1
− 𝑏𝑐
2
)
2

+ 4𝑏𝜇 (𝑝
1
− 𝑝
2
− 𝑝
2
𝑏))
1/2

)

⋅ (2 (𝑝
1
− 𝑝
2
− 𝑝
2
𝑏))
−1
.

(8)

The paper only concentrates on the positive equilibrium
point of the system (4), since the biological meaning of the
positive equilibrium point implies that the prey, the predator,
and the harvest effort on prey all exist, which are relevant to
our study. Therefore, throughout the paper, we assume that

𝑏 > 𝑑, 𝐸
0
<
𝑏 − 𝑑

𝑏 + 1
, 𝑝

1
− 𝑝
2
− 𝑝
2
𝑏 < 0,

𝑝
1
𝑑 + 𝑝
2
𝑏 − 𝑝
2
𝑑 − 𝑏𝑐

1
− 𝑏𝑐
2
> 0,

(𝑝
1
𝑑 + 𝑝
2
𝑏 − 𝑝
2
𝑑 − 𝑏𝑐

1
− 𝑏𝑐
2
)
2

+ 4𝑏𝜇 (𝑝
1
− 𝑝
2
− 𝑝
2
𝑏) > 0.

(9)

For the system (4), we consider the following local
parameterization:

𝑋 = 𝜓 (𝜇, 𝑌) = 𝑋
0
(𝜇) + 𝑈

0
𝑌 + 𝑉

0
ℎ (𝜇, 𝑌) ,

𝑔 (𝜇, 𝜓 (𝜇, 𝑌)) = 0,

(10)
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where

𝑈
0
= (

1 0

0 1

0 0

) , 𝑉
0
= (

0

0

1

) , 𝑌 = (𝑦
1
, 𝑦
2
)
𝑇
∈ 𝑅
2
,

(11)

and ℎ is a continuous mapping from 𝑅 × 𝑅
2 into 𝑅 which is

smooth with respect to 𝑌. And then, we can deduce that the
parametric system of the system (4) takes the form of

̇𝑦
1
= 𝑓
1
(𝜇, 𝜓 (𝜇, 𝑌)) ,

̇𝑦
2
= 𝑓
2
(𝜇, 𝜓 (𝜇, 𝑌)) .

(12)

Therefore, the Jacobian matrix 𝐴(𝜇) of the system (12) at
𝑌 = 0 takes the form of

(

𝐷
𝑦
1

𝑓
1
(𝜇, 𝜓 (𝜇, 𝑌)) 𝐷

𝑦
2

𝑓
1
(𝜇, 𝜓 (𝜇, 𝑌))

𝐷
𝑦
1

𝑓
2
(𝜇, 𝜓 (𝜇, 𝑌)) 𝐷

𝑦
2

𝑓
2
(𝜇, 𝜓 (𝜇, 𝑌))

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=0

= (

𝐷
𝑋
𝑓
1
(𝜇,𝑋
0
(𝜇))

𝐷
𝑋
𝑓
2
(𝜇,𝑋
0
(𝜇))

)(

𝐷
𝑋
𝑔 (𝜇,𝑋

0
(𝜇))

𝑈
𝑇

0

)

−1

(

0

𝐼
2

)

= (

𝐷
𝑋
𝑓
1
(𝜇,𝑋
0
(𝜇)) 𝐷

𝑦
𝑓
1
(𝜇,𝑋
0
(𝜇))

𝐷
𝑋
𝑓
2
(𝜇,𝑋
0
(𝜇)) 𝐷

𝑦
𝑓
2
(𝜇,𝑋
0
(𝜇))

)

= (

−𝑥
0
+
𝑝
1
𝐸
0

𝑍
0

𝑥
0
−𝑥
0
+
𝑝
2
𝐸
0

𝑍
0

𝑥
0

𝑏𝑦
0
+
𝑝
1
𝐸
0

𝑍
0

𝑦
0

𝑝
2
𝐸
0

𝑍
0

𝑦
0

),

(13)

where 𝑍 = 𝑝
1
𝑥 + 𝑝
2
𝑦 − 𝑐
1
− 𝑐
2
, 𝑍
0
= 𝑝
1
𝑥
0
+ 𝑝
2
𝑦
0
− 𝑐
1
− 𝑐
2
.

Therefore, the characteristic equation of the matrix 𝐽(𝜇) can
be expressed as

𝜆
2
+ 𝑎
1
(𝜇) 𝜆 + 𝑎

2
(𝜇) = 0, (14)

where 𝑎
11
= −𝑥
0
+ 𝑝
1
𝐸
0
𝑥
0
/𝑍
0
, 𝑎
12
= −𝑥
0
+ 𝑝
2
𝐸
0
𝑥
0
/𝑍
0
, 𝑎
21
=

𝑏𝑦
0
+𝑝
1
𝐸
0
𝑦
0
/𝑍
0
, 𝑎
22
= 𝑝
2
𝐸
0
𝑦
0
/𝑍
0
, and 𝑎

1
(𝜇) = −(𝑎

11
+𝑎
22
) =

𝑥
0
−𝑝
1
𝐸
0
𝑥
0
/𝑍
0
−𝑝
2
𝐸
0
𝑦
0
/𝑍
0
, 𝑎
2
(𝜇) = 𝑎

11
𝑎
22
−𝑎
12
𝑎
21
= 𝑏𝑥
0
𝑦
0
+

(𝑝
1
− 𝑝
2
− 𝑏𝑝
2
)𝐸
0
𝑥
0
𝑦
0
/𝑍
0
.

Remark 1. Thepositive equilibriumpoint𝑋
0
of the system (4)

corresponds to the equilibrium point𝑌 = 0 of the parametric
system (12). For this reason, 𝐴(𝜇) can be considered as
Jacobian matrix of the system (4) at 𝑋

0
, which can be also

determined by the method in [16].
In (14), letting 𝑎

1
(𝜇) = 0, we obtain the bifurcation value

𝜇
0
= 𝑍
2

0
𝑥
0
/(𝑝
1
𝑥
0
+ 𝑝
2
𝑦
0
). In fact, if we let 𝑎2

1
(𝜇) < 4𝑎

2
(𝜇),

then (14) has a pair of conjugate complex roots:

𝜆
1,2
= −

1

2
𝑎
1
(𝜇) ± 𝑖√𝑎

2
(𝜇) −

𝑎
2

1
(𝜇)

4
:= 𝛼 (𝜇) ± 𝑖𝜔 (𝜇) .

(15)

By computing, we have

𝛼 (𝜇
0
) = 0, 𝛼

󸀠
(𝜇
0
) =

𝑝
1
𝑥
0
+ 𝑝
2
𝑦
0

2𝑍
2

0

̸= 0,

𝜔 (𝜇
0
) = √𝑏𝑥

0
𝑦
0
+
(𝑝
1
− 𝑝
2
− 𝑏𝑝
2
) 𝐸
0

𝑍
0

𝑥
0
𝑦
0
> 0.

(16)

Therefore, a phenomenon of Hopf bifurcation occurs at the
bifurcation value 𝜇

0
.

In order to calculate the Hopf bifurcation, according to
[3, 17], when 𝜇 = 𝜇

0
, 𝑋 = 𝑋

0
, we need to lead the normal

form of the system (4) as follows:

̇𝑦
1
= 𝜔
0
𝑦
2
+
1

2
𝑎
1

11
𝑦
2

1
+ 𝑎
1

12
𝑦
1
𝑦
2

+
1

2
𝑎
1

22
𝑦
2

2
+
1

6
𝑎
1

111
𝑦
3

1
+
1

2
𝑎
1

112
𝑦
2

1
𝑦
2

+
1

2
𝑎
1

122
𝑦
1
𝑦
2

2
+
1

6
𝑎
1

222
𝑦
3

2
+ 𝑜 (|𝑌|

4
) ,

̇𝑦
2
= − 𝜔

0
𝑦
1
+
1

2
𝑎
2

11
𝑦
2

1
+ 𝑎
2

12
𝑦
1
𝑦
2

+
1

2
𝑎
2

22
𝑦
2

2
+
1

6
𝑎
2

111
𝑦
3

1
+
1

2
𝑎
2

112
𝑦
2

1
𝑦
2

+
1

2
𝑎
2

122
𝑦
1
𝑦
2

2
+
1

6
𝑎
2

222
𝑦
3

2
+ 𝑜 (|𝑌|

4
) ,

(17)

where 𝜔
0
= 𝜔(𝜇

0
). And it can be proved that the parametric

system (12) with 𝜇 = 𝜇
0
and𝑋 = 𝑋

0
takes the form of

̇𝑦
1
= 𝑓
1𝑦
1

(𝜇
0
, 𝑋
0
) 𝑦
1
+ 𝑓
1𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
2

+
1

2
𝑓
1𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
) 𝑦
2

1
+ 𝑓
1𝑦
1
𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
1
𝑦
2

+
1

2
𝑓
1𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
2

2
+
1

6
𝑓
1𝑦
1
𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
) 𝑦
3

1

+
1

2
𝑓
1𝑦
1
𝑦
1
𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
2

1
𝑦
2
+
1

2
𝑓
1𝑦
1
𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
1
𝑦
2

2

+
1

6
𝑓
1𝑦
2
𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
3

2
+ 𝑜 (|𝑌|

4
) ,
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̇𝑦
2
= 𝑓
2𝑦
1

(𝜇
0
, 𝑋
0
) 𝑦
1
+ 𝑓
2𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
2

+
1

2
𝑓
2𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
) 𝑦
2

1
+ 𝑓
2𝑦
1
𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
1
𝑦
2

+
1

2
𝑓
2𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
2

2
+
1

6
𝑓
2𝑦
1
𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
) 𝑦
3

1

+
1

2
𝑓
2𝑦
1
𝑦
1
𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
2

1
𝑦
2
+
1

2
𝑓
2𝑦
1
𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
1
𝑦
2

2

+
1

6
𝑓
2𝑦
2
𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) 𝑦
3

2
+ 𝑜 (|𝑌|

4
) .

(18)

In the following, we will calculate the coefficients of the
above parametric system (18). By calculation, we derive

𝐷
𝑋
𝑓
1
(𝜇,𝑋) = (1 − 2𝑥 − 𝑦 − 𝐸, −𝑥, −𝑥) ,

𝐷
𝑋
𝑓
2
(𝜇,𝑋) = (𝑏𝑦, −𝑑 + 𝑏𝑥 − 𝐸, −𝑦) ,

𝐷
𝑋
𝑔 (𝜇,𝑋) = (𝑝

1
𝐸, 𝑝
2
𝐸, 𝑝
1
𝑥 + 𝑝
2
𝑦 − 𝑐
1
− 𝑐
2
) ,

𝐷𝜓 (𝜇, 𝑌) = (𝐷
𝑦
1

𝜓 (𝜇, 𝑌) , 𝐷
𝑦
2

𝜓 (𝜇, 𝑌))

= (

𝐷
𝑋
𝑔 (𝜇,𝑋)

𝑈
𝑇

0

)

−1

(

0

𝐼
2

)

= (

𝑝
1
𝐸 𝑝
2
𝐸 𝑝
1
𝑥 + 𝑝
2
𝑦 − 𝑐
1
− 𝑐
2

1 0 1

0 1 0

)

−1

(

0 0

1 0

0 1

)

= (

1 0

0 1

−
𝑝
1
𝐸

𝑍
−
𝑝
2
𝐸

𝑍

).

(19)

Thus,

𝑓
1𝑦
1

(𝜇,𝑋) = 𝐷
𝑋
𝑓
1
(𝜇,𝑋)𝐷

𝑦
1

𝜓 (𝜇, 𝑌)

= 1 − 2𝑥 − 𝑦 − 𝐸 +
𝑝
1
𝐸

𝑍
𝑥,

𝑓
1𝑦
2

(𝜇,𝑋) = 𝐷
𝑋
𝑓
1
(𝜇,𝑋)𝐷

𝑦
2

𝜓 (𝜇, 𝑌) = −𝑥 +
𝑝
2
𝐸

𝑍
𝑥,

𝑓
2𝑦
1

(𝜇,𝑋) = 𝐷
𝑋
𝑓
2
(𝜇,𝑋)𝐷

𝑦
1

𝜓 (𝜇, 𝑌) = 𝑏𝑦 +
𝑝
1
𝐸

𝑍
𝑦,

𝑓
2𝑦
2

(𝜇,𝑋) = 𝐷
𝑋
𝑓
2
(𝜇,𝑋)𝐷

𝑦
2

𝜓 (𝜇, 𝑌)

= −𝑑 + 𝑏𝑥 − 𝐸 +
𝑝
2
𝐸

𝑍
𝑦.

(20)

Substituting 𝜇
0
,𝑋
0
into (20),

𝑓
1𝑦
1

(𝜇
0
, 𝑋
0
) = −

𝑝
2
𝐸
0

𝑍
0

𝑦
0
,

𝑓
1𝑦
2

(𝜇
0
, 𝑋
0
) = −𝑥

0
+
𝑝
2
𝐸
0

𝑍
0

𝑥
0
,

𝑓
2𝑦
1

(𝜇
0
, 𝑋
0
) = 𝑏𝑦

0
+
𝑝
1
𝐸
0

𝑍
0

𝑦
0
,

𝑓
2𝑦
2

(𝜇
0
, 𝑋
0
) =

𝑝
2
𝐸
0

𝑍
0

𝑦
0
.

(21)

From (20), we have

𝐷
𝑋
𝑓
1𝑦
1

(𝜇,𝑋) = (−2 +
𝑝
1
𝐸 (𝑝
2
𝑦 − 𝑐
1
− 𝑐
2
)

𝑍2
,

− 1 −
𝑝
1
𝑝
2
𝐸𝑥

𝑍2
, −1 +

𝑝
1
𝑥

𝑍
) ,

𝐷
𝑋
𝑓
1𝑦
2

(𝜇,𝑋)

= (−1 +
𝑝
2
𝐸 (𝑝
2
𝑦 − 𝑐
1
− 𝑐
2
)

𝑍2
, −
𝑝
2

2
𝐸𝑥

𝑍2
,
𝑝
2
𝑥

𝑍
) ,

𝐷
𝑋
𝑓
2𝑦
1

(𝜇,𝑋)

= (−
𝑝
2

1
𝐸𝑦

𝑍2
, 𝑏 +

𝑝
1
𝐸 (𝑝
1
𝑥 − 𝑐
1
− 𝑐
2
)

𝑍2
,
𝑝
1
𝑦

𝑍
) ,

𝐷
𝑋
𝑓
2𝑦
2

(𝜇,𝑋)

= (𝑏 −
𝑝
2

1
𝐸𝑦

𝑍2
,
𝑝
2
𝐸 (𝑝
1
𝑥 − 𝑐
1
− 𝑐
2
)

𝑍2
, −1 +

𝑝
2
𝑦

𝑍
) .

(22)

According to (19) and (22), we obtain

𝑓
1𝑦
1
𝑦
1

(𝜇,𝑋) = 𝐷
𝑋
𝑓
1𝑦
1

(𝜇,𝑋)𝐷
𝑦
1

𝜓 (𝜇, 𝑌)

= −2 +
2𝑝
1
𝐸 (𝑝
2
𝑦 − 𝑐
1
− 𝑐
2
)

𝑍2
,

𝑓
1𝑦
1
𝑦
2

(𝜇,𝑋) = 𝐷
𝑋
𝑓
1𝑦
1

(𝜇,𝑋)𝐷
𝑦
2

𝜓 (𝜇, 𝑌)

= −1 +
𝑝
2
𝐸 (𝑝
2
𝑦 − 𝑝
1
𝑥 − 𝑐
1
− 𝑐
2
)

𝑍2
,

𝑓
1𝑦
2
𝑦
2

(𝜇,𝑋) = 𝐷
𝑋
𝑓
1𝑦
2

(𝜇,𝑋)𝐷
𝑦
2

𝜓 (𝜇, 𝑌) = −
2𝑝
2

2
𝐸𝑥

𝑍2
,

𝑓
2𝑦
1
𝑦
1

(𝜇,𝑋) = 𝐷
𝑋
𝑓
2𝑦
1

(𝜇,𝑋)𝐷
𝑦
1

𝜓 (𝜇, 𝑌) = −
2𝑝
2

1
𝐸𝑦

𝑍2
,
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𝑓
2𝑦
1
𝑦
2

(𝜇,𝑋) = 𝐷
𝑋
𝑓
2𝑦
1

(𝜇,𝑋)𝐷
𝑦
2

𝜓 (𝜇, 𝑌)

= 𝑏 +
𝑝
1
𝐸 (𝑝
1
𝑥 − 𝑝
2
𝑦 − 𝑐
1
− 𝑐
2
)

𝑍2
,

𝑓
2𝑦
2
𝑦
2

(𝜇,𝑋) = 𝐷
𝑋
𝑓
2𝑦
2

(𝜇,𝑋)𝐷
𝑦
2

𝜓 (𝜇, 𝑌)

=
2𝑝
2
𝐸 (𝑝
1
𝑥 − 𝑐
1
− 𝑐
2
)

𝑍2
.

(23)

Substituting 𝜇
0
,𝑋
0
into (23),

𝑓
1𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
) = −2 +

2𝑝
1
𝐸
0
(𝑝
2
𝑦
0
− 𝑐
1
− 𝑐
2
)

𝑍
2

0

,

𝑓
1𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) = −

2𝑝
2

2
𝐸
0
𝑥
0

𝑍
2

0

,

𝑓
1𝑦
1
𝑦
2

(𝜇
0
, 𝑋
0
) = −1 +

𝑝
2
𝐸
0
(𝑝
2
𝑦
0
− 𝑝
1
𝑥
0
− 𝑐
1
− 𝑐
2
)

𝑍
2

0

,

𝑓
2𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
) = −

2𝑝
2

1
𝐸
0
𝑦
0

𝑍
2

0

,

𝑓
2𝑦
1
𝑦
2

(𝜇
0
, 𝑋
0
) = 𝑏 +

𝑝
1
𝐸
0
(𝑝
1
𝑥
0
− 𝑝
2
𝑦
0
− 𝑐
1
− 𝑐
2
)

𝑍
2

0

,

𝑓
2𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) =

2𝑝
2
𝐸
0
(𝑝
1
𝑥
0
− 𝑐
1
− 𝑐
2
)

𝑍
2

0

.

(24)

By (23) we get

𝐷
𝑋
𝑓
1𝑦
1
𝑦
1

(𝜇,𝑋) = (−
4𝑝
2

1
𝐸 (𝑝
2
𝑦 − 𝑐
1
− 𝑐
2
)

𝑍3
,

2𝑝
1
𝑝
2
𝐸 (𝑝
1
𝑥 − 𝑝
2
𝑦 + 𝑐
1
+ 𝑐
2
)

𝑍3
,

2𝑝
1
(𝑝
2
𝑦 − 𝑐
1
− 𝑐
2
)

𝑍2
) ,

𝐷
𝑋
𝑓
1𝑦
1
𝑦
2

(𝜇,𝑋) = (
𝑝
1
𝑝
2
𝐸 (𝑝
1
𝑥 − 3𝑝

2
𝑦 + 3𝑐

1
+ 3𝑐
2
)

𝑍3
,

𝑝
2

2
𝐸 (3𝑝
1
𝑥 − 𝑝
2
𝑦 + 𝑐
1
+ 𝑐
2
)

𝑍3
,

𝑝
2
(𝑝
2
𝑦 − 𝑝
1
𝑥 − 𝑐
1
− 𝑐
2
)

𝑍2
) ,

𝐷
𝑋
𝑓
1𝑦
2
𝑦
2

(𝜇,𝑋) = (−
2𝑝
2

2
𝐸 (𝑝
2
𝑦 − 𝑝
1
𝑥 − 𝑐
1
− 𝑐
2
)

𝑍3
,

4𝑝
3

2
𝐸𝑥

𝑍3
, −
2𝑝
2

2
𝑥

𝑍2
) ,

𝐷
𝑋
𝑓
2𝑦
1
𝑦
1

(𝜇,𝑋)

= (
4𝑝
3

1
𝐸𝑦

𝑍3
, −
2𝑝
2

1
𝐸 (𝑝
1
𝑥 − 𝑝
2
𝑦 − 𝑐
1
− 𝑐
2
)

𝑍3
, −
2𝑝
2

1
𝑦

𝑍2
) ,

𝐷
𝑋
𝑓
2𝑦
1
𝑦
2

(𝜇,𝑋) = (
𝑝
2

1
𝐸 (3𝑝
2
𝑦 − 𝑝
1
𝑥 + 𝑐
1
+ 𝑐
2
)

𝑍3
,

𝑝
1
𝑝
2
𝐸 (𝑝
2
𝑦 − 3𝑝

1
𝑥 + 3𝑐

1
+ 3𝑐
2
)

𝑍3
,

𝑝
1
(𝑝
1
𝑥 − 𝑝
2
𝑦 − 𝑐
1
− 𝑐
2
)

𝑍2
) ,

𝐷
𝑋
𝑓
2𝑦
2
𝑦
2

(𝜇,𝑋) = (
2𝑝
1
𝑝
2
𝐸 (𝑝
2
𝑦 − 𝑝
1
𝑥 + 𝑐
1
+ 𝑐
2
)

𝑍3
,

−
4𝑝
2

2
𝐸 (𝑝
1
𝑥 − 𝑐
1
− 𝑐
2
)

𝑍3
,

2𝑝
2
(𝑝
1
𝑥 − 𝑐
1
− 𝑐
2
)

𝑍2
) .

(25)

Substituting 𝜇
0
, 𝑋
0
into (19) and (25), it is easy to compute

that

𝑓
1𝑦
1
𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
) = 𝐷

𝑋
𝑓
1𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
)𝐷
𝑦
1

𝜓 (𝜇
0
, 𝑌
0
)

= −
6𝑝
2

1
𝐸
0
(𝑝
2
𝑦
0
− 𝑐
1
− 𝑐
2
)

𝑍
3

0

,

𝑓
1𝑦
1
𝑦
1
𝑦
2

(𝜇
0
, 𝑋
0
) = 𝐷

𝑋
𝑓
1𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
)𝐷
𝑦
2

𝜓 (𝜇
0
, 𝑌
0
)

=
2𝑝
1
𝑝
2
𝐸
0
(𝑝
1
𝑥
0
− 2𝑝
2
𝑦
0
+ 2𝑐
1
+ 2𝑐
2
)

𝑍
3

0

,

𝑓
1𝑦
1
𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) = 𝐷

𝑋
𝑓
1𝑦
1
𝑦
2

(𝜇
0
, 𝑋
0
)𝐷
𝑦
2

𝜓 (𝜇
0
, 𝑌
0
)

=
2𝑝
2

2
𝐸
0
(2𝑝
1
𝑥
0
− 𝑝
2
𝑦
0
+ 𝑐
1
+ 𝑐
2
)

𝑍
3

0

,

𝑓
1𝑦
2
𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) = 𝐷

𝑋
𝑓
1𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
)𝐷
𝑦
2

𝜓 (𝜇
0
, 𝑌
0
)

=
6𝑝
3

2
𝐸
0
𝑥
0

𝑍
3

0

,

𝑓
2𝑦
1
𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
) = 𝐷

𝑋
𝑓
2𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
)𝐷
𝑦
1

𝜓 (𝜇
0
, 𝑌
0
)

=
6𝑝
3

1
𝐸
0
𝑦
0

𝑍
3

0

,

𝑓
2𝑦
1
𝑦
1
𝑦
2

(𝜇
0
, 𝑋
0
) = 𝐷

𝑋
𝑓
2𝑦
1
𝑦
1

(𝜇
0
, 𝑋
0
)𝐷
𝑦
2

𝜓 (𝜇
0
, 𝑌
0
)

=
2𝑝
2

1
𝐸
0
(2𝑝
2
𝑦
0
− 𝑝
1
𝑥
0
+ 𝑐
1
+ 𝑐
2
)

𝑍
3

0

,
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𝑓
2𝑦
1
𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) = 𝐷

𝑋
𝑓
2𝑦
1
𝑦
2

(𝜇
0
, 𝑋
0
)𝐷
𝑦
2

𝜓 (𝜇
0
, 𝑌
0
)

=
2𝑝
1
𝑝
2
𝐸
0
(𝑝
2
𝑦
0
− 2𝑝
1
𝑥
0
+ 2𝑐
1
+ 2𝑐
2
)

𝑍
3

0

,

𝑓
2𝑦
2
𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
) = 𝐷

𝑋
𝑓
2𝑦
2
𝑦
2

(𝜇
0
, 𝑋
0
)𝐷
𝑦
2

𝜓 (𝜇
0
, 𝑌
0
)

= −
6𝑝
2

2
𝐸
0
(𝑝
1
𝑥
0
− 𝑐
1
− 𝑐
2
)

𝑍
3

0

.

(26)

According to (18), (21), (24), and (26), we obtain the paramet-
ric system (4), which takes the form of

̇𝑦
1
= 𝑎
11
𝑦
1
+ 𝑎
12
𝑦
2
+ 𝑎
13
𝑦
2

1

+ 𝑎
14
𝑦
1
𝑦
2
+ 𝑎
15
𝑦
2

2
+ 𝑎
16
𝑦
3

1

+ 𝑎
17
𝑦
2

1
𝑦
2
+ 𝑎
18
𝑦
1
𝑦
2

2
+ 𝑎
19
𝑦
3

2
+ 𝑜 (|𝑌|

4
) ,

̇𝑦
2
= 𝑎
21
𝑦
1
+ 𝑎
22
𝑦
2
+ 𝑎
23
𝑦
2

1

+ 𝑎
24
𝑦
1
𝑦
2
+ 𝑎
25
𝑦
2

2
+ 𝑎
26
𝑦
3

1

+ 𝑎
27
𝑦
2

1
𝑦
2
+ 𝑎
28
𝑦
1
𝑦
2

2
+ 𝑎
29
𝑦
3

2
+ 𝑜 (|𝑌|

4
) ,

(27)

where 𝑎
11
= −(𝑝

2
𝐸
0
/𝑍
0
)𝑦
0
, 𝑎
12
= −𝑥
0
+ (𝑝
2
𝐸
0
/𝑍
0
)𝑥
0
, 𝑎
13
=

−1 + 𝑝
1
𝐸
0
(𝑝
2
𝑦
0
− 𝑐
1
− 𝑐
2
)/𝑍
2

0
, 𝑎
14
= −1 + 𝑝

2
𝐸
0
(𝑝
2
𝑦
0
− 𝑝
1
𝑥
0
−

𝑐
1
− 𝑐
2
)/𝑍
2

0
, 𝑎
15
= −𝑝

2

2
𝐸
0
𝑥
0
/𝑍
2

0
, 𝑎
16
= −𝑝

2

1
𝐸
0
(𝑝
2
𝑦
0
− 𝑐
1
−

𝑐
2
)/𝑍
3

0
, 𝑎
17
= 𝑝
1
𝑝
2
𝐸
0
(𝑝
1
𝑥
0
− 2𝑝
2
𝑦
0
+ 2𝑐
1
+ 2𝑐
2
)/𝑍
3

0
, 𝑎
18
=

𝑝
2

2
𝐸
0
(2𝑝
1
𝑥
0
− 𝑝
2
𝑦
0
+ 𝑐
1
+ 𝑐
2
)/𝑍
3

0
, 𝑎
19
= 𝑝
3

2
𝐸
0
𝑥
0
/𝑍
3

0
, 𝑎
21
=

𝑏𝑦
0
+ (𝑝
1
𝐸
0
/𝑍
0
)𝑦
0
, 𝑎
22
= (𝑝
2
𝐸
0
/𝑍
0
)𝑦
0
, 𝑎
23
= −𝑝
2

1
𝐸
0
𝑦
0
/𝑍
2

0
,

𝑎
24
= 𝑏 + 𝑝

1
𝐸
0
(𝑝
1
𝑥
0
− 𝑝
2
𝑦
0
− 𝑐
1
− 𝑐
2
)/𝑍
2

0
, 𝑎
25
= 𝑝
2
𝐸
0
(𝑝
1
𝑥
0
−

𝑐
1
− 𝑐
2
)/𝑍
2

0
, 𝑎
26
= 𝑝
3

1
𝐸
0
𝑦
0
/𝑍
3

0
, 𝑎
27
= 𝑝
2

1
𝐸
0
(2𝑝
2
𝑦
0
− 𝑝
1
𝑥
0
+

𝑐
1
+ 𝑐
2
)/𝑍
3

0
, 𝑎
28
= 𝑝
1
𝑝
2
𝐸
0
(𝑝
2
𝑦
0
− 2𝑝
1
𝑥
0
+ 2𝑐
1
+ 2𝑐
2
)/𝑍
3

0
, and

𝑎
29
= −𝑝
2

2
𝐸
0
(𝑝
1
𝑥
0
− 𝑐
1
− 𝑐
2
)/𝑍
3

0
.

Compared with the normal form (17), we should normal-
ize the parametric system (27) with the following nonsingular
linear transformation:

(

𝑦
1

𝑦
2

) = 𝑝(

𝑢
1

𝑢
2

) , 𝑈 := (𝑢
1
, 𝑢
2
)
𝑇
, (28)

where 𝑝 = (
−𝑎
12
0

𝑎
11
−𝜔
0
). For convenience, we use 𝑌 instead of

𝑈. Thus, the normal form of system (4) takes the form of

̇𝑦
1
= 𝜔
0
𝑦
2
+ 𝑏
11
𝑦
2

1
+ 𝑏
12
𝑦
1
𝑦
2

+ 𝑏
13
𝑦
2

2
+ 𝑏
14
𝑦
3

1
+ 𝑏
15
𝑦
2

1
𝑦
2

+ 𝑏
16
𝑦
1
𝑦
2

2
+ 𝑏
17
𝑦
3

2
+ 𝑜 (|𝑌|

4
) ,

̇𝑦
2
= − 𝜔

0
𝑦
1
+ 𝑏
21
𝑦
2

1
+ 𝑏
22
𝑦
1
𝑦
2

+ 𝑏
23
𝑦
2

2
+ 𝑏
24
𝑦
3

1
+ 𝑏
25
𝑦
2

1
𝑦
2

+ 𝑏
26
𝑦
1
𝑦
2

2
+ 𝑏
27
𝑦
3

2
+ 𝑜 (|𝑌|

4
) ,

(29)

where 𝑏
11

= −(𝑎
13
𝑎
2

12
+ 𝑎
15
𝑎
2

11
− 𝑎
11
𝑎
12
𝑎
14
)/𝑎
12
,

𝑏
12

= −(𝑎
12
𝑎
14
𝜔
0
− 2𝑎
11
𝑎
15
𝜔
0
)/𝑎
12
, 𝑏
13

= −𝑎
15
𝜔
2

0
/𝑎
12
,

𝑏
14

= −(𝑎
11
𝑎
17
𝑎
2

12
+ 𝑎
19
𝑎
3

11
− 𝑎
16
𝑎
3

12
− 𝑎
12
𝑎
18
𝑎
2

11
)/𝑎
12
,

𝑏
15

= −(2𝑎
11
𝑎
12
𝑎
18
𝜔
0
− 𝑎
17
𝑎
2

12
𝜔
0
− 3𝑎
19
𝑎
2

11
𝜔
0
)/𝑎
12
,

𝑏
16
= −(3𝑎

11
𝑎
19
𝜔
2

0
− 𝑎
12
𝑎
18
𝜔
2
)/𝑎
12
, 𝑏
17
= 𝑎
19
𝜔
3

0
/𝑎
12
, 𝑏
21
=

−(𝑎
23
𝑎
2

12
+ 𝑎
25
𝑎
2

11
− 𝑎
11
𝑎
12
𝑎
24
− 𝑎
11
𝑏
11
)/𝜔
0
, 𝑏
22
= −(𝑎

12
𝑎
24
𝜔
0
−

2𝑎
11
𝑎
25
𝜔
0
− 𝑎
11
𝑏
12
)/𝜔
0
, 𝑏
23

= −(𝑎
25
𝜔
2

0
− 𝑎
11
𝑏
13
)/𝜔
0
,

𝑏
24
= (𝑎
26
𝑎
3

12
+ 𝑎
12
𝑎
28
𝑎
2

11
+ 𝑎
11
𝑏
14
− 𝑎
11
𝑎
27
𝑎
2

12
− 𝑎
29
𝑎
3

11
)/𝜔
0
,

𝑏
25

= (𝑎
27
𝑎
2

12
𝜔
0
+ 3𝑎
29
𝑎
2

11
𝜔
0
+ 𝑎
11
𝑏
15
− 2𝑎
11
𝑎
12
𝑎
28
𝜔
0
)/𝜔
0
,

𝑏
26

= −(3𝑎
11
𝑎
29
𝜔
2

0
− 𝑎
12
𝑎
28
𝜔
2
− 𝑎
11
𝑏
16
)/𝜔
0
, and

𝑏
27
= (𝑎
29
𝜔
3

0
− 𝑎
11
𝑏
17
)/𝜔
0
.

Summarizing the previous results, we arrive at the follow-
ing theorem.

Theorem 2. For the system (4), there exist a positive constant
𝜀 and two small enough neighborhoods of the positive equilib-
rium point𝑋

0
(𝜇): 𝑂 and 𝑃, where 0 < 𝜀 ≪ 1, 𝑂 ⊂ 𝑃.

(1) If 𝜎
0
> 0, that is,

4𝑏
11
𝑏
21

𝜔
0

+
2𝑏
22
𝑏
23

𝜔
0

+
2𝑏
11
𝑏
22

𝜔
0

+ 6𝑏
14

+ 2𝑏
16
+ 2𝑏
25
+ 6𝑏
27

>
2𝑏
11
𝑏
12

𝜔
0

+
4𝑏
21
𝑏
23

𝜔
0

+
2𝑏
11
𝑏
12

𝜔
0

,

(30)

then,

(i) when 𝜇
0
< 𝜇 < 𝜇

0
+ 𝜀, 𝑋

0
(𝜇) repels all the points in

𝑃, and𝑋
0
(𝜇) is unstable;

(ii) when 𝜇
0
−𝜀 < 𝜇 < 𝜇

0
, there exists at least one periodic

solution in 𝑂, one of them repels all the points in 𝑂 \
{𝑋
0
(𝜇)}, and there also exists one (may be the same

one) that repels all the points in 𝑃 \ 𝑂, and 𝑋
0
(𝜇) is

locally asymptotically stable.

(2) If 𝜎
0
< 0, that is,

4𝑏
11
𝑏
21

𝜔
0

+
2𝑏
22
𝑏
23

𝜔
0

+
2𝑏
11
𝑏
22

𝜔
0

+ 6𝑏
14

+ 2𝑏
16
+ 2𝑏
25
+ 6𝑏
27
<
2𝑏
11
𝑏
12

𝜔
0

+
4𝑏
21
𝑏
23

𝜔
0

+
2𝑏
11
𝑏
12

𝜔
0

,

(31)

then,

(i) when 𝜇
0
− 𝜀 < 𝜇 < 𝜇

0
,𝑋
0
(𝜇) absorbs all the points in

𝑃, and𝑋
0
(𝜇) is locally asymptotically stable;

(ii) when 𝜇
0
< 𝜇 < 𝜇

0
+𝜀, there exists at least one periodic

solution in 𝑂, one of them absorbs all the points in
𝑂\{𝑋

0
(𝜇)}, and there also exists one (may be the same

one) that absorbs all the points in 𝑃 \ 𝑂, and𝑋
0
(𝜇) is

unstable.
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Figure 1: When 𝜇 = 0.155 < 𝜇
0
, the positive equilibrium point𝑋

0
(𝜇) is locally asymptotically stable.

Proof. From (17) and (29), we can obtain that

𝑎
1

11
= 2𝑏
11
, 𝑎

1

12
= 𝑏
12
, 𝑎

1

22
= 2𝑏
13
,

𝑎
1

111
= 6𝑏
14
, 𝑎

1

122
= 2𝑏
16
, 𝑎

2

11
= 2𝑏
21
,

𝑎
2

12
= 𝑏
22
, 𝑎

2

22
= 2𝑏
23
, 𝑎

2

112
= 2𝑏
25
, 𝑎

2

222
= 6𝑏
27
.

(32)
According to the Hopf bifurcation theorem in [1, 14], next we
will judge the sign of the value 𝜎

0
which is defined as follows:

16𝜎
0
:= {𝑎
1

11
(𝑎
2

11
− 𝑎
1

12
) + 𝑎
2

22
(𝑎
2

12
− 𝑎
1

22
)

+ (𝑎
2

11
𝑎
2

12
− 𝑎
1

12
𝑎
1

22
)} ⋅ (𝜔

0
)
−1

+ (𝑎
1

111
+ 𝑎
1

122
+ 𝑎
2

112
+ 𝑎
2

222
)

= {
4𝑏
11
𝑏
21

𝜔
0

+
2𝑏
22
𝑏
23

𝜔
0

+
2𝑏
11
𝑏
22

𝜔
0

+ 6𝑏
14
+ 2𝑏
16
+ 2𝑏
25
+ 6𝑏
27
}

− {
2𝑏
11
𝑏
12

𝜔
0

+
4𝑏
21
𝑏
23

𝜔
0

+
2𝑏
11
𝑏
12

𝜔
0

} .

(33)

In what follows, there are two cases that ought to be
discussed. That is, 𝜎

0
> 0 and 𝜎

0
< 0. And then the following

process is similar to the proof of theHopf bifurcation theorem
in [1, 14], so the process is omitted here.

Remark 3. The local stability of 𝑋
0
is equivalent to the local

stability of 𝑥
0
.

4. Numerical Simulations

In this section, we present some numerical simulations to
illustrate our theoretical analysis. On the basis of condition
(9), the coefficients of the system (4) are chosen as follows:

𝑝
1
= 6.5, 𝑝

2
= 3, 𝑐

1
= 1.5,

𝑐
2
= 1, 𝑏 = 1.5, 𝑑 = 0.4;

(34)

then the system (4) becomes

𝑑𝑥

𝑑𝑡
= 𝑥 (1 − 𝑥 − 𝑦 − 𝐸) ,

𝑑𝑦

𝑑𝑡
= 𝑦 (−0.4 + 1.5𝑥 − 𝐸) ,

0 = 𝐸 (6.5𝑥 − 1.5) + 𝐸 (3𝑦 − 1) − 𝜇.

(35)

Clearly, the system (35) has a positive equilibrium point𝑋
0
=

(𝑥
0
, 𝑦
0
, 𝐸
0
) = (0.3484, 0.5290, 0.1226), and the bifurcation

value 𝜇
0
= 0.1657.
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Figure 2: Periodic solutions bifurcating from𝑋
0
(𝜇) when 𝜇 = 0.164 < 𝜇

0
.

In Theorem 2, we let 𝜀 = 0.015, and then, by Theorem 2,
the positive equilibrium point 𝑋

0
(𝜇) of the system (35) is

locally asymptotically stable when 𝜇 = 0.155 < 𝜇
0
, which has

been illustrated in Figure 1; the periodic solution occurs from
𝑋
0
(𝜇) when 𝜇 = 0.164 < 𝜇

0
, which has been illustrated in

Figure 2; the positive equilibrium point 𝑋
0
(𝜇) of the system

(35) is unstable when 𝜇 = 0.171 > 𝜇
0
, which has been

illustrated in Figure 3.

5. Discussion

In this paper, we investigate the effects of the varying
economic profit on the dynamics of the bioeconomic system
(4). According toTheorem 2, we can see that if the fishermen’s
pursuit of economic profit 𝜇 is equal to or larger than the
bifurcation value 𝜇

0
, then the status of preys, the predators,

and the harvest effort will be unstable. Clearly, this is harmful
to the predator-prey biological economic system. Therefore,
in order to ensure the continuable and healthy development
of the biological economic system as well as maintain the
ideal income from the harvest effort, the fishermen ought to
guarantee that their positive economic profit 𝜇 is less than the
bifurcation value 𝜇

0
.

As we know, harvesting has a strong impact on the
dynamic evolution of a population. And many works have

been done for the predator-prey system with harvesting; see
[7–9, 11–16, 20]. Particularly, a class of biological economic
systems is proposed in [8, 11–13, 15, 20]. Some scholars analyze
the system with predator harvesting and some scholars
analyze the system with prey harvesting. Compared with the
above researches, the main contribution of this paper lies
in the following aspect. The predator-prey system we con-
sider incorporates nonselective harvesting. In fact, predator
harvest and prey harvest can also bring economic benefits
for us, so the system with nonselective harvesting that we
investigate is more realistic. And the analysis result in this
paper will be more scientific. So the modified model in our
paper enriches the database for the predator-prey biological
economic system.

In addition, stage structure, time delays, diffusion effects,
and disease effectsmay be incorporated into our bioeconomic
system, which would make the bioeconomic system exhibit
much more complicated dynamics.
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