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We study heterogeneous Cournot oligopolies of variable sizes and compositions, in which the firms have different degrees of
rationality, being either rational firmswith perfect foresight or naive best response firmswith static expectations. Each oligopoly can
be described using its size and composition, that is, the fraction of firms that are rational. We take into account two frameworks,
one in which the decisional rules are exogenously assigned and the other in which the firms may change their heuristics. We
consider a switching mechanism based on a logit rule, where the switching propensity is regulated by a parameter which represents
the evolutionary pressure. In the fixed fractions setting, we prove that, in general, the composition has a stabilizing effect, while
increasing the oligopoly size leads to instability. However, we show that, for particular parameters settings, stability is not affected
by the composition or the firms number. Similarly, in the evolutionary fractions setting, we analytically prove that when marginal
costs are identical, increasing the evolutionary pressure has a destabilizing effect. Nevertheless, focusing on particular examples
with different marginal costs we are able to show that evolutionary pressure may also have a stabilizing or a neutral role.

1. Introduction

An oligopoly is a market structure which consists of only
a few firms that, in order to decide their productions, take
into account at the same time both their own actions and
those of their competitors. Since the first formal theory
of oligopoly developed by Cournot in 1838 (see [1]), the
research focused on the decisional mechanisms that firms
may adopt in choosing their strategies and on the different
behaviors of the oligopoly models obtained combining such
rules, in particular when the firms are not fully rational, so
that they have to adjust their production level over time.
In this case, the oligopolistic competition can be modeled
using a discrete dynamical system. The investigation about
oligopolistic dynamical models can be subdivided into two
research strands, concerning homogeneous oligopolies, in
which all the firms adopt the same adjustment mechanism,
and heterogeneous oligopolies, in which there are at least two
firms that adopt different decisional mechanisms.

Starting from the seminal contributions by Palander
[2] and Theocharis [3], several homogeneous frameworks
have been investigated (see, e.g., the works by Lampart
[4], Matsumoto and Szidarovszky [5], and Naimzada and
Tramontana [6]), involving different economic contexts or
behavioral rules. See [7] for a survey on nonlinear oligopolies
and the references therein. The common feature of such
models is that, from the equilibrium stability point of view,
the situation can severely change when the oligopoly size
increases. In particular, the size has in general a destabilizing
role.

The literature about heterogeneous oligopolies, usually
dealing with a limited and fixed in advance number of firms,
has instead developed in the direction of studying the possible
consequences arising from considering different rationality
degrees, also on the stability of Nash equilibria. In particular,
such works, in view of giving a foundation to the concept
of Nash equilibrium, investigate under which conditions the
dynamics converge towards the Nash equilibrium or towards
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a different attractor. To that research strand belong, for
instance, the contributions by Agiza and Elsadany [8, 9], by
Agiza et al. [10, 11], by Ahmed and Agiza [12], by Angelini et
al. [13], by Bischi and Naimzada [14], by Canovas et al. [15],
by Cavalli and Naimzada [16, 17], by Cavalli et al. [18, 19],
by Elabbasy et al. [20], by Ji [21], by Li and Ma [22], by
Matsumoto [23], by Naimzada and Sbragia [24], by Pu and
Ma [25], by Tramontana [26], and by Tuinstra [27].

Ourwork aims to investigate the role of oligopoly size and
composition for heterogeneous competitions. In particular,
we consider an economy characterized by linear demand
function and we assume linear total costs for the firms.
The heterogeneity we study is in terms of the degree of
rationality of the firms, as we consider two different kinds
of informational endowments. Both the firms decide their
production level using a best reply mechanism, in order to
maximize their profits with respect to the production levels
of all their competitors. However, rational firms have full
informational and computational capabilities to solve such
optimization problem and are endowed with perfect foresight,
so that they exactly know their competitors next period
strategies. On the other hand, naive best response firms are
not able to predict such strategies, and thus they assume
that their opponents next time production levels remain
the same as in the current period, that is, they have static
expectations. Finally, we allow each group of firms to have
different marginal costs. The approach of considering the
market split into two groups of firms, identical within each
group, is common in the oligopoly literature, as shown, for
instance, by the works of Anufriev et al. [28], Bischi et al.
[29], Cavalli et al. [18], Droste et al. [30], and Matsumoto
and Szidarovszky [5]. The theoretical rationale for such an
approach is that although it concerns one of the simplest
possible forms of heterogeneity among firms, besides keeping
the study analytically tractable, it allows obtaining interesting
results, for example, with respect to equilibrium stability and
chaotic dynamics, which can be straightforwardly interpreted
and linked to the heterogeneity in rationality.

In the adjustment mechanism of the less rational best
response firms, because of capacity and financial constraints,
we introduce a constraint on the strategy variation, so
that firms can not immediately increase or decrease their
production level by arbitrarily large quantities, but they adapt
it towards best reply strategy with a certain reaction speed. To
this end, we introduce a limiting mechanism similar to that
used in [31] in microeconomic frameworks and in [32, 33] in
macroeconomic settings. On the contrary, due to the high
degree of rationality of the rational firms, we assume that
they are able to freely modify their production level in every
period.

We study two different settings, considering the case of
fixed fractions, in which the behavioral rules are exogenously
assigned and do not change, and that of evolutionary frac-
tions, in which the firms can switch between the different
mechanisms on the basis of the realized performances of the
firms. To exploit the competition between all the oligopolists,
we adopt a switching mechanism based on the logit rule, as
proposed by Brock and Hommes in [34]. The performances
of the behavioral rules are evaluated taking into account

the profits that the rule allowed achieving in the previous
period. In particular, we assign additional fixed informational
costs to the rational firms, as a consequence of their high
degree of rationality. The switching between mechanisms is
regulated by the so-called evolutionary pressure parameter,
which describes the propensity of a firm to switch to themost
profitable rule.

In the existing literature, the study of heterogeneous
oligopolies of generic size can be found in the works by
Anufriev et al. [28], Banerjee and Weibull [35], Droste et
al. [30], and Gale and Rosenthal [36]. However, only the
setting and the aims of the contribution by Droste et al.
are similar to those investigated in the present work, as in
both papers the economy is characterized by the same linear
demand function and the firms may be both rational and
best response. However, in [30] it is considered an infinite
population of firms that are randomly matched in pairs at
each discrete-time period and that play a symmetric Cournot
duopoly game, so that the influence of oligopoly size on
the dynamics can not be studied and only the evolutionary
fractions framework is investigated.Moreover, no production
limiters are taken into account and a replicator switching
mechanism is considered, which is different from that studied
in our contribution. Another substantial difference is that
in [30] firms compute their best response with respect to
the average industry output, while in our work all the firms
compete against each other. Finally, in [30] the firms have
identical cost functions, while in our paper theymay possibly
be different.

About the fixed fractionsmodel, ourmain results concern
the effects of the oligopoly size and composition and of the
evolutionary pressure on the stability of the equilibrium,
while when evolutionary fractions are considered, we study
the role of the evolutionary pressure, focusing on what
happens with either identical or different marginal costs.
Moreover, for the model with fixed fractions we investigate
the effects of the production limiters and of the reaction
speed. In such setting, we also show that marginal costs do
not affect the local stability of the unique steady state, which
coincideswith theNash equilibrium, and that its loss of stabil-
ity occurs through a flip bifurcation. Furthermore, we prove
that even if for most configurations the oligopoly size have a
destabilizing effect, there exist oligopoly compositions which
remain stable as the number of firms increases, differently
from the other results about homogeneous oligopolies in the
related literature.

For the evolutionary fractions model, we prove that there
is a unique equilibrium fraction, which in general is not
analytically computable. We then show that the effects of
evolutionary pressure can change depending on the marginal
costs difference.When the technology of the firms is identical
or when the best response firms are more efficient than the
rational ones, increasing the evolutionary pressure always
leads to instability. Conversely, we provide simulative evi-
dence of the fact that if the marginal cost of the rational
firms is sufficiently smaller than the marginal cost of the
best response firms, evolutionary pressure either can have
no effect or may stabilize the dynamics. Such results, which
are made possible by studying the effect of different marginal
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costs, are in contrast to the existing literature, in which
evolutionary pressure only has a destabilizing role.

The remainder of the paper is organized as follows. In
Section 2, we describe the static Cournot competition and
the decisional mechanisms. In Section 3 we introduce and
study the fixed fractions model. In Section 4 we deal with
the evolutionary fractions model. Conclusions and future
perspectives are collected in Section 5.

2. Oligopolistic Cournot Game

In the model we will deal with in the present paper, agents
differ for their degree of rationality. In what follows we first
introduce the static game; the decisional mechanisms are
then described in Section 2.1.

We consider a homogeneous market characterized by 𝑁

firms that produce quantities 𝑞
𝑖
, 𝑖 = 1, . . . , 𝑁, of the same

good, for which we assume a linear inverse demand function

𝑝 (𝑄) = 𝑎 − 𝑏𝑄, (1)

where 𝑄 = ∑
𝑁

𝑖=1 𝑞𝑖 is aggregate demand and 𝑎, 𝑏 are positive
constants. In particular, in such formulation 𝑎 represents
the market size. We assume that the firms have linear cost
functions

𝐶 (𝑞
𝑖
) = 𝑐
𝑖
𝑞
𝑖
, (2)

where 𝑐
𝑖
∈ {𝑐1, 𝑐2}, 𝑖 = 1, . . . , 𝑁, are two possibly different

(constant) marginal costs. In such setting, the industry con-
sists of two groups of 𝜔𝑁 and (1−𝜔)𝑁 firms identical within
each group, respectively, where 𝜔 represents the fraction of
firms with marginal cost 𝑐1.

The previous framework sets up a game, in which the
players are the𝑁 oligopolists, the admissible strategies are all
the nonnegative production choices 𝑞

𝑖
≥ 0, and the payoff

functions are the profit functions

𝜋
𝑖
= 𝑞
𝑖 (𝑎 − 𝑏𝑄) − 𝑐

𝑖
𝑞
𝑖
, 𝑖 = 1, . . . , 𝑁. (3)

Weonly consider the situation inwhich all firms have nonnull
production levels, and so we focus on the internal Nash
equilibrium, namely, the equilibrium consisting of strictly
positive strategies. We derive its expression in the next result.

Proposition 1. Let

𝑎

> max {𝑐1 +𝑁 (𝑐1 − 𝑐2) (1−𝜔) , 𝑐2 −𝑁𝜔 (𝑐1 − 𝑐2) , 0} .
(4)

Then, there is a unique internal Nash equilibrium for our game,
for which

𝑞
⋆

1 =
𝑎 − 𝑐1 − 𝑁 (𝑐1 − 𝑐2) (1 − 𝜔)

𝑏 (𝑁 + 1)
, (5a)

𝑞
⋆

2 =
𝑎 − 𝑐2 + 𝑁𝜔 (𝑐1 − 𝑐2)

𝑏 (𝑁 + 1)
, (5b)

where 𝑞
⋆

1 is the equilibrium strategy of the firms having
marginal cost 𝑐1 and 𝑞

⋆

2 is the equilibrium strategy of those
having marginal cost 𝑐2.

Proof. Firstly, we compute the best responses of the 𝑖th player
of the first group and of the 𝑘th player of the second group
with respect to the remaining players strategies. This can be
done by deriving the first order conditions on payoffs of the
two groups, obtaining

𝑎 − 𝑏 (𝑄1,−𝑖 +𝑄2) − 2𝑏𝑞1,𝑖 − 𝑐1 = 0,
𝑎 − 𝑏 (𝑄1 +𝑄2,−𝑘) − 2𝑏𝑞2,𝑘 − 𝑐2 = 0,

(6)

where𝑄
𝑗
, 𝑗 = 1, 2, are the aggregate strategies of the players of

the 𝑗th group, and𝑄1,−𝑖 (resp.,𝑄2,−𝑘) is the aggregate strategy
of all the players belonging to the first (resp., second) group
except the 𝑖th (resp., 𝑘th) player. From (6) we obtain the best
response functions

𝑞1,𝑖 =
𝑎 − 𝑐1 − 𝑏 (𝑄1,−𝑖 + 𝑄2)

2𝑏
, (7)

provided that 𝑎 − 𝑐1 − 𝑏(𝑄1,−𝑖 + 𝑄2) > 0, and

𝑞2,𝑘 =
𝑎 − 𝑐2 − 𝑏 (𝑄1 + 𝑄2,−𝑘)

2𝑏
, (8)

provided that 𝑎 − 𝑐2 − 𝑏(𝑄1 + 𝑄2,−𝑘) > 0. It is easy to see that
both (7) and (8) satisfy second order conditions. In order to
obtain the equilibrium strategy by solving (7)-(8), we notice
that players belonging to the same group are identical, so that
they have the same equilibrium strategy

𝑞
⋆

1,𝑖 = 𝑞
⋆

1 ,

𝑞
⋆

2,𝑘 = 𝑞
⋆

2 ,
(9)

and, consequently,

𝑄
⋆

1 = 𝜔𝑁𝑞
⋆

1 ,

𝑄
⋆

2 = (1−𝜔)𝑁𝑞
⋆

2 .
(10)

We obtain the internal Nash equilibrium (5a) and (5b) by
inserting the previous expressions in (7) and (8) and solving
the resulting 2 × 2 system, provided that (4) is satisfied.

We observe that in theNash equilibrium it holds that 𝑞∗1 >

𝑞
∗

2 if and only if 𝑐2 > 𝑐1.

2.1. The Decisional Mechanisms. In this work, we aim to
study the dynamics arising when the two groups of firms
adopt different decisional mechanisms. In particular, we will
suppose that not all the firms are fully rational, so that a
dynamic adjustment process naturally arises. The behavioral
rules we focus on are best reply mechanisms with either
perfect foresight (rational firms) or static expectations (best
response firms). Rational firms have complete informational
and computational capabilities, so that they are able to opti-
mally respond to the other players strategies and are endowed
with perfect foresight about the next period production level
of their competitors. Best response firms have a reduced
degree of rationality with respect to rational firms, as they
assume their opponents next period production to be the
same as in the past period.
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In the remainder of the present section we will obtain
the reaction functions of each group of players. Without loss
of generality, we assume that rational firms have marginal
cost 𝑐1. Moreover, we denote by𝑄1,𝑡 the aggregate production
of rational firms and by 𝑄2,𝑡 the aggregate output of best
response players, both at time 𝑡, while wewill denote by𝑄1,−𝑖,𝑡
the aggregate production at time 𝑡 of all rational firms except
firm 𝑖. We remark that, in principle, both the best reply of
rational and of best response players may be null. Since we
only want to focus on positive dynamics for the production
levels, we will not deal with such situations.

Rational Players. If we consider a generic rational firm 𝑖, we
have that its profit is given by

𝜋1,𝑖 = 𝑞1,𝑖,𝑡+1 (𝑎 − 𝑏 (𝑄1,−𝑖,𝑡+1 + 𝑞1,𝑖,𝑡+1 +𝑄2,𝑡+1))

− 𝑐1𝑞1,𝑖,𝑡+1,
(11)

where we denoted by 𝑞1,𝑖,𝑡+1 the strategy of firm 𝑖 at time
𝑡 + 1, by 𝑄1,−𝑖,𝑡+1 the aggregate quantity at time 𝑡 + 1 of all
the rational players but the 𝑖th, and by 𝑄2,𝑡+1 the aggregate
strategy of the best response players at time 𝑡 + 1.

As noticed in the proof of Proposition 1, since all rational
players are identical, we can compute the reaction function of
a generic rational player with respect to the correctly foreseen
strategies of the best response players.

Proposition2. If𝑄2,𝑡+1 < (𝑎−𝑐1)/𝑏, then the reaction function
of a generic rational player 𝑞1,𝑖 at time 𝑡 + 1, one denotes by
𝑞1,𝑡+1, is given by

𝑞1,𝑡+1 =
𝑎 − 𝑐1 − 𝑏𝑄2,𝑡+1

𝑏 (𝜔𝑁 + 1)
. (12)

Proof. We can compute the best response of the 𝑖th rational
player with respect to the aggregate strategies of the remain-
ing rational players and of the best response players acting as
in the proof of Proposition 1, obtaining from the first order
conditions of (11)

𝑞1,𝑖,𝑡+1 =
𝑎 − 𝑐1 − 𝑏 (𝑄1,−𝑖,𝑡+1 + 𝑄2,𝑡+1)

2𝑏
, (13)

provided that 𝑎−𝑐1−𝑏(𝑄1,−𝑖,𝑡+1+𝑄2,𝑡+1) > 0.The second order
conditions are indeed satisfied. Since all the rational players

are identical, we can set𝑄1,−𝑖,𝑡+1 = (𝜔𝑁−1)𝑞1,𝑖,𝑡+1 in (13) and,
solving the resulting equation with respect to 𝑞1,𝑖,𝑡+1, we find
(12), as desired.

Best Response Players. Best response players are able to
optimally respond to the other players strategies, but since
they do not have perfect foresight, they rather use static
expectations. The reaction function of the generic 𝑘th player
at time 𝑡 + 1, we denote by 𝑞2,𝑘,𝑡+1, is then the best response to
𝑄
−𝑘,𝑡+1, which is the aggregate strategy at time 𝑡 + 1 of all the

remaining players, namely,

𝑞2,𝑘,𝑡+1 =
𝑎 − 𝑐2 − 𝑏𝑄

−𝑘,𝑡

2𝑏
, (14)

provided that 𝑄
−𝑘,𝑡

< (𝑎 − 𝑐2)/𝑏.

3. Fixed Fractions Oligopoly Model

Our purpose is to study a heterogeneous oligopoly, that is,
a competition in which not all the firms adopt the same
behavioral rule. To this end, we suppose that there is always
at least one rational firm and at least one best response firm,
namely, 𝜔 ∈ [1/𝑁, 1 − 1/𝑁]. Moreover, we assume that the
initial production levels of the best response firms are the
same, which in particular means that their production levels
are identical. Finally, since we only focus on economically
interesting positive production levels, in what follows we
consider initial data that give rise to positive trajectories. Such
assumptions allow us to identify the generic rational and best
response player’s strategies, respectively, with

𝑞1,𝑡 = 𝑞1,𝑖,𝑡,

𝑞2,𝑡 = 𝑞2,𝑘,𝑡,
(15)

which give 𝑄1,−𝑖,𝑡 = (𝜔𝑁 − 1)𝑞1,𝑡, 𝑄2,𝑡 = (1 − 𝜔)𝑁𝑞2,𝑡, and
𝑄
−𝑘,𝑡

= 𝜔𝑁𝑞1,𝑡 + ((1 − 𝜔)𝑁 − 1)𝑞2,𝑡, and to rewrite (13) and
(14) as

𝑞1,𝑡+1 =
𝑎 − 𝑐1 − 𝑏 (1 − 𝜔)𝑁𝑞2,𝑡+1

𝑏 (𝜔𝑁 + 1)
, (16)

𝑞2,𝑡+1 =
𝑎 − 𝑐2 − 𝑏 (𝜔𝑁𝑞1,𝑡 + ((1 − 𝜔)𝑁 − 1) 𝑞2,𝑡)

2𝑏
. (17)

Combining (16) and (17) we have

𝑞2,𝑡+1 =
𝑎 − 𝑐2 − 𝑏 (𝜔𝑁 ((𝑎 − 𝑐1 − 𝑏 (1 − 𝜔)𝑁𝑞2,𝑡) / (𝑏 (𝜔𝑁 + 1))) + ((1 − 𝜔)𝑁 − 1) 𝑞2,𝑡)

2𝑏
. (18)

Gathering in the previous expression the terms with 𝑞2,𝑡, we
obtain

𝑞2,𝑡+1

= − 𝑏
𝑞2,𝑡

2𝑏
(
−𝑏𝜔 (1 − 𝜔)𝑁

2

𝑏 (𝜔𝑁 + 1)
+ (1−𝜔)𝑁− 1)

+
𝑎 − 𝑐2 − 𝑏𝜔𝑁 ((𝑎 − 𝑐1) / (𝑏 (𝜔𝑁 + 1)))

2𝑏

= −
𝑞2,𝑡

2
(
−𝜔 (1 − 𝜔)𝑁

2

(𝜔𝑁 + 1)
+ (1−𝜔)𝑁− 1)

+
𝑎 − 𝑐2 − 𝜔𝑁 ((𝑎 − 𝑐1) / (𝜔𝑁 + 1))

2𝑏
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= −
𝑞2,𝑡

2
(
−𝜔 (1 − 𝜔)𝑁

2
+ ((1 − 𝜔)𝑁 − 1) (𝜔𝑁 + 1)
(𝜔𝑁 + 1)

)

+
(𝑎 − 𝑐2) (𝜔𝑁 + 1) − 𝜔𝑁 (𝑎 − 𝑐1)

2𝑏 (𝜔𝑁 + 1)

= −
𝑞2,𝑡

2
(
(1 − 𝜔)𝑁 − (𝜔𝑁 + 1)

(𝜔𝑁 + 1)
)

+
(𝑎 − 𝑐2) + 𝜔𝑁 (𝑐1 − 𝑐2)

2𝑏 (𝜔𝑁 + 1)

=
𝑞2,𝑡

2
(
2𝜔𝑁 + 2 − 1 − 𝑁

(𝜔𝑁 + 1)
) −

(𝑐2 − 𝑎) − 𝜔𝑁 (𝑐1 − 𝑐2)

2𝑏 (𝜔𝑁 + 1)
,

(19)

which gives

𝑞2,𝑡+1 = 𝑓 (𝑞2,𝑡)

= (1−
(1 + 𝑁)

2 (1 + 𝜔𝑁)
) 𝑞2,𝑡

−
𝑐2 − 𝑎 − 𝜔𝑁 (𝑐1 − 𝑐2)

2𝑏 (𝜔𝑁 + 1)
.

(20)

However, we suppose that the best response player does
not immediately choose the new production level 𝑞2,𝑡+1, but
he cautiously moves towards it. This also reflects the fact
that, in concrete situations, firms can only handle limited
production variations, for example, because of capacity or
financial constraints (see [31, page 507]), so that the maxi-
mum admissible upper and lower output variations may be
described, by means of two positive parameters 𝑎1 and 𝑎2,
as 𝑎1 and −𝑎2, respectively. The possibility of varying 𝑎1 and
𝑎2 allows investigating the effects of the output limitation
degree.The values assigned to such parameters depend on the
kind of commodity under analysis and on its unit production
time and are calibrated on the base of empirical research in
different oligopolistic markets.

The cautious behavior of the best response player may be
modeled in several ways, introducing, for instance, an inertial
parameter which anchors the next time production to the
strategy 𝑞2,𝑡, as done by Matsumoto and Szidarovszky in [5].
In our contribution, we adopt a different cautious adjustment,
similar to that used by Du et al. in [31], which is obtained by
(20) as follows:

𝑞2,𝑡+1 = 𝑞2,𝑡 +𝑔 (𝛾 (𝑓 (𝑞2,𝑡) − 𝑞2,𝑡)) , (21)

where 𝑔 : R → R is the nonlinear sigmoidal map defined as

𝑔 (𝑥) = 𝑎2 (
𝑎1 + 𝑎2

𝑎1𝑒
−𝑥 + 𝑎2

− 1) , (22)

with 𝑎1, 𝑎2 positive parameters, playing the role of horizontal
asymptotes and restricting the possible output variation as,
from period 𝑡 to 𝑡 + 1, 𝑞2 can increase at most by 𝑎1 and
decrease at most by 𝑎2. Indeed, 𝑔 is a strictly increasing
function which takes values in (−𝑎2, 𝑎1) and, as shown in

Proposition 3, its introduction does not alter the steady states
of (20). Parameter 𝛾 > 0 in (21) represents the speed
of reaction of the agents with respect to production level
variations.

Variation limitation mechanisms similar to (21) have
been also applied to different variables in macroeconomic
settings, for instance, in [32, 33, 37–40]. As regards the specific
shape of the output variation limiters in our work, instead
of describing the output variation through a piecewise linear
map, we chose to deal with the sigmoidal function in (22),
which is differentiable and allows an easier mathematical
treatment of the model. We stress that 𝑆-shaped functions
alike to the one in (22) have already been considered, in a
macroeconomic framework, in the Kaldorian business cycle
model in [41], and, in a microeconomic setting, in the
tâtonnement process in [42].

In view of the subsequent analysis, it is expedient to
introduce the map 𝜑 : (0, +∞) → R associated with the
dynamic equation in (21) and defined as

𝜑 (𝑞2) = 𝑞2 +𝑔 (𝛾 (𝑓 (𝑞2) − 𝑞2)) = 𝑞2

+ 𝑎2 (
𝑎1 + 𝑎2

𝑎1𝑒
𝛾(((1+𝑁)/(2(1+𝜔𝑁)))𝑞2+(𝑐2−𝑎−𝑁𝜔(𝑐1−𝑐2))/(2𝑏(𝑁𝜔+1))) + 𝑎2

− 1) .

(23)

We remark that in the oligopolistic competition described by
(21), the decisionalmechanisms are exogenously assigned and
do not change.

3.1. Stability and Bifurcation Analysis. We start studying the
possible steady states of (21) and their connections with the
Nash equilibrium. We have the following straightforward
result.

Proposition 3. Equation (21) has a unique positive steady
state which coincides with the Nash equilibrium (5a) and (5b).

Proof. The expression for 𝑞
⋆

2 can be immediately found by
solving the fixed point equation 𝜑(𝑥) = 𝑥, with 𝜑 as in (23),
noticing that no other solutions exist. The expression for 𝑞

⋆

1
directly follows by that for 𝑞⋆2 and by (16).

The next results are devoted to the study of the local
stability of theNash equilibrium.We also present several sim-
ulations to confirm the theoretical analysis and to investigate
the loss of stability. As we are going to prove, marginal costs
do not affect the stability, so in all the simulations we set
𝑐1 = 𝑐2 = 0.1. Moreover, unless otherwise specified, we set
𝑎1 = 3, 𝑎2 = 1, and 𝛾 = 1 in the sigmoid function in (22).

Lemma 4. For the dynamical equation in (21), the steady state
𝑞
⋆

2 = (𝑎− 𝑐2 +𝑁𝜔(𝑐1 − 𝑐2))/(𝑏(𝑁+ 1)) is locally asymptotically
stable if

𝛾𝑎1𝑎2 (1 + 𝑁)

4 (𝑎1 + 𝑎2) (1 + 𝜔𝑁)
< 1. (24)



6 Discrete Dynamics in Nature and Society

Proof. A direct computation shows that

𝜑
󸀠
(𝑞
⋆

2 ) = 1−
𝛾𝑎1𝑎2 (1 + 𝑁)

2 (𝑎1 + 𝑎2) (1 + 𝜔𝑁)
. (25)

Since 𝜑
󸀠
(𝑞
⋆

2 ) < 1 is always satisfied, the local asymptotic
stability conditions require just that 𝜑󸀠(𝑞⋆2 ) > −1, which is
fulfilled for 𝛾𝑎1𝑎2(1 + 𝑁)/(4(𝑎1 + 𝑎2)(1 + 𝜔𝑁)) < 1. This
concludes the proof.

We conclude the present section by showing that when
our dynamic equation loses stability at the steady state, a
period-doubling bifurcation occurs.

Lemma 5. For the dynamical equation in (21), a period-
doubling bifurcation occurs at the steady state 𝑞

⋆

2 = (𝑎 − 𝑐2 +

𝑁𝜔(𝑐1 − 𝑐2))/(𝑏(𝑁 + 1)) when 𝛾𝑎1𝑎2(1 + 𝑁)/(4(𝑎1 + 𝑎2)(1 +

𝜔𝑁)) = 1.

Proof. According to the proof of Proposition 1, the steady
state 𝑞

∗

2 is stable when 𝐹
󸀠
(𝑞
∗

2 ) > −1. Then, the map 𝐹 satisfies
the canonical conditions required for a flip bifurcation (see
[43]) and the desired conclusion follows. Indeed, when
𝐹
󸀠
(𝑌
∗
) = −1, that is, for 𝛾𝑎1𝑎2(1+𝑁)/(4(𝑎1 + 𝑎2)(1+𝜔𝑁)) =

1, then 𝑌
∗ is a nonhyperbolic fixed point; when 𝛾𝑎1𝑎2(1 +

𝑁)/(4(𝑎1 + 𝑎2)(1 + 𝜔𝑁)) < 1 it is attracting and finally when
𝛾𝑎1𝑎2(1 + 𝑁)/(4(𝑎1 + 𝑎2)(1 + 𝜔𝑁)) > 1, it is repelling.

In the next corollaries, we will derive the stability con-
ditions for 𝛾, 𝜔,𝑁, 𝑎1, and 𝑎2, respectively, in view of under-
standing whether they have a stabilizing or a destabilizing
effect, and we will illustrate our conclusions through some
pictures. We stress that those stability conditions may be
immediately deduced by (4), by putting in evidence one of
the parameters.

Corollary 6. For the dynamical equation in (21), the steady
state 𝑞⋆2 is locally asymptotically stable if

𝛾 <
4 (𝑎1 + 𝑎2) (1 + 𝜔𝑁)

𝑎1𝑎2 (1 + 𝑁)
. (26)

Such result shows that, as expected, reactivity 𝛾 has a
destabilizing role. We illustrate such property in Figure 1, in
whichwe consider an oligopoly of𝑁 = 50 firms, with𝜔𝑁 = 5
rational firms, with an economy characterized by 𝑎 = 30 and
𝑏 = 0.1. The initial output level is set equal to 𝑞2,0 = 6. In
agreement with (26), equilibrium loses its stability for 𝛾 ≈

0.6275.

Corollary 7. For the dynamical equation in (21), the steady
state 𝑞⋆2 is locally asymptotically stable if

𝜔 > (
𝛾 (1 + 𝑁) 𝑎1𝑎2
4 (𝑎1 + 𝑎2)

− 1) 1
𝑁

. (27)

Hence, increasing 𝜔, that is, the fraction of rational
players, has a stabilizing role. However, if, for instance,

(
𝛾 (1 + 𝑁) 𝑎1𝑎2
4 (𝑎1 + 𝑎2)

− 1) > 1, (28)

or, equivalently,

𝑁 <
8𝑎1 + 8𝑎2 − 𝑎1𝑎2𝛾

𝑎1𝑎2𝛾
, (29)

all the heterogeneous oligopoly configurations are stable.
For the simulation reported in Figure 2, we considered an

oligopoly of 𝑁 = 22 firms, set in an economy characterized
by 𝑎 = 24 and 𝑏 = 0.2. The initial strategy is 𝑞2,0 = 5.
The oligopoly composition is studied for 𝜔 ∈ [1/22, 0.2]. In
the boxes, we highlight the regions corresponding to 1, 2, 3,
and 4 rational firms. Condition (27) predicts that the Nash
equilibrium is stable for 𝜔 > 0.1506, and this means that
at least 4 rational firms (i.e., 𝜔 = 0.1818) are needed to
guarantee stability.We remark that with a reduced number of
rational firms, we have both periodic and chaotic dynamics.

Moreover, we may put 𝑁 in evidence in (24), finding the
following.

Corollary 8. For the dynamical equation in (21), the following
conclusions hold true:

(1) if 𝛾𝑎1𝑎2 − 4(𝑎1 + 𝑎2) > 0, then the steady state 𝑞
⋆

2 is
never stable;

(2) if 𝛾𝑎1𝑎2 − 4𝜔(𝑎1 + 𝑎2) < 0, then 𝑞
⋆

2 is always locally
asymptotically stable;

(3) if 𝛾𝑎1𝑎2 − 4(𝑎1 + 𝑎2) < 0 < 𝛾𝑎1𝑎2 − 4𝜔(𝑎1 + 𝑎2), then
𝑞
⋆

2 is locally asymptotically stable for

𝑁 <
4 (𝑎1 + 𝑎2) − 𝛾𝑎1𝑎2

𝛾𝑎1𝑎2 − 4𝜔 (𝑎1 + 𝑎2)
. (30)

Hence, we can conclude that increasing the population
size 𝑁 has overall a destabilizing effect. More precisely,
Condition (1) says that, for sufficiently large reaction speeds,
all the considered families of oligopolies, independently of
their size and composition, have an unstable equilibrium.
Conversely, there are oligopoly compositions (with 𝜔 >

(𝛾𝑎1𝑎2)/[4(𝑎1 + 𝑎2)], according to Condition (2)) which
have a stable equilibrium independently of the oligopoly
size. We stress that this is in contrast with the literature
of homogeneous oligopolies, as there the oligopoly size has
always a destabilizing role. In the present case, the neutral
role of 𝑁 is possible thanks to the presence of rational
players, on condition that their fraction does not change. In
the remaining situations, oligopoly size has a destabilizing
effect (see Condition (3)). We show this last situation in
Figure 3, setting 𝑎 = 20, 𝑏 = 0.1 and considering oligopoly
compositions with 𝜔 = 1/9. The initial strategy is 𝑞2,0 = 6.22.
As predicted by (30), only for oligopolies with size 𝑁 <

10.6364 the equilibrium is stable, so just the oligopoly with
9 best response firms and 1 rational firm has a stable steady
state. In oligopolies with 𝑁 = 18, 27, 36 firms and 2, 3, 4
rational firms, respectively, we observe cyclic trajectories,
while for 𝑁 = 45 and 5 rational firms the dynamics are
chaotic.

Finally, putting in evidence 𝑎1 or 𝑎2 in (24) we obtain the
following result.
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Figure 1: Bifurcation diagrams of quantities 𝑞1 and 𝑞2 with respect to the speed of reaction 𝛾, which always has a destabilizing role.
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Figure 2: Bifurcation diagrams of quantities 𝑞1 and 𝑞2 with respect to the oligopoly composition 𝜔, for𝑁 = 22, 𝑎 = 24, 𝑏 = 0.2. Increasing
the number of best response firms leads to instability.
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Figure 3: Bifurcation diagrams of quantities 𝑞1 and 𝑞2 with respect to the oligopoly size𝑁, for 𝑎 = 20, 𝑏 = 0.1 and keeping fixed the oligopoly
composition 𝜔 = 1/9. Increasing the oligopoly size has a destabilizing effect.
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Corollary 9. For the dynamical equation in (21), the following
conclusions hold true:

(1) if (1+𝑁)𝑎2𝛾 − 4(1 +𝜔𝑁) < 0, then the steady state 𝑞⋆2
is always stable;

(2) if (1 + 𝑁)𝑎2𝛾 − 4(1 + 𝜔𝑁) > 0, then 𝑞
⋆

2 is stable for

𝑎1 <
4𝑎2 (1 + 𝜔𝑁)

(1 + 𝑁) 𝑎2𝛾 − 4 (1 + 𝜔𝑁)
; (31)

(3) if (1+𝑁)𝑎1𝛾−4(1+𝜔𝑁) < 0, then 𝑞
⋆

2 is always stable;
(4) if (1 + 𝑁)𝑎1𝛾 − 4(1 + 𝜔𝑁) > 0, then 𝑞

⋆

2 is stable for

𝑎2 <
4𝑎1 (1 + 𝜔𝑁)

(1 + 𝑁) 𝑎1𝛾 − 4 (1 + 𝜔𝑁)
. (32)

Hence, from Conclusions (1) and (2) we can infer that
increasing the upper bound 𝑎1 has overall a destabilizing
effect. In particular, an increase in 𝑎1 is destabilizing when
−𝑎2 is negative enough (see Figure 4 for a graphic illustration
of the case with 𝑁 = 15, 𝜔 = 1/3, 𝑎2 = 3, 𝑎 =

60, 𝑏 = 0.1, 𝑞0,2 = 37.06). Similarly, from Conclusions (3)

and (4) it follows that decreasing the lower bound −𝑎2 has
overall a destabilizing effect. In particular, a decrease in −𝑎2
is destabilizing when 𝑎1 is large (see Figure 5 for a graphic
illustration of the case with 𝑁 = 15, 𝜔 = 1/3, 𝑎1 = 3, 𝑎 =

60, 𝑏 = 0.1, 𝑞0,2 = 37.06). We stress that the conclusions
we have drawn from Corollary 9 may also be read in terms of
chaos control, as they say that decreasing the output variation
possibilities has a stabilizing effect.

4. Endogenous Switching Mechanism

We now assume that agents, in any time period, may switch
between the groups of rational players and best response play-
ers. This requires introducing an evolutionary mechanism
for the fractions, in which we will denote by 𝜔

𝑡
the variable

describing the fraction of rational players. To such end, we
assume that the decisional rules are commonly known, as
well as both past performances and costs. We assume that
the firms first choose their decisionalmechanism on the basis
of the previous period performances, and then, according
to such choice, they decide their strategy. Several switching
mechanisms can be adopted. In the present work, in order to
better model a form of competition in which each player is
opposed to any other player, we adopt the logit choice rule,
based on the logit function (see [34])

𝑧 (𝑥, 𝑦) =
exp (𝛽𝑥)

exp (𝛽𝑥) + exp (𝛽𝑦)
, (33)

where 𝑥 and 𝑦 denote the previous period performances by
the two groups of firms and 𝑧(𝑥, 𝑦) describes the evolution
of the fraction of firms whose past profits are given by
𝑥. Moreover, the positive parameter 𝛽 is usually referred
to as the “evolutionary pressure” or “intensity of choice,”
and regulates the switching between the different decisional
mechanisms, in the sense that as 𝛽 increases, it is more likely

that firms switch to the decisional mechanism with higher
net profits. Due to the supplementary degree of rationality
of rational firms, we suppose that rational players incur costs
for information gathering. We take into account such costs
considering nonnull informational costs𝐶 > 0, so that the net
profits of rational firms are actually given by𝜋1,𝑡 = 𝑞1,𝑡𝑝(𝑄𝑡)−
𝑐1𝑞1,𝑡 − 𝐶.

Sincewe are interested in studying heterogeneous compe-
titions only, we have to slightly modify the logit function, so
that the switching variable assumes values just in (1/𝑁, (𝑁 −

1)/𝑁) rather than in [0, 1]. In this way, we always have at
least a firm for each kind of decisionalmechanism. Hence, we
are led to consider the following two-dimensional dynamical
system:
𝑞2,𝑡+1 = 𝑞2,𝑡

+ 𝑎2 (
𝑎1 + 𝑎2

𝑎1𝑒
𝛾(((1+𝑁)/(2(1+𝜔

𝑡
𝑁)))𝑞2,𝑡+(𝑐2−𝑎−𝑁𝜔𝑡(𝑐1−𝑐2))/(2𝑏(𝑁𝜔𝑡+1))) + 𝑎2

− 1) ,

𝜔
𝑡+1 =

1
𝑁

+
𝑁 − 2
𝑁

1
1 + 𝑒𝛽Δ𝜋𝑡

,

(34)

where the net profit differential is

Δ𝜋
𝑡
= 𝜋2,𝑡 −𝜋1,𝑡

= 𝑞2,𝑡 (𝑎 − 𝑏𝑄
𝑡
− 𝑐2) − 𝑞1,𝑡 (𝑎 − 𝑏𝑄

𝑡
− 𝑐1) +𝐶,

(35)

with

𝑞1,𝑡 =
𝑎 − 𝑐1 − 𝑏 (1 − 𝜔

𝑡
)𝑁𝑞2,𝑡

𝑏 (𝜔
𝑡
𝑁 + 1)

(36)

and thus

𝑄
𝑡
=

𝑁 (𝜔
𝑡
(𝑎 − 𝑐1) + 𝑞2,𝑡𝑏 (1 − 𝜔

𝑡
))

𝑏 (𝜔
𝑡
𝑁 + 1)

. (37)

We stress that in this way we are assuming that the rational
players also know which will be the next period oligopoly
composition 𝜔

𝑡+1, while the best response players expect it
to remain the same as in the previous period.

Notice that when 𝛽 = 0 the evolutionary mechanism
reduces to 𝜔

𝑡+1 = 1/2, and thus, for any initial partitioning of
the population, the players do not consider nor compare the
performances but they immediately split uniformly between
the two decisional mechanisms. Conversely, as 𝛽 → ∞,
the logit function becomes similar to a step function, so
that the firms are inclined to rapidly switch to the most
profitable mechanism and 𝜔

𝑡+1 approaches 1/𝑁 or 1 − 1/𝑁.
In particular, if the net profit differential is positive (i.e., best
response firms achieve the best profits), the number of best
response firms will be larger than that of the rational players
(𝜔
𝑡+1 > 1/2) and vice versa (𝜔

𝑡+1 < 1/2) when the profit
differential is negative.

We start by analyzing the simpler case in which the
marginal costs 𝑐1 and 𝑐2 coincide, and then we will investigate
the general framework with 𝑐1 ̸= 𝑐2.

(i) The Case with 𝑐
1

= 𝑐
2
. In this particular framework

in which we assume that the marginal costs for all firms
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Figure 4: Bifurcation diagrams of quantities 𝑞1 and 𝑞2 with respect to the upper bound of production variation 𝑎1. Increasing 𝑎1 leads to
instability.
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Figure 5: Bifurcation diagrams of quantities 𝑞1 and 𝑞2 with respect to the lower bound of production variation −𝑎2. Increasing 𝑎2, namely,
decreasing the lower bound −𝑎2, leads to instability.

coincide, and we set 𝑐1 = 𝑐2 = 𝑐, it is possible to analytically
find the unique solution to system (34). Indeed, since by (5a)
and (5b) it follows that

𝑞
∗

1 = 𝑞
∗

2 =
𝑎 − 𝑐

𝑏 (𝑁 + 1)
, (38)

then in equilibriumΔ𝜋
∗
= 𝜋
∗

2 −𝜋
∗

1 = 𝑞
∗

2 (𝑎−𝑏𝑄
∗
−𝑐)−𝑞

∗

1 (𝑎−
𝑏𝑄
∗
− 𝑐) + 𝐶 = 𝐶 and thus

𝜔
∗
=

1
𝑁

(1+
𝑁 − 2
1 + 𝑒𝛽𝐶

) . (39)

Notice that the expression for 𝑞
∗

1 = 𝑞
∗

2 in (38) does not
depend on 𝜔 and that such steady state values are positive
for 𝑎 > 𝑐 (we stress that a large enough value for 𝑎

makes the steady state values for 𝑞1 and 𝑞2 positive also in
the general case with possibly different marginal costs (see
(5a) and (5b))). Hence, we will maintain such assumption in
the remainder of the paper.

The stability analysis requires computing at the steady
state (𝑞

∗

2 , 𝜔
∗
) the Jacobian matrix for the bidimensional

function

𝐺 : (0, +∞)× [
1
𝑁

,
𝑁 − 1
𝑁

] 󳨀→ R×(
1
𝑁

,
𝑁 − 1
𝑁

) ,

(𝑞2, 𝜔) 󳨃󳨀→ (𝐺1 (𝑞2, 𝜔) , 𝐺2 (𝑞2, 𝜔)) ,

𝐺1 (𝑞2, 𝜔) = 𝑞2

+ 𝑎2 (
𝑎1 + 𝑎2

𝑎1𝑒
𝛾(((1+𝑁)/(2(1+𝜔𝑁)))𝑞2+(𝑐2−𝑎−𝑁𝜔(𝑐1−𝑐2))/(2𝑏(𝑁𝜔+1))) + 𝑎2

− 1) ,

𝐺2 (𝑞2, 𝜔) =
1
𝑁

(1+
𝑁 − 2
1 + 𝑒𝛽Δ𝜋

) ,

(40)

where
Δ𝜋 = 𝜋2 −𝜋1 = (𝑞2 − 𝑞1) (𝑎 − 𝑏𝑄− 𝑐) +𝐶, (41)
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with 𝑞1 = (𝑎 − 𝑐1 − 𝑏(1 − 𝜔)𝑁𝑞2)/(𝑏(𝜔𝑁 + 1)) and thus 𝑄 =

𝑁(𝜔(𝑎 − 𝑐) + 𝑞2𝑏(1 − 𝜔))/(𝑏(𝜔𝑁 + 1)).
It holds that

𝐽
𝐺
(𝑞
∗

2 , 𝜔
∗
) =

[
[
[

[

1 −
𝛾𝑎1𝑎2 (1 + 𝑁)

2 (𝑎1 + 𝑎2) (1 + 𝜔∗𝑁)
0

𝐽21 0

]
]
]

]

, (42)

where 𝐽21 = 𝜕
𝑞2
𝐺2(𝑞
∗

2 , 𝜔
∗
) is not essential in view of

the subsequent computations. Indeed, the standard Jury
conditions (see [44]) for the stability of our system read as

1− det 𝐽
𝐺
(𝑞
∗

2 , 𝜔
∗
) = 1 > 0,

1+ tr 𝐽
𝐺
(𝑞
∗

2 , 𝜔
∗
) + det 𝐽

𝐺
(𝑞
∗

2 , 𝜔
∗
)

= 1+ 1−
𝛾𝑎1𝑎2 (1 + 𝑁)

2 (𝑎1 + 𝑎2) (1 + 𝜔∗𝑁)
> 0,

1− tr 𝐽
𝐺
(𝑞
∗

2 , 𝜔
∗
) + det 𝐽

𝐺
(𝑞
∗

2 , 𝜔
∗
)

= 1− 1+
𝛾𝑎1𝑎2 (1 + 𝑁)

2 (𝑎1 + 𝑎2) (1 + 𝜔∗𝑁)
> 0.

(43)

Notice that just the second one is not always satisfied, but it
leads to (24), in which we have to insert the expression for 𝜔∗
from (39). Then it may be rewritten as

𝑒
𝛽𝐶

<
4 (𝑎1 + 𝑎2)𝑁 − 𝛾𝑎1𝑎2 (1 + 𝑁)

𝑎1𝑎2 (1 + 𝑁) 𝛾 − 8 (𝑎1 + 𝑎2)
. (44)

Since 𝛽𝐶 > 0, the latter relation is never satisfied when the
right hand side is smaller than 1, that is, when

4 (𝑎1 + 𝑎2) (𝑁 + 2) − 2𝛾𝑎1𝑎2 (1 + 𝑁)

𝑎1𝑎2 (1 + 𝑁) 𝛾 − 8 (𝑎1 + 𝑎2)
< 0, (45)

which is fulfilled for 𝛾 < 𝛾 and for 𝛾 > 𝛾, with

𝛾 =
8 (𝑎1 + 𝑎2)

𝑎1𝑎2 (1 + 𝑁)
,

𝛾 =
2 (𝑎1 + 𝑎2) (𝑁 + 2)

𝑎1𝑎2 (1 + 𝑁)
.

(46)

Notice that 𝛾 > 𝛾 when 𝑁 > 2. When 𝑁 = 2, (45) reads as
−2 < 0, which is true for any value of 𝛾.

In the remaining cases, that is, when the right hand side
of (44) is larger than 1, the latter is fulfilled for

𝛽𝐶 < log(
4 (𝑎1 + 𝑎2)𝑁 − 𝛾𝑎1𝑎2 (1 + 𝑁)

𝑎1𝑎2 (1 + 𝑁) 𝛾 − 8 (𝑎1 + 𝑎2)
) . (47)

The above considerations say that when the marginal
costs are identical, the evolutionary pressure has a destabiliz-
ing effect. Such phenomenon is illustrated by the simulation
in Figure 6, in which we considered an oligopoly of 𝑁 = 100
firms in an economy described by 𝑎 = 120 and 𝑏 = 0.1.
Marginal costs are 𝑐1 = 𝑐2 = 0.2 and the informational cost of
the rational firm is 𝐶 = 0.1.The initial strategy is 𝑞2,0 = 9 and
the initial fraction of rational firms is 𝜔0 = 0.1. Moreover, we

set 𝑎1 = 1, 𝑎2 = 3, and 𝛾 = 0.34. Since the steady state value
for the fraction of rational firms is decreasing in Figure 6,
firms are likely to switch to the best response rule, which gives
larger profits. When 𝛽𝐶 increases and reaches the value 3.2,
the equilibrium loses its stability through a flip bifurcation.

(ii) The Case with 𝑐
1

̸= 𝑐
2
. When the marginal costs are

different, the expression for the steady state value for 𝜔 for
(34) can not be analytically computed, but a simple continuity
argument shows that a steady state for system (34) always
exists and that it is unique. Indeed, at any steady state (𝑞⋆2 , 𝜔

⋆
)

it holds that, similarly to what obtained in (5b) for the case
without switching mechanism,

𝑞
⋆

2 =
𝑎 − 𝑐2 + 𝑁𝜔

⋆
(𝑐1 − 𝑐2)

𝑏 (𝑁 + 1)
. (48)

Let us then define the continuous map

𝜓 : [
1
𝑁

,
𝑁 − 1
𝑁

] 󳨀→ R,

𝜔 󳨃󳨀→
1
𝑁

(1+
𝑁 − 2

1 + 𝑒𝛽Δ𝜋(𝜔)
) ,

(49)

where in the expression

Δ𝜋 (𝜔) = (𝜋2 −𝜋1) (𝜔)

= 𝑞2 (𝜔) (𝑎 − 𝑏𝑄 (𝜔) − 𝑐2)

− 𝑞1 (𝜔) (𝑎 − 𝑏𝑄 (𝜔) − 𝑐1) +𝐶,

(50)

with

𝑞2 (𝜔) =
𝑎 − 𝑐2 + 𝑁𝜔 (𝑐1 − 𝑐2)

𝑏 (𝑁 + 1)
,

𝑞1 (𝜔) =
𝑎 − 𝑐1 − 𝑏 (1 − 𝜔)𝑁𝑞2 (𝜔)

𝑏 (𝜔𝑁 + 1)
,

(51)

and thus

𝑄 (𝜔) =
𝑁 (𝜔 (𝑎 − 𝑐1) + 𝑞2 (𝜔) 𝑏 (1 − 𝜔))

𝑏 (𝜔𝑁 + 1)
, (52)

we wish to underline the dependence of all terms on 𝜔.
Since (𝑁− 2)/(1+𝑒

𝛽Δ𝜋(𝜔)
) ranges in (0, 𝑁− 2), then 𝜓(𝜔)

ranges in (1/𝑁, (𝑁−1)/𝑁). Hence,𝜓 is a continuous function
that maps [1/𝑁, (𝑁 − 1)/𝑁] into (1/𝑁, (𝑁 − 1)/𝑁) and thus,
by the Brouwer fixed point theorem, there exists (at least one)
𝜔
∗
∈ (1/𝑁, (𝑁−1)/𝑁) such that𝜓(𝜔

∗
) = 𝜔
∗; that is,𝜔∗ is (a)

steady state value for system (34) together with 𝑞
⋆

2 in (48).The
value of the steady state for 𝑞1 can finally be found by (36).

Let us now prove that system (34) admits a unique steady
state. To such aim, it suffices to show that Δ𝜋(𝜔) in (50)
is monotone with respect to 𝜔. In particular, we will show
that the derivative of Δ𝜋(𝜔) with respect to 𝜔, we denote by
(Δ𝜋)
󸀠
(𝜔), is always positive. Indeed, cumbersome but trivial

computations leads to (Δ𝜋)
󸀠
(𝜔) = 2𝑁(𝑐1 − 𝑐2)

2
/𝑏(𝑁 + 1) > 0.

This concludes the proof.
Finally, we report the expression for the Jacobian matrix

at (𝑞
∗

2 , 𝜔
∗
) for the bidimensional function associated with
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Figure 6: Bifurcation diagrams of quantities 𝑞1 and 𝑞2 and fraction 𝜔 with respect to the evolutionary pressure 𝛽. Increasing 𝛽 leads to
instability.

(34), we still denote by 𝐺, due to the similarity with the case
with equal marginal costs (see (40)), omitting the (tedious)
computations leading to its derivation. Of course, in this case
we do not know the value of the steady state (𝑞

∗

2 , 𝜔
∗
). Hence,

we will just use (48) in order to express 𝑞∗2 as a function of𝜔
∗.

It holds that

𝐽
𝐺
(𝑞
∗

2 , 𝜔
∗
)

=

[
[
[
[

[

1 −
𝛾𝑎1𝑎2 (1 + 𝑁)

2 (𝑎1 + 𝑎2) (1 + 𝜔∗𝑁)

𝛾𝑎1𝑎2𝑁(𝑐1 − 𝑐2)

2𝑏 (𝑎1 + 𝑎2) (1 + 𝜔∗𝑁)

𝐽21 𝐽22

]
]
]
]

]

,

(53)

where

𝐽21

= −
𝛽 (𝑁 − 2) (𝑎 − 𝑐2 − 2𝑁𝑐1 + 2𝑁𝑐2 + 3𝑁𝑐1𝜔

∗
− 3𝑁𝑐2𝜔

∗
) 𝑒
𝛽Δ𝜋

𝑁(1 + 𝑒𝛽Δ𝜋)
2
(𝑁𝜔∗ + 1)

,

(54)

or, since in equilibrium we have

𝜔
∗
=

1
𝑁

(1+
𝑁 − 2
1 + 𝑒𝛽Δ𝜋

) , (55)

equivalently

𝐽21 = −
𝛽 (𝑁𝜔

∗
− 1) (𝑁 − 𝑁𝜔

∗
− 1) (𝑎 − 𝑐2 − 2𝑁𝑐1 + 2𝑁𝑐2 + 3𝑁𝑐1𝜔

∗
− 3𝑁𝑐2𝜔

∗
)

𝑁 (𝑁 − 2) (𝑁𝜔∗ + 1)
,

𝐽22 = −
𝛽 (𝑁 − 2) (𝑐1 − 𝑐2) (2𝑐1 − 𝑎 − 𝑐2 + 2𝑁𝑐1 − 2𝑁𝑐2 − 𝑁𝑐1𝜔

∗
+ 𝑁𝑐2𝜔

∗
) 𝑒
𝛽Δ𝜋

𝑏 (1 + 𝑒𝛽Δ𝜋)
2
(𝑁𝜔∗ + 1) (𝑁 + 1)

,

(56)
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or equivalently, using again (55),

𝐽22

= −
𝛽 (𝑁𝜔

∗
− 1) (𝑁 − 𝑁𝜔

∗
− 1) (𝑐1 − 𝑐2)

𝑏 (𝑁 − 2) (𝑁𝜔∗ + 1) (𝑁 + 1)

⋅ (2𝑐1 − 𝑎− 𝑐2 + 2𝑁𝑐1 − 2𝑁𝑐2 −𝑁𝑐1𝜔
∗
+𝑁𝑐2𝜔

∗
) .

(57)

The elements of 𝐽
𝐺
(𝑞
∗

2 , 𝜔
∗
) are too complicated and

do not allow obtaining general stability conditions. Hence,
in order to investigate the possible scenarios arising when
the marginal costs are different, we focus on the following
example. We set 𝑎 = 100, 𝑏 = 0.1 for the economy, 𝑁 =

100, 𝑐1 = 0.1, 𝐶 = 0.05 for the firms, 𝑎1 = 1, 𝑎2 =

3, 𝛾 = 0.34 for the decisional mechanism and we study
what happens for different values of the marginal costs of
best response firms. We consider both the frameworks with
𝑐2 < 𝑐1 and 𝑐1 < 𝑐2, giving special attention to the latter
case, as it describes the economically interesting situation in
which rational firms have improved technology (i.e., reduced
marginal costs) at the price of larger fixed costs.

We start by considering the setting with 𝑐2 = 0.101, so
that the marginal costs of the best response firms is larger but
very close to that of the rational firms. In this case, the profit
differential at the equilibrium is

Δ𝜋 (𝑞
∗

2 , 𝜔
∗
) =

𝜔
∗

50500
+

305101
10100000

> 0. (58)

We stress that when the net profit differential is positive, the
possible equilibrium fractions are only 𝜔

∗
∈ (1/𝑁, 1/2).

Moreover, the positivity of (58) implies that increasing 𝛽,
𝜔
⋆ decreases and thus the fraction of rational players may

become too small to guarantee stability. This conjecture is
confirmed by Figure 7, where we can see that for 𝛽 ≈ 68.19
the equilibrium loses its stability through a flip bifurcation. In
fact, for 𝛽 ≈ 65.19 the equilibrium fraction can be computed
numerically and is given by 𝜔

∗
= 0.13 (corresponding to

13 rational firms out of 100) which implies the equilibrium
strategy 𝑞∗2 = 9.8897.The largest eigenvalue of 𝐽

𝐺
(𝑞
∗

2 , 𝜔
∗
) that

corresponds to this configuration is such that |𝜆| = 0.9287,
which means that the equilibrium is stable. Conversely, for
𝛽 = 68.45, the equilibrium fraction is 𝜔∗ = 0.12, which gives
the equilibrium strategy 𝑞

∗

2 = 9.889789 and the eigenvalues
of 𝐽
𝐺
(𝑞
∗

2 , 𝜔
∗
) are 𝜆1 = 0.506 and 𝜆2 = −1.0006; that is,

equilibrium has lost its stability.

If we further increase the marginal cost of the best
response firms, setting, for example, 𝑐2 = 0.11, we find that
the equilibrium is stable independently of the evolutionary
pressure. In fact, in this case, we have that the profit differen-
tial is given by

Δ𝜋 (𝑞
∗

2 , 𝜔
∗
) =

𝜔
∗

505
−

15029
101000

, (59)

which is negative for all the possible 𝜔
∗

∈ [1/𝑁, 1 −

1/𝑁). In this case, since the equilibrium fraction increases
with 𝛽, namely, the fraction of rational players increases, we
can expect the stability not to be affected by evolutionary
pressure. To prove such conjecture, we notice that at the
equilibrium we have

𝜔
∗
=

49
50 (𝑒𝛽(200𝜔

∗
−15029)/101000 + 1)

+
1
100

≥
1
2
, (60)

from which we can obtain the evolutionary pressure 𝛽 to
which the equilibrium fraction 𝜔

∗ corresponds; that is,

𝛽 =
log ((99 − 100𝜔∗) / (100𝜔∗ − 1))

𝜔∗/505 − 15029/101000
. (61)

Now we consider Jury conditions (43). After substituting the
parameter values and using (61), the first condition reduces
to

𝐿 (𝜔
∗
)

⋅
(100𝜔∗ − 1) (99 − 100𝜔∗) (2033049 − 20000𝜔∗)

19600 (100𝜔∗ + 1) (15029 − 200𝜔∗)

< 1,

(62)

where we set

𝐿 (𝜔
∗
) = log(99 − 100𝜔∗

100𝜔∗ − 1
) . (63)

Condition (62) is satisfied, since 𝐿(𝜔∗) ≤ 0 as the argument of
the logarithm is not larger than 1 for𝜔∗ ≥ 1/2 and the second
factor in (62) is indeed positive for 𝜔∗ ∈ [1/2, 1 − 1/𝑁).

The second condition in (43) reduces to

(99 − 100𝜔∗) (𝜔∗ − 0.01) (40000𝜔∗ − 4071249) 𝐿 (𝜔
∗
) + 3959200000𝜔∗ − 215330990

19796000 (100𝜔∗ + 1)
> 0, (64)

and the positivity of the l.h.s. for 𝜔
∗

∈ [1/2, 1 − 1/𝑁) can
be studied using standard analytical tools. We avoid entering
into details and we only report in Figure 8 the plot of the
function corresponding to the l.h.s. of (64) with respect to
𝜔
∗, which shows its positivity.

The last condition in (43) reads as

(−510000 (𝜔
∗
)
2
+ 510000𝜔∗ − 5049) 𝐿 (𝜔

∗
) + 252399000

1960000000𝜔∗ + 19600000
> 0.

(65)
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Figure 7: Bifurcation diagrams of quantities 𝑞1 and 𝑞2 and fraction 𝜔 with respect to the evolutionary pressure 𝛽. Increasing 𝛽 has a
destabilizing effect for 𝑐2 slightly larger than 𝑐1.

Like for the second condition, we omit the analytical study of
the l.h.s. of (65) andwe only report the plot of the correspond-
ing function in Figure 9, which shows the positivity. Then,
each stability condition is satisfied for all𝛽, which proves that,
at least for this parameter configuration, the equilibrium is
stable independently of the evolutionary pressure.

Then, we consider 𝑐1 > 𝑐2 = 0.09, case in which, as one
might expect, evolutionary pressure has a destabilizing effect.
In fact, we have that the net profit differential

Δ𝜋 (𝑞
∗

2 , 𝜔
∗
) =

𝜔
∗

505
+

24931
101000

(66)

is positive independently of𝜔∗.The resulting scenario is anal-
ogous to the first one, with bifurcation diagrams qualitatively
similar to those reported in Figure 7. The flip bifurcation
occurs for 𝛽 ≈ 16.252. In this case, for 𝛽 = 15.68, the
equilibrium fraction can be computed numerically and is
given by𝜔∗ = 0.03 (3 rational firms out of 100), which implies
the equilibrium strategy 𝑞

∗

2 = 9.895. The largest eigenvalue
of 𝐽
𝐺
(𝑞
∗

2 , 𝜔
∗
) is such that |𝜆| = 0.864 < 1 and thus the

equilibrium is stable.

Conversely, the equilibrium fraction corresponding to
𝛽 = 18.53 is 𝜔

∗
= 0.02 (2 rational firms out of 100), which

gives the equilibrium strategy 𝑞
∗

2 = 9.894. The eigenvalues of
𝐽
𝐺
(𝑞
∗

2 , 𝜔
∗
) are now 𝜆1 = −0.2 and 𝜆2 = −2.4, and thus the

equilibrium is no more stable.
A question naturally arises from the second example:

what happens if the configuration corresponding to 𝛽 = 0
is unstable and the marginal cost is sufficiently favorable to
the rational firms? Let us consider, for instance, the previous
parameters for the economy and the firms, but 𝑎1 = 100, 𝑎2 =

3, 𝛾 = 0.94 for the decisionalmechanism of the best response
firms. We underline that the new value for 𝑎1 allows a larger
increase in production, while the increased 𝛾 models firms
which aremore reactive to production variations.The general
scenario is indeed more “unstable.” If we take 𝑐2 = 0.18,
the behavior for increasing values of the reaction speed is
reported in the bifurcation diagrams of Figure 10, where the
stabilizing role of 𝛽 is evident. For 𝛽 = 0 there is no fraction
evolution and we always have 50 rational firms out of 100, but
the dynamics of production levels are chaotic. As 𝛽 increases,
the dynamics of quantities and fractions become qualitatively
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Figure 9: Plot of the l.h.s. of (65) with respect to the possible
equilibrium fractions 𝜔∗ ∈ [1/2, 1 − 1/𝑁).

more stable, and they converge to the equilibrium for 𝛽 >

0.96. In particular, for 𝛽 = 0.877 we have that the equilibrium
fraction is 𝜔

∗
= 0.78 and the equilibrium strategy is 𝑞

∗

2 =

9.265, for which the eigenvalues of 𝐽
𝐺
(𝑞
∗

2 , 𝜔
∗
) are now 𝜆1 =

−1.032 and 𝜆2 = 0.123, which gives an unstable dynamic.
Conversely, for 𝛽 = 0.962 we have that the equilibrium
fraction is 𝜔

∗
= 0.8 and the equilibrium strategy is 𝑞

∗

2 =

9.249, for which the eigenvalues of 𝐽
𝐺
(𝑞
∗

2 , 𝜔
∗
) are now 𝜆1 =

−0.99 and 𝜆2 = 0.127, which means that the equilibrium is
stable. It is interesting to look also at the profit differential
evolution, which for small values of 𝛽 oscillates between
positive andnegative values, while for larger values it is always
negative.

This allows us to say that, referring to particular param-
eter sets, different behaviors with respect to 𝛽 are possible.
In particular, the neutral and stabilizing roles of 𝛽 are very
interesting as in the existing literature evolutionary pressure
usually introduces instability. The discriminating factor is

for us the net profit differential. When the marginal costs
are identical, as in the previous section and in [30], the
equilibrium profits are the same and the net profit is favorable
to the best response firms, due to the informational costs
of the rational ones. Hence, rational firms are inclined
to switch to the best response mechanism and this shifts
the oligopoly composition towards unstable configurations,
especially when the evolutionary pressure is sufficiently large.
Profits of the rational firms are smaller than those of the
best response firms also when 𝑐1 < 𝑐2 but the difference is
sufficiently small and when 𝑐1 > 𝑐2. Conversely, when 𝑐1 < 𝑐2
and the difference is sufficiently large, we have 𝜋1(𝑞

∗

2 , 𝜔
∗
) −

𝐶 > 𝜋2(𝑞
∗

2 , 𝜔
∗
), so that the best response firms switch to

the more profitable rational mechanism, and this can both
introduce or not affect stability.

5. Conclusions

The general setting we considered allowed us to show
that the oligopoly size, the number of boundedly rational
players, and the evolutionary pressure do not always have
a destabilizing role. Even if the economic setting and the
considered behavioral rules are the same as in [30], themodel
we dealt with gave us the possibility to investigate a wide
range of scenarios which are not present in [30]. Indeed,
the explicit introduction of the oligopoly size in the model
allowed us to analyze in an heterogeneous context the effects
of the firms number on the stability of the equilibrium. We
found a general confirmation of a behavior which is well
known in the homogeneous oligopoly framework; that is,
increasing the firms number 𝑁 may lead the equilibrium to
instability (see [2, 3] for the linear context and, for nonlinear
settings, [12, 45, 46] where isoelastic demand functions are
taken into account). However, we showed that the presence
of both rational and naive firms can give rise to oligopoly
compositions which are stable for any oligopoly size, if the
fraction of “stabilizing” rational firms is sufficiently large.
Similarly, we showed that even if in general replacing rational
firms with best response firms (i.e., decreasing 𝜔) introduces
instability, for particular parameter configurations all the
(heterogeneous) oligopoly compositions of a fixed size are
stable. Hence, in the linear context analyzed in the present
paper the role of 𝜔 is (nearly) intuitive, that is, increasing the
number of rational agents stabilizes the system or varying 𝜔

does not alter the stability. On the other hand, in nonlinear
contexts this may not be true anymore. For instance, in the
working paper [18], where we deal with an isoelastic demand
function, we find that increasing the number of rational
firms may destabilize the system, under suitable conditions
on marginal costs. It would be also interesting to analyze
nonlinear frameworks withmultiple Nash equilibria, in order
to investigate the role of 𝜔 in such a different context, as well.

The results recalled above are obtained in the present
paper for the fixed fraction framework, in which we proved
that stability is not affected by cost differences among the
firms. Conversely, regarding the evolutionary fraction setting
we showed that cost differences may be relevant for stability.
In fact, even if for identical marginal costs we analytically
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Figure 10: Bifurcation diagrams, related to the stabilizing scenario for 𝛽, of quantities 𝑞1 and 𝑞2, of fraction 𝜔 and of the net profit differential
Δ𝜋. The initial composition corresponding to 𝛽 = 0 is unstable but, since the marginal costs are sufficiently favorable to the rational firms,
increasing the propensity to switch stabilizes the dynamics.

proved the destabilizing role of the evolutionary pressure and
informational costs, in agreement with the results in [30],
we showed that the stability can be improved or at least
preserved by the intensity of switching if rational firms are
efficient enough with respect to the best response firms. We
have been able to prove this behavior only for particular
parameter choices, due to the high complexity of the analytic
computations. This last scenario definitely requires further
investigations, in order to extend the results to a wider
range of parameters and to test what happens in different
economic settings, considering, for example, a nonlinear
demand function. Other generalizations may concern the
involved decisional rules, taking into account agents with
further reduced rationality, heuristics which are not based on
a best response mechanism, or evenmore complex scenarios,
where more than two behavioral rules are considered or
where the firms adopting the same behavioral rules are not
identical, also in viewof facing empirical and practicalmarket
contexts.
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