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This paper investigates the codimension-two grazing bifurcations of a three-degree-of-freedom vibroimpact system with
symmetrical rigid stops since little research can be found on this important issue. The criterion for existence of double grazing
periodic motion is presented. Using the classical discontinuity mapping method, the Poincaré mapping of double grazing periodic
motion is obtained. Based on it, the sufficient condition of codimension-two bifurcation of double grazing periodic motion is
formulated, which is simplified further using the Jacobian matrix of smooth Poincaré mapping. At the end, the existence regions
of different types of periodic-impact motions in the vicinity of the codimension-two grazing bifurcation point are displayed
numerically by unfolding diagram and phase diagrams.

1. Introduction

Impacting phenomena exist in a large number of mechanical
systems. Because the collision introduces essential nonlin-
earity and discontinuity, the vibroimpact systems can exhibit
rich and complicated dynamical behavior. There is rich
literature on the analysis of the dynamics for impact oscillator
systems. The early work mainly focuses on the single-
degree-of-freedom impact oscillators, for example, [1–3].
For multidegree-of-freedom vibroimpact systems, detailed
studies of dynamics (including stability and bifurcations)
using numerical simulations and qualitative analyses were
carried out in decades, for example, [4–8]. Aidanpaa and
Gupta [4] analyzed a two-degree-of-freedom vibroimpact
system and obtained the expression of periodic motion,
which is too complex to analyze the dynamical behavior.
Leine [5] presented an asymptotic approximation method
for the critical restitution coefficient of a parametrically
excited impact oscillator and described its dynamics by a
unilaterally constrained Hill’s equation. Yue and Xie [6]
researched the symmetric period 𝑛-2motion andbifurcations
of a two-degree-of-freedom vibroimpact system. Luo [7]
developed a method to investigate the symmetry of solutions

in nonsmooth dynamical systems and obtained all possible
stable and unstable motions. Luo et al. [8] considered mul-
tiperformance, multiprocess coupling, and multiparameter
simulation analysis for dynamics of a two-degree-of-freedom
periodically forced system with a clearance represented by
two symmetric rigid stops.

A special situation arises when an impact with zero
velocity occurs, namely, grazing impact. Grazing impact gives
a nondifferentiable Poincaré mapping, which is important
for the bifurcation when stable nonimpact motion changes
to impact motion. The pioneer work in this field was done
by Nordmark [9], who developed systematic method that
is so-called discontinuity-mapping approach to investigate
grazing dynamics and its attendant bifurcations, providing
the results which laid the foundation for many subsequent
studies, for example, [10–13]. Li et al. [14, 15] investigated
the existence and stability of the grazing periodic trajec-
tory in a two-degree-of-freedom vibroimpact system with
unilateral constraint and symmetric constraints, respectively.
Dankowicz and Zhao [16] analyzed the codimension-one and
codimension-two grazing bifurcations in impact microactu-
ators. Thota et al. [17] investigated the distribution of such
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codimension-two grazing bifurcations in single-degree-of-
freedom impact oscillators and inquired into the possible
dynamical characteristics of the system response on neigh-
borhoods of such bifurcation points. Csaba and Champneys
[18] analyzed nonsmooth bifurcations in both one and two
parameters for a simple mechanical model of a pressure relief
valve which is an autonomous impact oscillator. Dankowicz
and Katzenbach [19] collected four distinct instances of
grazing contact of a periodic trajectory in a hybrid dynamical
system under a common abstract framework and established
selected general properties of the associated near-grazing
dynamics.Mason et al. [20] analyzed amodel of a periodically
forced impact oscillator with two discontinuity surfaces and
provided new insights into the extremely rich dynamical
behavior including codimension-one, codimension-two, and
codimension-three bifurcations by discontinuity-geometry
methodology.

Despite that much work has been carried out to analyze
nonsmooth codimension-two bifurcation of impact system,
little work has been reported on the analysis of such bifurca-
tion inmultidegree-freedomwith two discontinuity surfaces.
In this paper, we investigated codimension-two grazing
bifurcations in three-degree-of-freedom impact oscillator
with symmetrical constraints. This paper is organized as
follows. A three-degree-of-freedom vibroimpact system with
proportional damping property is considered and an existing
criterion of double grazing period-𝑛 motion is proposed in
Section 2. The Poincaré mapping is obtained by combination
of discontinuity map and smooth Poincaré mapping of
double grazing periodic motion in Section 3. The Poincaré
mapping will be used to analyze the sufficient conditions
of stability of double grazing periodic trajectories and
codimension-two grazing bifurcations in Section 4. Using
the above result, the dynamical features near critical points
of grazing codimension-two bifurcation are displayed by
numerical simulation in Section 5. Finally, some conclusions
are drawn in Section 6.

2. Double Grazing Periodic Motion in
Three-Degree-of-Freedom Impact Oscillator

2.1. Mechanical Model. The mechanical model for a three-
degree-of-freedom vibrator with masses 𝑀

1
, 𝑀
2
, and 𝑀

3
is

shown in Figure 1. Displacements of masses𝑀
1
,𝑀
2
, and𝑀

3

are represented by 𝑋
1
, 𝑋
2
, and 𝑋

3
, respectively. The masses

are connected to linear springs with stiffness 𝐾
1
, stiffness

𝐾
2
, and stiffness 𝐾

3
. The excitations on the three masses are

harmonic with amplitudes 𝑃
1
, 𝑃
2
, and 𝑃

3
, respectively. The

excitation frequencyΩ and the phase 𝜏 are the same for three
masses. Mass𝑀

1
moves between rigid stops 𝐴 and 𝐶. When

the displacement𝑋
1
of mass𝑀

1
is 𝐵 or −𝐵, mass𝑀

1
will hit

rigid stop 𝐴 or 𝐶. The impact is described by a coefficient of
restitution 𝑅, and it is assumed that the duration of impact is
negligible compared to the period of the force. Damping in
the mechanical model is assumed as proportional damping
of the Rayleigh type, which in this case implies 𝐶

1
/𝐾
1
=

𝐶
2
/𝐾
2
= 𝐶
3
/𝐾
3
.

Between consecutive impacts, for |𝑋
1
| < 𝐵, the differen-

tial equations of motion are
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) sin (Ω𝑇 + 𝜏) .

(1)

When the impact occurs, for |𝑋
1
| = 𝐵, the velocity of the

impacting mass is changed according to the impact law, and
the impact equations of mass𝑀

1
are given by

�̇�
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, (𝑋
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= 𝐵) ,
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= −𝐵) ,

(2)

where − and + denote the values just before and after impact,
respectively.

Equations (1) and (2) are rewritten in nondimensional
form for |𝑥

1
| < 𝑏:
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(3)
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(4)

where a dot (⋅) denotes differentiation with the nondimen-
sional time 𝑡. Let𝑀

1
̸= 0, 𝐾
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̸= 0, and 𝐹
0
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Figure 1: Schematic of the there-degree-of-freedom impact oscillator with symmetrical constraints.

The nondimensional quantities 𝑚
𝑖
= 𝑀
𝑖
/𝑀
1
, 𝑘
𝑖
= 𝐾
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𝑖
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have been

introduced, where 𝑖 = 1, 2, 3.
Equation (3) is amenable to analytical treatment due to

the special relation between stiffness and damping. Let Ψ
represent the canonical model matrix of (3). 𝜔

1
, 𝜔
2
, and 𝜔

3

denote the eigenfrequencies of the system as impacts do not
occur. Taking Ψ as a transition matrix, the motion equation
(3) under the change of variables 𝑥 = Ψ𝜉 is

𝐼
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𝜉 + 𝐶

̇
𝜉 + Λ𝜉 = 𝐹 sin (𝜔𝑡 + 𝜏) , (5)
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matrix of degree 3 × 3, 𝐶 and Λ are diagonal matrixes, and
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1
, 2𝜁𝜔
2

2
, 2𝜁𝜔
2

3
], Λ = diag[𝜔2

1
, 𝜔
2

2
, 𝜔
2

3
], 𝐹 =

(𝑓
1
, 𝑓
2
, 𝑓
3
)
𝑇
= Ψ
𝑇
𝑃
𝑘
, and 𝑃

𝑘
= (𝑓
10
, 𝑓
20
, 𝑓
30
)
𝑇. The general

solutions of (3) are given by

𝑥
𝑖
(𝑡) =

3

∑

𝑗=1

𝜑
𝑖𝑗
(𝑒
−𝜂𝑗(𝑡−𝑡0)

(𝑎
𝑗
cos𝜔
𝑑𝑗
𝑡 + 𝑏
𝑗
sin𝜔
𝑑𝑗
𝑡)

+𝐴
𝑗
sin (𝜔𝑡 + 𝜏) + 𝐵

𝑗
cos (𝜔𝑡 + 𝜏)) ,

(𝑖 = 1, 2, 3) ,

(6)

where 𝑡
0
denotes the time when mass 𝑀

1
collides with
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(7)

2.2.TheCondition for Existence of Grazing PeriodicMotion. If
oscillator𝑀

1
impacts each rigid constraint with zero velocity

and the direction of the acceleration is opposite to themotion,

then we say that the system is undergoing grazing motion. A
grazing period motion may be denoted by 𝑛-𝑝 which means
that oscillator𝑀

1
grazes with each constraint for 𝑃 times in

𝑛 periodic external excitation force. In the following, we will
derive an existence condition of grazing motion with period
𝑛𝑇, where 𝑇 is the period of external excitation. Assume that
the grazing periodicmotion begins from the grazing point on
constraint 𝐴.

The initial conditions of grazing period-𝑛motion are
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The periodic conditions of grazing period-𝑛motion are
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If the grazing periodic motion begins from the grazing
point on constraint 𝐶, similar to the case above, the initial
conditions and the periodic conditions are
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Substituting the above condition into the general solu-
tions of (6), we can obtain the expression of 𝑎

𝑗
and 𝑏
𝑗
as
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Thus, if
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such that the integral constants 𝑏
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vanishing. Inserting integral constants into (6) gives

𝑑
1
sin 𝜏 + 𝑑

2
cos 𝜏 = 𝑏,

−𝑑
2
sin 𝜏 + 𝑑

1
cos 𝜏 = 0,

(16)

as the grazing periodic motion sets off from the grazing point
on constraint 𝐴 or
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Figure 2: Grazing curve.

where 𝑑
1
= 𝐴
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Based on the analysis above, if there exists a double graz-
ing periodic trajectory in the system with initial condition
and periodic conditions, then system parameters must satisfy
the following condition:
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Using the condition for existence of double grazing
periodic motion for the three-degree-of-freedom impact
system, the curve of points in the (𝜔, 𝑏) parameters space
corresponding to the existence of a double grazing periodic
trajectory with 𝑘

2
= 𝑘
3
= 5, 𝑚

2
= 𝑚
3
= 10, 𝜁

𝑖
= 0.05, and

𝑅 = 0.8 is shown in Figure 2, where 𝑖 = 1, 2, 3.
In order to verify the existence condition obtained,

numerical simulation of the original system equations (3)-
(4) will be given. For fixed 𝑘
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double grazing period-1 motion is obtained with 𝜔 = 0.1,
𝑏 = 1.44159 as shown in Figure 3. Figures 3(a) and 3(b) are the
phase portrait and time history of oscillator𝑀

1
. Figure 3(a)

shows that oscillator 𝑀
1
collides with constraints 𝐴 and 𝐶

with zero velocity. It illustrates the validity of the condition
for existence of grazing periodic motion.
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Figure 3: Double grazing period-1 motions of the system: (a) the phase portraits of oscillator𝑀
1
; (b) the time response of oscillator𝑀

1
.

3. Poincaré Mapping of Double
Grazing Periodic Motion in
Three-Degree-of-Freedom
Impact Oscillator

3.1. Definitions in Geometric Structure. In terms of the state
vector 𝑥 = (𝑥

1
, V
1
, 𝑥
2
, V
2
, 𝑥
3
, V
3
, 𝜃)
𝑇
∈ 𝑅
7, it follows that

𝑑𝑥

𝑑𝑡

= �̇� = 𝑓 (𝑥) = (V
1
, 𝑎
1
, V
2
, 𝑎
2
, V
3
, 𝑎
3
, 𝜔)
𝑇

, (20)

where 𝜃 = 𝜔𝑡mod 2𝜋 denotes the phase of the excitation and
𝑎
𝑖
equals the acceleration of the oscillator as a function of 𝑥

𝑖
,

V
𝑖
, and 𝜃. Denote the corresponding flow function byΦ(𝑥, 𝑡).
Suppose that the movement of the oscillator is limited

by symmetrical rigid constraints placed at |𝑥
1
| = 𝑏 corre-

sponding to state-space discontinuity surfaces𝐷
1
and𝐷

2
(see

Figure 4):

𝐷
1
= 𝑥 | ℎ

𝐷1
(𝑥) = 𝑏 − 𝑥

1
= 0,

𝐷
2
= 𝑥 | ℎ

𝐷2
(𝑥) = −𝑏 − 𝑥

1
= 0,

(21)

such that ℎ𝐷1(𝑥) > 0 and ℎ𝐷2(𝑥) < 0 during the motion of
the oscillator and ℎ𝐷1

𝑥
(𝑥) = ℎ

𝐷2

𝑥
(𝑥) = (−1, 0, 0, 0, 0, 0, 0). Let

ℎ
𝑃1
(𝑥) = ℎ

𝐷1
(𝑥)𝑓(𝑥) = −V

1
and ℎ𝑃2(𝑥) = ℎ

𝐷2
(𝑥)𝑓(𝑥) = −V

1
;

it follows that ℎ𝑃1
𝑥
(𝑥) = ℎ

𝑃2

𝑥
(𝑥) = (0, −1, 0, 0, 0, 0, 0).

The transversal intersections of a state-space trajectory
with 𝐷

1
and 𝐷

2
are at points 𝑥∗1 and 𝑥∗2, respectively, such

that ℎ𝐷1(𝑥∗1) = ℎ𝐷2(𝑥∗2) = 0 and ℎ𝑃1(𝑥∗1) ̸= 0, ℎ𝑃2(𝑥∗2) ̸= 0.
Suppose that trajectory 𝑥(𝑡) with 𝑥(𝑡∗1) = 𝑥

∗1 at 𝑡∗1 and
𝑥(𝑡
∗2
) = 𝑥
∗2 at 𝑡∗2; it follows that

(

𝐷
1

𝑑𝑡

) ℎ
𝐷1
(𝑥 (𝑡))








𝑡=𝑡
∗1

= ℎ
𝐷1

𝑥
(𝑥
∗1
) 𝑓 (𝑥

∗1
) = ℎ
𝑃1
(𝑥
∗1
) ,

(

𝐷
2

𝑑𝑡

) ℎ
𝐷2
(𝑥 (𝑡))








𝑡=𝑡
∗2

= ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑓 (𝑥

∗2
) = ℎ
𝑃2
(𝑥
∗2
) .

(22)

Indeed, if ℎ𝑃1(𝑥∗1) < 0, a collision occurs between the
oscillator and right constraint 𝐷

1
, and if ℎ𝑃2(𝑥∗2) > 0, a

collision occurs between the oscillator and left constraint𝐷
2
.

We model the collision as an instantaneous impact with a
characteristic coefficient of restitution 𝑅; that is, the state
immediately after impact relates to that immediately before
impact according to the jump map:

𝑔
1
(𝑥) = (𝑥

1
, −𝑅V
1
, 𝑥
2
, V
2
, 𝑥
3
, V
3
, 𝜃)
𝑇

,

𝑔
2
(𝑥) = (𝑥

1
, −𝑅V
1
, 𝑥
2
, V
2
, 𝑥
3
, V
3
, 𝜃)
𝑇

.

(23)

In contrast, points of grazing contact of a state-space
trajectory with𝐷

1
and𝐷

2
correspond to points 𝑥∗1 and 𝑥∗2,

respectively, such that

ℎ
𝐷1
(𝑥
∗1
) = 0, ℎ

𝑃1
(𝑥
∗1
) = −V∗1

1
= 0,

𝑑ℎ
𝑃1
(𝑥)

𝑑𝑡









𝑥=𝑥
∗1

= ℎ
𝑃1

𝑥
(𝑥
∗1
) 𝑓 (𝑥

∗1
) = −𝑎

∗1

1
> 0,

ℎ
𝐷2
(𝑥
∗2
) = 0, ℎ

𝑃2
(𝑥
∗2
) = −V∗2

1
= 0,

𝑑ℎ
𝑃2
(𝑥)

𝑑𝑡









𝑥=𝑥
∗2

= ℎ
𝑃2

𝑥
(𝑥
∗2
) 𝑓 (𝑥

∗2
) = −𝑎

∗2

1
< 0.

(24)

Introduce Poincaré surfaces 𝑃
1
and 𝑃

2
:

𝑃
1
= {𝑥 | ℎ

𝑃1
(𝑥) = 0} ,

𝑃
2
= {𝑥 | ℎ

𝑃2
(𝑥) = 0}

(25)

such that 𝑥∗1 and 𝑥∗2 correspond to a transversal intersection
of a state-space trajectory with surfaces 𝑃

1
and 𝑃

2
, respec-

tively. Since (𝑑
2
/𝑑𝑡
2
)ℎ
𝐷1
(𝑥(𝑡))|

𝑡=𝑡
∗1 = ℎ

𝑃1

𝑥
(𝑥
∗1
)𝑓(𝑥
∗1
) =

−𝑎
∗1

1
> 0, it follows that 𝑥∗1 is a local minimum in
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DiscontinuityDiscontinuity Impact flow Φ1(t)

Grazing orbit

Impact flow Φ2(t)

surfaceD1surfaceD2

Figure 4: A schematic of the flow with impacting.

the value of ℎ𝐷1(𝑥) (i.e., the distance to 𝐷
1
) along state-

space trajectories of the system. By transversality, it follows
that nearby trajectories achieve locally unique points of
intersection with 𝑃

1
corresponding to local minima in the

value of ℎ𝐷1(𝑥). By the same as above, since −𝑎∗2
1

< 0, the
trajectories nearby the grazing one achieve locally unique
points of intersection with 𝑃

2
corresponding to local maxima

in the value of ℎ𝐷2(𝑥).
Now suppose that 𝑥∗1 and 𝑥∗2 are symmetrical grazing

contact points of a periodic trajectory of the system with 𝐷
1

and 𝐷
2
, such that Φ(𝑥∗1, 𝑡 + 𝑇/2) = Φ(𝑥∗2, 𝑡) and Φ(𝑥∗2, 𝑡 +

𝑇/2) = Φ(𝑥
∗1
, 𝑡). Ignoring the effects of the jump map and

using the transversality, it is possible to define local Poincaré
maps 𝑃

1smooth : 𝑃1 → 𝑃
2
and 𝑃

2smooth : 𝑃2 → 𝑃
1
, such that

𝑃
1smooth(𝑥

∗1
) = 𝑥
∗2 and 𝑃

2smooth(𝑥
∗2
) = 𝑥
∗1.

3.2. Discontinuity-Mapping. When considering the effects of
the jumpmap associated with the impact surface, the dynam-
ics of the impact oscillator under perturbations in initial
conditions away from the grazing periodic trajectory may
be analyzed using the discontinuity-mapping approach orig-
inally introduced by Nordmark [9]. Here, two discontinuity-
mappings𝐷𝑀

1
and𝐷𝑀

2
are introduced on a neighborhood

of points 𝑥∗1 and 𝑥∗2, such that surface 𝑃
1
is invariant under

𝐷𝑀
1
(i.e., 𝑥 ∈ 𝑃

1
, 𝐷𝑀
1
(𝑥) ∈ 𝑃

1
) and surface 𝑃

2
is invariant

under 𝐷𝑀
2
(i.e., 𝑥 ∈ 𝑃

2
, 𝐷𝑀
2
(𝑥) ∈ 𝑃

2
); therefore, Poincaré

mapping 𝑃 associated with surface 𝑃
1
for the flow near the

grazing trajectory including the effects of the jump map can
be written as

𝑃 = 𝑃
2smooth ∘ 𝐷𝑀2 ∘ 𝑃1smooth ∘ 𝐷𝑀1. (26)

According to the discontinuity-mapping approach, the
discontinuity-mappings of 𝐷𝑀

1
and 𝐷𝑀

2
are obtained as

follows:

𝐷𝑀
1

=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝐼𝑑, ℎ
𝐷1
(𝑥) ≥ 0,

𝑥
∗1
+ 𝛽
1√

2

ℎ
𝑃1
𝑥 (𝑥
∗1
) 𝑓 (𝑥

∗1
)

⋅√−ℎ
𝐷1
𝑥 (𝑥
∗1
) (𝑥 − 𝑥

∗1
), ℎ

𝐷1
(𝑥) < 0,

𝐷𝑀
2

=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝐼𝑑, ℎ
𝐷2
(𝑥) ≤ 0,

𝑥
∗2
+ 𝛽
2√

2

ℎ
𝑃2
𝑥 (𝑥
∗2
) 𝑓 (𝑥

∗2
)

⋅√−ℎ
𝐷2
𝑥 (𝑥
∗2
) (𝑥 − 𝑥

∗2
), ℎ

𝐷2
(𝑥) > 0,

(27)

where 𝛽
1

= (𝑓(𝑥
∗1
)ℎ
𝑃1

𝑥
(𝑥
∗1
)𝑔
1,𝑥
(𝑥
∗1
)/ℎ
𝑃1

𝑥
(𝑥
∗1
)𝑓(𝑥
∗1
) −

𝑔
1,𝑥
(𝑥
∗1
))𝑓(𝑥
∗1
) and 𝛽

2
= (𝑓(𝑥

∗2
)ℎ
𝑃2

𝑥
(𝑥
∗2
)𝑔
2,𝑥
(𝑥
∗2
)/

ℎ
𝑃2

𝑥
(𝑥
∗2
)𝑓(𝑥
∗2
) − 𝑔
2,𝑥
(𝑥
∗2
))𝑓(𝑥
∗2
).

3.3. The Poincaré Mapping. Expanding the smooth mapping
𝑃
1smooth(𝑥) near 𝑥

∗1, it follows that

𝑃
1smooth (𝑥)

= 𝑃
1smooth (𝑥

∗1
) + 𝑃
1smooth,𝑥 (𝑥

∗1
) (𝑥 − 𝑥

∗1
) + h.o.t

= 𝑥
∗2
+ 𝑃
1smooth,𝑥 (𝑥

∗1
) (𝑥 − 𝑥

∗1
) + h.o.t.

(28)
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Expanding event function ℎ𝐷1(𝑥) near 𝑥∗1, it follows that

ℎ
𝐷1
(𝑥) = ℎ

𝐷1
(𝑥
∗1
) + ℎ
𝐷1

𝑥
(𝑥
∗1
) (𝑥 − 𝑥

∗1
) + h.o.t. (29)

Since 𝑥∗1 satisfies ℎ𝐷1(𝑥∗1) = 0, such that (29) is written
as

ℎ
𝐷1
(𝑥) = ℎ

𝐷1

𝑥
(𝑥
∗1
) (𝑥 − 𝑥

∗1
) + h.o.t, (30)

consequently,

𝑃
1
= 𝑃
1smooth (𝑥) ∘ 𝐷𝑀1 (𝑥)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑥
∗2
+ 𝑃
1smooth,𝑥 (𝑥

∗1
)

⋅ (𝑥 − 𝑥
∗1
) + h.o.t, ℎ

𝐷1

𝑥
(𝑥
∗1
) (𝑥 − 𝑥

∗1
)≥0,

𝑥
∗2
+ 𝑃
1smooth,𝑥 (𝑥

∗1
) 𝛽
1

⋅√

2

ℎ
𝑃1
𝑥 (𝑥
∗1
) 𝑓 (𝑥

∗1
)

⋅√−ℎ
𝐷1
𝑥 (𝑥
∗1
) (𝑥 − 𝑥

∗1
)

+ h.o.t, ℎ
𝐷1

𝑥
(𝑥
∗1
) (𝑥 − 𝑥

∗1
)<0.

(31)

From the above analysis, the mapping 𝑃
2smooth(𝑥) ∘

𝐷𝑀
2
(𝑥) is written as

𝑃
2
= 𝑃
2smooth (𝑥) ∘ 𝐷𝑀2 (𝑥)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑥
∗1
+ 𝑃
2smooth,𝑥 (𝑥

∗2
)

⋅ (𝑥 − 𝑥
∗2
) + h.o.t, ℎ

𝐷2

𝑥
(𝑥
∗2
) (𝑥 − 𝑥

∗2
)≤0,

𝑥
∗1
+ 𝑃
2smooth,𝑥 (𝑥

∗2
) 𝛽
2

⋅√

2

ℎ
𝑃2
𝑥 (𝑥
∗2
) 𝑓 (𝑥

∗2
)

⋅√−ℎ
𝐷2
𝑥 (𝑥
∗2
) (𝑥 − 𝑥

∗2
)

+ h.o.t, ℎ
𝐷2

𝑥
(𝑥
∗2
) (𝑥 − 𝑥

∗2
)>0.

(32)

4. Stability at Grazing and Codimension-Two
Grazing Bifurcation

The stability of the grazing periodic trajectory when ignoring
the effects of the constraint is determined by the eigenvalues
of its Jacobian matrix. In contrast, the Jacobian matrix of the
grazing periodic trajectory in the absence of the constraint is
discontinuous and becomes singular; the stability properties
of the grazing periodic trajectory in the presence of the
bilateral constraint are determined by Poincaré mapping 𝑃.
If the points near the grazing point which start from either
the impact side or nonimpacting side are trapped close to
the grazing point after iterating the mapping equations (31)-
(32), the grazing periodic trajectory is stability. For an impact

point 𝑥 in the vicinity of the grazing point 𝑥∗1, which satisfies
ℎ
𝐷1

𝑥
(𝑥
∗1
)(𝑥 − 𝑥

∗1
) < 0, if

ℎ
𝐷2

𝑥
(𝑥
∗2
) (𝑃
1
(𝑥) − 𝑥

∗2
)

= ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
) 𝛽
1

⋅ √

2

ℎ
𝑃

𝑥
(𝑥
∗1
) 𝑓 (𝑥

∗1
)

√−ℎ
𝐷1
𝑥 (𝑥
∗1
) (𝑥 − 𝑥

∗1
)

< 0,

(33)

that is,

ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
) 𝛽
1
< 0,

ℎ
𝐷1

𝑥
(𝑥
∗1
) (𝑃
2
(𝑥) − 𝑥

∗1
)

= ℎ
𝐷1

𝑥
(𝑥
∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
) 𝛽
1

⋅ √

2

ℎ
𝑃

𝑥
(𝑥
∗1
) 𝑓 (𝑥

∗1
)

⋅ √−ℎ
𝐷1
𝑥 (𝑥
∗1
) (𝑥 − 𝑥

∗1
) < 0,

(34)

that is,

ℎ
𝐷1

𝑥
(𝑥
∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
) 𝛽
1
< 0, (35)

it means an impact point impacts discontinuity surface 𝐷
1

again and the impact will be perpetuated, which results in a
large stretching in a direction given by the image of vector 𝛽

1

under Jacobians 𝑃
1smooth,𝑥 and 𝑃2smooth,𝑥, and the trajectory is

unstable.
According to the above analysis

ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
) 𝛽
1
< 0,

ℎ
𝐷1

𝑥
(𝑥
∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
) 𝛽
1
< 0,

(36)

meaning an impact point impacts discontinuity surface 𝐷
1

again and the impactwill be perpetuated; the grazing periodic
trajectory is unstable.

By just changing

ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
) 𝛽
1
< 0,

ℎ
𝐷1

𝑥
(𝑥
∗1
) ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
) 𝛽
1
< 0

(37)

to

ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)

⋅ (𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
))

(𝑗−1)

𝛽
1
< 0,

ℎ
𝐷1

𝑥
(𝑥
∗1
) (𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
))

𝑖

𝛽
1
< 0,

(38)

for 𝑗 ≤ 𝑖, it happens that an impact is followed by
nonimpacting for some iterations but eventually impacts
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discontinuity surface𝐷
1
again and the impact will be perpet-

uated, and the grazing periodic trajectory is unstable.Thus, if
ℎ
𝐷2

𝑥
(𝑥
∗2
)𝑃
1smooth,𝑥(𝑥

∗1
)(𝑃
2smooth,𝑥(𝑥

∗2
)𝑃
1smooth,𝑥(𝑥

∗1
))
(𝑖−1)

𝛽
1

< 0 and ℎ𝐷1
𝑥
(𝑥
∗1
)(𝑃
2smooth,𝑥(𝑥

∗2
)𝑃
1smooth,𝑥(𝑥

∗1
))
𝑖
𝛽
1
< 0 for

any 𝑖 ≥ 1, 1 ≤ 𝑗 ≤ 𝑖, stability is lost.
In the same way, if

ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)

⋅ (𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
))

(𝑖)

𝛽
1
> 0,

ℎ
𝐷2

𝑥
(𝑥
∗2
) (𝑃
1smooth,𝑥 (𝑥

∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
))

(𝑗+1)

𝛽
2
> 0,

(39)

for any 𝑖 ≥ 0, 𝑗 ≥ 𝑖, it happens that an impact is
followed by nonimpacting for some iterations but eventually
impacts discontinuity surface𝐷

2
again and the impact will be

perpetuated, and the grazing periodic trajectory is unstable.
Moreover, if

ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)

⋅ (𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
))

𝑖

𝛽
1
> 0,

ℎ
𝐷1

𝑥
(𝑥
∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
)

⋅ (𝑃
1smooth,𝑥 (𝑥

∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
))

𝑗

𝛽
2
< 0,

(40)

for any 𝑖 ≥ 0, 𝑗 ≥ 𝑖, it happens that an impact is followed
by nonimpacting for some iterations but eventually impacts
discontinuity surfaces𝐷

1
and𝐷

2
again and the impact will be

perpetuated, and the grazing periodic trajectory is unstable.
According to above analysis, the codimension-two graz-

ing bifurcation points (the definition of such points is seen in
[17]) correspond to

ℎ
𝐷1

𝑥
(𝑥
∗1
) [𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)]

𝑖

𝛽
1
= 0,

ℎ
𝐷1

𝑥
(𝑥
∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
)

⋅ [𝑃
1smooth,𝑥 (𝑥

∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
)]

𝑗

𝛽
2
= 0,

ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)

⋅ [𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)]

𝑖

𝛽
1
= 0,

ℎ
𝐷2

𝑥
(𝑥
∗2
) [𝑃
1smooth,𝑥 (𝑥

∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
)]

(𝑗+1)

𝛽
2
= 0,

(41)

for all 𝑖 ≥ 0 and 𝑗 ≥ 0, respectively. Let 𝜉
𝑛
express

the codimension-two grazing bifurcation points; 𝜉
𝑛
can be

written in four cases; that is,

𝜉
𝑛
= ℎ
𝐷1

𝑥
(𝑥
∗1
) [𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)]

𝑛

𝛽
1
= 0,

𝜉
𝑛
= ℎ
𝐷1

𝑥
(𝑥
∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
)

⋅ [𝑃
1smooth,𝑥 (𝑥

∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
)]

𝑛

𝛽
2
= 0,

𝜉
𝑛
= ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)

⋅ [𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)]

𝑛

𝛽
1
= 0,

𝜉
𝑛
= ℎ
𝐷2

𝑥
(𝑥
∗2
) [𝑃
1smooth,𝑥 (𝑥

∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
)]

(𝑛+1)

𝛽
2
,

= 0

(42)

for 𝑛 = 0, 1, 2, . . ..
In the following, take the third case, for example, the

codimension-two grazing bifurcation criterion 𝜉
𝑛
is simpli-

fied as far as possible and the more analytic expressions are
obtained.

Let

𝑃
1smooth,𝑥 (𝑥

∗1
) [𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)]

𝑛

=

(

(

(

(

(

(

(

(

(

(

𝑃
𝑛+1

11
𝑃
𝑛+1

12
𝑃
𝑛+1

13
⋅ ⋅ ⋅ 𝑃
𝑛+1

16
𝑃
𝑛+1

17

0 0 0 ⋅ ⋅ ⋅ 0 0

𝑃
𝑛+1

31
𝑃
𝑛+1

32
𝑃
𝑛+1

33
⋅ ⋅ ⋅ 𝑃
𝑛+1

36
𝑃
𝑛+1

37

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝑃
𝑛+1

61
𝑃
𝑛+1

62
𝑃
𝑛+1

63
⋅ ⋅ ⋅ 𝑃
𝑛+1

66
𝑃
𝑛+1

67

𝑃
𝑛+1

71
𝑃
𝑛+1

72
𝑃
𝑛+1

73
⋅ ⋅ ⋅ 𝑃
𝑛+1

76
𝑃
𝑛+1

77

)

)

)

)

)

)

)

)

)

)

.

(43)

Since 𝑃
1smooth,𝑥(𝑥

∗1
)𝑓(𝑥
∗1
) = 0, it follows that

𝑃
1smooth,𝑥 (𝑥

∗1
) (𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
))

𝑛

𝑓 (𝑥
∗1
)

= 0.

(44)

Thus,

𝜉
𝑛
= ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)

⋅ [𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)]

𝑛

𝛽
1

= − (𝑅 + 1) 𝑎
∗1

1
𝑃
𝑛+1

12
.

(45)
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According to the relevant definitions in Section 3 and the
implicit function theorem, it is straightforward to show that

𝑃
1smooth,𝑥 (𝑥

∗1
) = (𝐼𝑑 −

𝑓 (𝑥
∗2
) ℎ
𝑝2

𝑥
(𝑥
∗2
)

ℎ
𝑝2
𝑥 (𝑥
∗2
) 𝑓 (𝑥

∗2
)

)Φ
𝑥
(𝑥
∗1
,

𝑇

2

) ,

𝑃
2smooth,𝑥 (𝑥

∗2
) = (𝐼𝑑 −

𝑓 (𝑥
∗1
) ℎ
𝑝1

𝑥
(𝑥
∗1
)

ℎ
𝑝1
𝑥 (𝑥
∗1
) 𝑓 (𝑥

∗1
)

)Φ
𝑥
(𝑥
∗2
,

𝑇

2

) ,

(46)

where 𝐼𝑑 is unit matrix.
From the semigroup property of the smooth flow

Φ (Φ (𝑥, 𝑡) , 𝑠) = Φ (𝑥, 𝑡 + 𝑠) , (47)

it follows by differentiation with respect to 𝑡 and evaluation at
𝑡 = 0, 𝑠 = 𝑇/2, and 𝑥 = 𝑥∗1 that

Φ
𝑥
(𝑥
∗1
,

𝑇

2

)𝑓 (𝑥
∗1
) = 𝑓 (𝑥

∗2
) . (48)

Consequently,

𝑃
1smooth,𝑥 (𝑥

∗1
) 𝑓 (𝑥

∗1
) = (0, 0, 0, 0, 0, 0, 0)

𝑇
. (49)

In the same way, we obtain that

𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑓 (𝑥

∗2
) = (0, 0, 0, 0, 0, 0, 0)

𝑇
. (50)

Moreover, it is straightforward to show that

[𝑃
1smooth,𝑥 (𝑥

∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
)]

𝑛

= (𝐼𝑑 −

𝑓 (𝑥
∗2
) ℎ
𝑝2

𝑥
(𝑥
∗2
)

ℎ
𝑝2
𝑥 (𝑥
∗2
) 𝑓 (𝑥

∗2
)

)

⋅ [Φ
𝑥
(𝑥
∗1
,

𝑇

2

)Φ
𝑥
(𝑥
∗2
,

𝑇

2

)]

𝑛

,

𝑃
2smooth,𝑥 (𝑥

∗2
) [𝑃
1smooth,𝑥 (𝑥

∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
)]

𝑛

= (𝐼𝑑 −

𝑓 (𝑥
∗1
) ℎ
𝑝1

𝑥
(𝑥
∗1
)

ℎ
𝑝1
𝑥 (𝑥
∗1
) 𝑓 (𝑥

∗1
)

)Φ
𝑥
(𝑥
∗2
,

𝑇

2

)

⋅ [Φ
𝑥
(𝑥
∗1
,

𝑇

2

)Φ
𝑥
(𝑥
∗2
,

𝑇

2

)]

𝑛

.

(51)

In the same way, we obtain that

[𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)]

𝑛

= (𝐼𝑑 −

𝑓 (𝑥
∗1
) ℎ
𝑝1

𝑥
(𝑥
∗1
)

ℎ
𝑝1
𝑥 (𝑥
∗1
) 𝑓 (𝑥

∗1
)

)

⋅ [Φ
𝑥
(𝑥
∗2
,

𝑇

2

)Φ
𝑥
(𝑥
∗1
,

𝑇

2

)]

𝑛

,

(52)

𝑃
1smooth,𝑥 (𝑥

∗1
) [𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)]

𝑛

= (𝐼𝑑 −

𝑓 (𝑥
∗2
) ℎ
𝑝2

𝑥
(𝑥
∗2
)

ℎ
𝑝2
𝑥 (𝑥
∗2
) 𝑓 (𝑥

∗2
)

)

⋅ Φ
𝑥
(𝑥
∗1
,

𝑇

2

) [Φ
𝑥
(𝑥
∗2
,

𝑇

2

)Φ
𝑥
(𝑥
∗1
,

𝑇

2

)]

𝑛

,

(53)

where integer superscripts denote matrix powers.
Since ℎ𝐷2

𝑥
(𝑥
∗2
)𝑓(𝑥
∗2
) = −V

1
(𝑥
∗2
) = 0, and according to

(53), it follows that

ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
) [𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)]

𝑛

= ℎ
𝐷2

𝑥
(𝑥
∗2
)Φ
𝑥
(𝑥
∗1
,

𝑇

2

) [Φ
𝑥
(𝑥
∗2
,

𝑇

2

)Φ
𝑥
(𝑥
∗1
,

𝑇

2

)]

𝑛

.

(54)

Both sides of (54) are multiplied by 𝑓(𝑥∗1), and since

ℎ
𝐷2

𝑥
(𝑥
∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)

⋅ [𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
)]

𝑛

𝑓 (𝑥
∗1
) = 0,

(55)

it follows that

ℎ
𝐷2

𝑥
(𝑥
∗2
)Φ
𝑥
(𝑥
∗1
,

𝑇

2

) [Φ
𝑥
(𝑥
∗2
,

𝑇

2

)Φ
𝑥
(𝑥
∗1
,

𝑇

2

)]

𝑛

⋅𝑓 (𝑥
∗1
) = 0.

(56)

Thus, (45) can be written as

𝜉
𝑛
= ℎ
𝐷2

𝑥
(𝑥
∗2
)Φ
𝑥
(𝑥
∗1
,

𝑇

2

)

⋅ [Φ
𝑥
(𝑥
∗2
,

𝑇

2

)Φ
𝑥
(𝑥
∗1
,

𝑇

2

)]

𝑛

𝛽
1

= − (𝑅 + 1) 𝑎
∗1

1
Φ
𝑛+1

12
,

(57)

whereΦ
12
denotes the (1, 2) element ofΦ

𝑥
(𝑥
∗1
, 𝑇/2)[Φ

𝑥
(𝑥
∗2
,

𝑇/2)Φ
𝑥
(𝑥
∗1
, 𝑇/2)]

𝑛.
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Figure 5: Schematic of codimension-two grazing bifurcation points
for 𝑛 = 1.
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Figure 6: A grazing periodic trajectory of oscillator𝑀
1
.

In the same way, we can obtain the simplified expressions
of the other three cases as follows:

𝜉
𝑛
= ℎ
𝐷1

𝑥
(𝑥
∗1
) (𝑃
2smooth,𝑥 (𝑥

∗2
) 𝑃
1smooth,𝑥 (𝑥

∗1
))

𝑛

𝛽
1

= − (𝑅 + 1) 𝑎
∗1

1
Φ
𝑛

12
,

𝜉
𝑛
= ℎ
𝐷1

𝑥
(𝑥
∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
)

⋅ (𝑃
1smooth,𝑥 (𝑥

∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
))

𝑛

𝛽
2

= − (𝑅 + 1) 𝑎
∗2

1
Φ
𝑛+1

12
,

𝜉
𝑛
= ℎ
𝐷2

𝑥
(𝑥
∗2
) (𝑃
1smooth,𝑥 (𝑥

∗1
) 𝑃
2smooth,𝑥 (𝑥

∗2
))

𝑛+1

𝛽
2

= − (𝑅 + 1) 𝑎
∗2

1
Φ
𝑛+1

12
.

(58)
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Figure 7: Schematic of codimension-two grazing bifurcation points
for 𝑛 = 2.
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Figure 8: Unfolding diagram near a codimension-two grazing
bifurcation point.

5. Numerical Simulations

Taking the sencond case derived in the above section as an
example, the codimension-two grazing bifurcation points are
corresponding to 𝜉

𝑛
= −(𝑅 + 1)𝑎

∗1

1
Φ
𝑛

12
= 0. The curve of

points in the (𝜔, 𝑏) parameters space corresponding to the
existence of a grazing periodic trajectory with 𝑘

2
= 𝑘
3
= 5.0,

𝑚
2
= 𝑚
3
= 10.0, 𝜁

1
= 𝜁
2
= 𝜁
3
= 0.05, and 𝑅 = 0.8 is

shown in Figure 5. Here, points for which 𝜉
1
= 0 are indicated

by the asterisk (∗). As shown in Figure 5, with 𝜔 decreases,
codimension-two grazing bifurcation points appear to have
an increased tangency with the grazing curve.

For example, under case of 𝑓
10
= 1, 𝑓

20
= 0, and 𝑓

30
= 0,

taking 𝜔 = 0.28109, 𝑏 = 1.92036 along the grazing curve
shown in Figure 5, then existence condition of double grazing
periodic motion and 𝜉

1
= 0 are both satisfied using the

formulae derived from previous sections, which means that
the point is a codimension-two grazing bifurcation point.
Simulating with the above parameters, a grazing periodic
trajectory is obtained as shown in Figure 6, which may cause
complicated dynamical behaviors with the change of some
parameters.
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Figure 9: Continued.
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Figure 9: Continued.
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Figure 9: Phase diagrams ((a)–(k)) of periodic motions (𝜔 = 0.29) and phase diagrams ((l)–(v)) of periodic motions (𝜔 = 0.27).

When 𝑛 = 2, using 𝜉
𝑛
= −(𝑅 + 1)𝑎

∗1

1
Φ
𝑛

12
= 0 with

the same parameters 𝑘
2
= 𝑘
3
= 5.0, 𝑚

2
= 𝑚
3
= 10.0,

𝜁
1
= 𝜁
2
= 𝜁
3
= 0.05, and 𝑅 = 0.8, the curve of points in the

(𝜔, 𝑏) parameters space corresponding to the existence of a
grazing periodic trajectory is shown in Figure 7. Here, points
for which 𝜉

2
= 0 are indicated by the asterisk (∗).

In order to make the bifurcation behavior in the vicinity
of the codimension-two grazing bifurcation point clear, the
unfolding diagram is presented in the neighborhood of
codimension-two grazing bifurcation point corresponding
to 𝜉
1
= 0 by a large number of numerical simulations.

For fixed 𝑘
2
= 𝑘
3
= 5.0, 𝑚

2
= 𝑚
3
= 10.0, 𝜁

1
= 𝜁
2
=

𝜁
3
= 0.05, 𝑅 = 0.8, 𝑓

10
= 1, 𝑓

20
= 0, and 𝑓

30
= 0, it is

known from above analysis that a codimension-two grazing
bifurcation point corresponds to 𝜔 = 0.28109 and 𝑏 =

1.92036. Changing values of parameters 𝑏 and 𝜔 near 𝜔 =

0.28109, 𝑏 = 1.92036. Existence regions of different types of
periodic-impact motions of the system, that is, the unfolding
diagram, are presented in the (𝜔, 𝑏) parameter plane plotted
in Figure 8, where the dash curve represents double grazing
motion. As shown in Figure 8, the dynamical behavior in the
vicinity of the codimension-two grazing bifurcation point is
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complex. The (𝜔, 𝑏) parameter space is divided into regions
characterized by different types of motions.

For fixed 𝜔 = 0.29, sample phase portraits of each
region obtained through perturbing 𝑏 are shown in Figures
9(a)–9(k). Conveniently, we introduce the symbol 𝑛-𝑝

𝑟
-𝑞
𝑙

to describe different types of periodic-impact motion of
the system, where 𝑛 represents the number of the exciting
force period in the motion period and 𝑝

𝑟
and 𝑞

𝑙
mean the

number of impacts occurring at right𝐴 and left𝐶 constraints,
respectively, when 𝑝 = 0 or 𝑞 = 0; that is, 0

𝑟
and 0

𝑙

mean the number of grazings occurring at right 𝐴 and left
𝐶 constraints, respectively, while 𝑝 = −1 or 𝑞 = −1; that
is, −1

𝑟
and −1

𝑙
symbolize no impact occurring at the right

and left constraints. Decreasing 𝑏 from 2.0 to 1.494, the phase
portraits are 1-(−1)

𝑟
-(−1)
𝑙
in region (a), multi-0

𝑟
-0
𝑙
in region

(b), 1-1
𝑟
-(−1)
𝑙
in region (c), 1-(−1)

𝑟
-1
𝑙
in region (d), 1-1

𝑟
-1
𝑙
in

region (e), 2-1
𝑟
-1
𝑙
in region (f), multi-multi

𝑟
-multi

𝑙
in region

(g), 2-2
𝑟
-2
𝑙
in region (h), 3-2

𝑟
-2
𝑙
in region (i), 3-3

𝑟
-3
𝑙
in region

(j), and 4-3
𝑟
-3
𝑙
in region (k), respectively.

For fixed 𝜔 = 0.27, sample phase portraits of each region
obtained through perturbing 𝑏 are shown in Figures 9(l)–
9(v). Decreasing 𝑏 from 1.86 to 1.34, the phase portraits are
1-1
𝑟
-(−1)
𝑙
in region (l), 3-(−1)

𝑟
-3
𝑙
in region (m), 1-1

𝑟
-1
𝑙
in

region (n), 2-1
𝑟
-1
𝑙
in region (o), 6-4

𝑟
-4
𝑙
in region (p), 10-8

𝑟
-8
𝑙

in region (q), multi-multi
𝑟
-multi

𝑙
in region (r), 2-2

𝑟
-2
𝑙
in

region (s), 3-2
𝑟
-2
𝑙
in region (t), 3-3

𝑟
-3
𝑙
in region (u), and

4-4
𝑟
-4
𝑙
in region (v), respectively.

6. Conclusions

It is difficult to analyze codimension-two bifurcation of graz-
ing periodic motion for multidegree-of-freedom vibroim-
pact system theoretically, especially with symmetrical con-
straints. So far, there are some researches that explored the
codimension-two bifurcation of grazing periodic motion
for dynamical system with unilateral constraint. As far as
we know, the work on codimension-two bifurcation of
grazing periodic motion of vibratory system with bilateral
constraints is not seen. Focusing on the above unsolved
problem, this paper presents the existence condition of
double grazing motion and obtains its Poincaré mapping
using the classical discontinuity-mapping approach. Based on
the results, the condition of codimension-two grazing bifur-
cation is established and simplified.Therefore, it is convenient
to find the codimension-two bifurcation points by using
the obtained formulae. By numerical simulation, the com-
plex and rich dynamical behaviors near the codimension-
two grazing bifurcation point are presented. For example,
there exist period-10 impact-8 motion, period-6 impact-
4 motion, period-4 impact-4 motion, and so forth in the
vicinity of the codimension-two grazing bifurcation point.
The detailed dynamical features near critical point of grazing
codimension-two bifurcation will be analyzed further in the
future works.
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