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There tend to bemore crashes occurring in freeway diverging segments due to increasing traffic conflicts between diverging vehicles
and nondiverging vehicles. The diverging segments have a safety impact on the precedent basic segments and the following off
ramps. It is always a challenge to accurately define the safety influential area of freeway diverging segments. In previous studies,
fixed buffer in size is pregiven for crash frequency analysis in diverging segments, which lacks theoretical and practical support. In
this study, the safety influential area was investigated from the statistical point of view. Data from a geocoded GIS crash database for
Colorado Springs metropolitan area was used; the statistically significant factors associated with crash frequency were examined
for the spatial influence of freeway diverging segments. Also, the generalized linear models with negative binomial link function
were applied to predict the crash frequency for freeway diverging segments and off ramps based on the influential area. The results
may give some insights into the causation of crashes on diverging segments and off-ramp intersections.

1. Introduction

Traffic crashes have caused substantial economic loss, inju-
ries, and fatalities in our society. Traffic safety has become a
serious concern among policymakers, engineers, and plan-
ners during transportation project planning and design.
Many studies have been conducted to investigate contribut-
ing factors to the crashes and develop statistical models for
prediction and analyses of traffic crashes. These studies have
been performed at either an area level such as traffic analysis
zones or a road level such as highway segments.

The area-level safety analyses are associated with traffic
analysis zones (TAZs) which are typical units in transporta-
tion planning process. Since a TAZ is a geographic unit
for inventorying socioeconomic data and estimating trip
generation, the area-level crash analysis usually focuses on
examining the relationship between crashes and both socioe-
conomic factors and network variables [1, 2]. The road-level
safety analyses can be further categorized into segment level
and intersection level.The segment-level safety analyses have

concentrated on identifying the effects of traffic characteris-
tics [3, 4], road design characteristics [5, 6], driver behavior
[7], pavement conditions [8], and so forth, on crash fre-
quency. For the intersection-level safety analyses, it is usually
further classified into crash analysis of signalized intersec-
tions and unsignalized intersections. For the signalized inter-
sections, a lot of researches have been conducted in the past
decades which relate crashes with intersection geometry [9,
10], road environment [11], traffic-related variables [12], and
so forth.What should be pointed out is that since the continu-
ous increment of the unsignalized intersection crashes, more
and more research attention has also been paid to this type
of safety recently. For the unsignalized intersections related
safety analysis, Haleem et al. [13] used a Bayesian reliability
method to reduce level of uncertainty in predicting crashes at
3-leg and 4-leg unsignalized intersections. Several significant
variables were identified, including traffic volume on major
roads, existence of stop signs, number of right and/or left turn
lanes, median type on major roads, and left/right shoulder
widths. Abdel-Aty et al. [14] used multivariate adaptive
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Figure 1: Junctions between freeway segments and off ramps.

regression spines (MARS) models to forecast angle crashes
at unsignalized intersection. It was found that traffic volume
onmajor roads, distance to the nearest signalized intersection
upstream, distance between successive unsignalized intersec-
tions, median type on major roads, percentage of trucks on
major roads, and size of intersection have important impacts
on safety performance of unsignalized intersections.

The junction of a freeway diverging segment and an off
ramp can be regarded as a special unsignalized intersection. A
typical freeway diverging segment at an off ramp is illustrated
in Figure 1. At the diverging area, a vehicle trying to leave
freeway sometimes needs to make lane change to exit or
even brake sharply to avoid missing exit if it is in the inside
lane. Diverging areas are exposed to a relatively higher risk of
crash compared to basic freeway segments. Several studies are
conducted to investigate contributing factors for crashes at
diverging areas [15–19]. It was found that weather condition,
alcohol involvement, ramp ADT, ramp lengths, and speed-
change lanes were strongly related to crash occurrence at
diverging areas.

To make freeway diverging segments and off ramps safer,
identifying contributing factors and implementing engineer-
ing countermeasures are critical. Accurately distinguishing
the accidents on freeway diverging segments from off ramps
is a vital precursor of safety related applications such as
accident risk modeling, risk mapping, and accident hotspot
identification [20]. In previous studies, intersection safety
researches generally suggested that crashes associated with
an intersection include all the crashes that occurred within
a 250-foot length of two intersecting roads upstream and
downstream from the intersection [21]. It was regarded as
the safety influence area of an intersection. This practice
is adopted in many state DOTs (Departments of Trans-
portation) in the US since it is consistent with intersection
functional area. Drivers start to perceive the intersection and
begin maneuvers from a distance upstream. The process of
maneuvers and deceleration might cause conflict and poten-
tial for crashes. Similarly, crashes that happened in freeway
diverging areas might be relevant to driving maneuvers from
a distance of freeway segments upstream or off ramp down-
stream. However, the 250-foot radii used for a typical inter-
section safety influence area will not apply on the junction of
diverging segments and off ramps since traffic characteristics
and driving behaviors on freeways are distinct from urban
streets. Therefore, this paper aims to study safety influence
area for the junction of freeway diverging segments and off
ramps and examine statistically significant factors for crash

frequency using the crash database provided by the Pikes
Peak Area Council of Governments (PPACG). It is discussed
that the predetermined influence area may not be suitable.
The influence area should be investigated in a more com-
prehensive way and be determined specifically for the area
studied.

The rest of the paper is organized into 4 sections. In the
next section, methodology used in this paper, including
buffer technique of GIS and negative binomial (NB) regres-
sionmodel, is briefly reviewed; in Section 3, regression results
are presented and discussed in detail. Conclusions and
extensions are included in Section 4.

2. Methodology

2.1. Data Preparation. Two freeways across the Pikes Peak
metropolitan area in Colorado state of the United States are
selected for this study. Geocoded crash data for the metro-
politan planning region is provided by PPACG, together with
traffic data and the road network data. All the three sets of
data are prepared in GIS format. From the road network data,
72 freeway diverging segments at off ramps were identified in
the area. Figure 2 illustrates a typical freeway diverging area
at off ramp which is located on highway I-25 in the area.

All accident records in the crash dataset are categorized
by types of accident: fatal, injury, and Property Damage Only
(PDO).And each accident record involves at least one vehicle.
Total accidents were counted from July 2006 to December
2010.

The crash frequency was set to be dependent variable. For
the independent variables, they are identified from high-
way geometric design, traffic control and operation, traffic
volume, and pavement condition data based on literature
reviews and engineering judgments. The selection of inde-
pendent variables in this study follows three rules listed
below:

(1) Variables have a meaningful interpretation from the
engineering perspective.

(2) Variables can be associated with an off ramp.
(3) There is a weak correlation among the selected vari-

ables.
It is worth noting that colinearity may exist among the

independent variables. As is well known, the colinearity could
lead to serious confounding problems and inflate variance
in estimation. The misleading results could make it difficult
to explain the relationships between crash frequency and the
independent variables intuitively. After conducting colinear-
ity analysis, 9 continuous variables and 6 nominal variables
were finally selected. All the 15 variables represent unique
aspects of the diverging area’s characteristics and are listed in
Tables 1 and 2.

2.2. Data Processing Using Buffer Technique of GIS. To esti-
mate the proper size of safety influential area of freeway
diverging segments at off ramps, buffers with gradually
increasing size are utilized for the purpose of analysis. For a
GIS-based traffic safety analysis, a buffer is useful for proxim-
ity identification of highway facilities.The buffer technique in
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Table 1: Continuous variables description for diverging area analysis.

Variables Description Sum Mean Std. deviation Maximum Minimum
Ramp.Length The length of a ramp in mile 11.67 0.16 0.10 0.54 0.03
Ramp ADT Average daily traffic of a ramp 361.82 5.03 4.18 14.73 0.02

Up Interstate.Length The length of up interstate in
mile 33.10 0.46 0.54 2.78 0.01

Up Interstate ADT Average daily traffic of up
interstate 2689.53 37.35 14.92 64.08 11.78

Down Interstate.Length The length of down interstate
in mile 19.73 0.27 0.17 0.79 0.03

Down ADT Average daily traffic of down
interstate 2327.76 32.33 13.24 58.48 10.66

IRI Pavement roughness in inches
per mile 101.29 1.41 0.40 2.43 0.00

Median Width Median width in feet 524.30 7.28 7.15 18.30 0.00
Speed Limit Speed limit 4327.85 60.11 12.42 74.56 31.07
Notes: the number representing average daily traffic (ADT) is in thousand.

Table 2: Nominal variables description for diverging area analysis.

Variables Descriptions Values and meanings Frequency
0 1

Ramp.Lanes Number of lanes of a ramp 0, 1; 0 denotes 1 lane; 1 denotes 2 lanes 57 15

Up Interstate.Lanes Number of lanes of up interstate 0, 1; 0 denotes 1 and 2 lanes; 1 denotes 3 and 4
lanes 40 32

Down Interstate.Lanes Number of lanes of down interstate 0, 1; 0 denotes 1 and 2 lanes; 1 denotes 3 and 4
lanes 45 27

Median Type
Median type (1 to 4 scale): 1 = curbed;
2 = positive barrier; 3 = unprotected; and
4 = none

0, 1; 0 refers to scale 1, scale 2, and scale 3; 1
refers to scale 4 43 29

PSR
Present serviceability rating (0 to 5 scale):
0 = extremely deteriorated pavement;
5 = pavement in excellent condition

0, 1; 0 denotes rating 3.5; 1 denotes rating 2.5,
rating 3, rating 3.9, and rating 4.1 60 12

Truck Percent Percent truck related 0, 1; 0 denotes 4, 6, 7, and 9 percent; 1 denotes 11
percent 27 45

Figure 2: A typical diverging area at an off ramp along highway I-25.

GIS can be applied to accurately measure the target objects in
units of distance. It can be seen that the bigger buffer size will
lead to more crashes in the diverging area. However, much
bigger buffer size might contain some crashes irrelevant to
this diverging area. And smaller buffer size may not include
all the crashes which are related to the diverging area. There-
fore, a desirable buffer size is worth being investigated in

order to better represent the related accidents. And gradually
increasing buffer size in a certain distance unit can be used
to explore the optimal safety influence area of the diverging
area. Creating buffers at an interval of 50-foot incrementsmay
not result in a reasonable analysis by overrepresenting crashes
while creating buffers at an interval of 1 foot may bring about
overwhelming data processing and analysis. In this study,
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Table 3: Summary statistic of crash frequency from 30 feet to 300 feet.

Variable Mean Std. deviation Variance Minimum Maximum
Crash 30feet 0.61 2.17 4.69 0 15
Crash 60feet 2.69 7.54 56.78 0 61
Crash 90feet 4.38 10.19 103.79 0 70
Crash 120feet 5.75 13.02 169.57 0 96
Crash 150feet 7.96 17.77 315.79 0 134
Crash 180feet 10.04 23.98 574.94 0 190
Crash 210feet 13.13 27.08 733.29 0 199
Crash 240feet 14.78 27.91 778.88 0 208
Crash 270feet 16.69 29.23 854.55 0 218
Crash 300feet 18.99 29.96 897.39 0 221
Average 9.50 18.11 328.10 0 140

a series of buffers from 30-foot radius to 300-foot radius with
an interval of 30-foot increments were created using ArcGIS
10 software.

To have deeper insights into the selected factors, for each
buffer size, the influential factors were analyzed using NB
regression model.

2.3. Negative Binomial RegressionModel. In this study, theNB
regression model was developed to identify the significant
contributing factors to crash frequency and estimate the
influential area of freeway diverging area [22, 23]. The basic
formulation of Poisson regression is as follows:

𝑃 (𝑦
𝑖
) =
𝜆
𝑦𝑖

𝑖
𝑒
−𝜆
𝑖

𝑦
𝑖
!
, (1)

where 𝑃(𝑦
𝑖
) is the probability of 𝑦

𝑖
accidents occurring at a

diverging area 𝑖 per year. In this model, 𝜆
𝑖
is both the mean

and variance parameters of 𝑦
𝑖
. Therefore, 𝜆

𝑖
is equal to the

expected accident frequency 𝐸(𝑦
𝑖
) for diverging area 𝑖. Para-

meter 𝜆
𝑖
is estimated by the following equation:

𝜆
𝑖
= 𝑒
𝛽𝑥𝑖 , (2)

where 𝑥
𝑖
is the independent variable and 𝛽 is the coefficient

of independent variable.
The structure of Poisson regression model is

Var [𝑦
𝑖
] = 𝐸 [𝑦

𝑖
] , (3)

where Var[𝑦
𝑖
] is the estimated variance of the accident

frequency and 𝐸[𝑦
𝑖
] is the estimated mean of the accident

frequency.
It is noted that accident frequency often demonstrates

overdispersion pattern, which may violate the assumption
of Poisson regression model. Overdispersion may cause
standard errors of the estimates to be underestimated (i.e., a
variable may appear to be a significant predictor when it is in
fact not significant). To confirm the pattern, basic statistical
analysis is conducted and the results are shown in Table 3.
As shown in Table 3, the variances of accident frequencies
are greater than the means, which indicates that the crash
frequency data are overdispersed. As Poisson regression is

applicable under the assumption of equidispersion, that is,
the mean is equal to the variance of the dependent variable,
the Poisson model is no longer proper for analyzing the
accident frequencies in this study. However, as an extension
of Poisson regression, NB regression can be well used under
the condition of overdispersion.

In theNB regressionmodel, an error term 𝜀
𝑖
is introduced

to account for the bias caused by the overdispersion as shown
in

𝜆
𝑖
= 𝑒
𝛽𝑥𝑖 + 𝑒

𝜀𝑖 , (4)

where 𝜀
𝑖
is a gamma distribution error with mean 1.0 and

variance 𝛼2. The resulting NB distribution equation is

𝑃 (𝑦
𝑖
) =
𝜆
𝑦𝑖

𝑖
𝑒
−𝜆
𝑖

𝑒
𝜀𝑖

𝑦
𝑖
!
. (5)

Separating 𝜀
𝑖
out of this expression produces the uncon-

ditional distribution of 𝑦
𝑖
. The equation can be written as

𝑃 (𝑦
𝑖
) =
Γ (𝜃 + 𝑦

𝑖
)

[Γ (𝜃) 𝑦𝑖!]
𝑢
𝜃

𝑖
(1 − 𝑢

𝑖
)
𝑦
𝑖

, (6)

where 𝑢𝜃
𝑖
= 𝜃/(𝜃 + 𝜆

𝑖
) and 𝜃 = 1/𝛼.

Since there is an additional parameter 𝛼 in NB regression
model, the model structure becomes

Var [𝑦
𝑖
] = 𝐸 [𝑦

𝑖
] {1 + 𝛼𝐸 [𝑦

𝑖
]} . (7)

Parameter 𝛼 relates the mean of the variance which is esti-
mated using maximum likelihood estimation.

3. Results and Discussions

3.1. Regression Results. The NB model statistics analysis was
conducted using the SPSS software package (Version 19.0). A
stepwise method was applied for identifying the significant
explanatory variables. The chi-square statistic (𝑝 < 0.1) was
also used for understanding the statistical differences for the
variables due to the relatively small sample size of this study.

Table 4 summarizes the estimation results of the NB
regression model with all the 15 variables for each buffer size.
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Table 5: p value of variables for different buffer size.

Variables p value
30 feet 60 feet 90 feet 120 feet 150 feet 180 feet 210 feet 240 feet 270 feet 300 feet

Ramp.Lanes 0.382 0.125 0.056 0.039 0.012 0.002 0.012 0.019 0.022 0.134
Ramp.Length 0.225 0.022 0.006 0.007 0.023 0.144 0.060 0.015 0.016 0.019
Ramp ADT <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Speed Limit 0.004 0.062 0.030 0.102 0.074 0.091 0.114 0.256 0.641 0.358
Average 0.153 0.052 0.023 0.037 0.027 0.059 0.047 0.073 0.170 0.128
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Figure 3: 𝑝 value distribution of independent variables for different buffer sizes.

It is noteworthy that the dispersion parameter 𝛼 is signifi-
cantly different from zero. This confirms the appropriateness
of the NB model rather than the Poisson model. The
coefficients of dependent variables interpret the degree to
which the explanatory variables contribute to the crashes.
Taking 30-foot buffer as an example, the positive coefficient
of variable Up Interstate ADT implies that the frequency of
crashes in the diverging area increases as the traffic amount
increases. Other variables with a positive coefficient include
Ramp.Lanes, PSR, Up Interstate.Length, IRI, Median
Width, and Speed Limit. In contrast, the variables with a
negative sign imply that the increasing values of these vari-
ables can reduce the crash frequency. These variables
include Median Type, Ramp ADT, Up Interstate.Lanes,
Down Interstate.Lanes, Truck Percent, Down Interstate
ADT, Ramp.Length, and Down Interstate.Length.

Using the stepwise regression approach, it is found
that, among the 15 independent variables, Ramp.Lanes,
Ramp.Length, Ramp ADT, and Speed Limit are the most
statistically significant variables in determining accident
likelihood from30-foot buffer to 300-foot buffer.The𝑝 values
of the significant independent variables are shown in Table 5.
From the table, it can be seen that 90-foot buffer has the
lowest 𝑝 value on average in estimating the crash frequency.

To have an intuitive understanding of the relationship
between crash frequency and the independent variables, a
plot of 𝑝 value distribution of independent variables for
different buffer sizes is presented in Figures 3(a)–3(c). The
𝑝 value of Ramp ADT is rather small for all buffer sizes,
which means the traffic amount has a strong influence on the
crash frequency, no matter what size of the buffer we take.

Besides, it can also be observed that𝑝 value distribution of the
three variables, Ramp.Lanes, Ramp.Length, and Speed Limit,
varies monotonically with the buffer size. And all of the 4
different independent variables, Ramp.Lanes, Ramp.Length,
Ramp ADT, and Speed Limit, have relatively low 𝑝 values
at the 90-foot buffer. Figure 3(d) also gives the average
𝑝 value distribution of the 4 independent variables listed
above for different buffers with a radius from 30 feet to
300 feet. It can be observed that the average 𝑝 value of
Ramp.Lanes, Ramp.Length, Ramp ADT, and Speed Limit
decreases rapidly at first and reaches the lowest value at the
90-foot buffer; then it starts a rising trend and gets to the
second lowest value at the 150-foot buffer.The average𝑝 value
increases sharply from 180-foot buffer to 300-foot buffer and
the possible reason may be that this area is highly influenced
by interstate segment. Highlighted by the red circle, the lower
𝑝 value indicates that the areas from 90 feet to 150 feet around
the off-ramp intersections are dominant in terms of traffic
safety.

3.2.TheResult Analysis. Table 6 gives the parameter estimates
for the significant variables from 30-foot buffer to 300-foot
buffer. For example, the crash frequency at 90-foot buffer size
can be predicted by

𝐸 (𝐴) = exp (−1.391 + 0.819 ⋅ Ramp.Lanes − 4.197

⋅ Ramp.Length + 0.195 ⋅ Ramp ADT + 0.016

⋅ Speed Limit) ,

(8)

where 𝐸(𝐴) denotes predicted crash frequency.
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Table 6: Parameter estimates for the significant variables at different buffer size.

Parameter (Intercept) [Ramp.Lanes = 0] [Ramp.Lanes = 1] Ramp.Length Ramp ADT Speed Limit
Crash 30feet −7.657 .5754 0a −4.010 .313 .049
Crash 60feet −2.233 .692 0a −3.937 .251 .016
Crash 90feet −1.391 .819 0a −4.197 .195 .016
Crash 120feet −.589 .869 0a −4.052 .175 .012
Crash 150feet −.729 1.015 0a −3.327 .199 .012
Crash 180feet −.940 1.208 0a −1.704 .214 .012
Crash 210feet −.280 .936 0a −2.233 .214 .011
Crash 240feet .457 .857 0a −2.820 .191 .008
Crash 270feet 1.201 .819 0a −2.799 .169 .003
Crash 300feet 1.469 .520 0a −2.717 .143 .006
Dependent variables: Crash 30feet, Crash 60feet, Crash 90feet, Crash 120feet, Crash 150feet, Crash 180feet, Crash 210feet, Crash 240feet, Crash 270feet, and
Crash 300feet.
Model: (Intercept), Ramp.Lanes, Ramp.Length, Ramp ADT, Speed Limit.
aSet to zero because this parameter is redundant.
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Figure 4: Parameter estimations of intercepts and independent variables for different buffer sizes.

For clarity, the estimated parameters are plotted in Fig-
ure 4 for all buffer sizes from 30 feet to 300 feet. From the
figure, the positive sign of Ramp.Lanes’ coefficient indicates
that an increase in the number of lanes contributes to a higher
crash frequency, presumably because amultilanes exit ismore
complicated than a one-lane exit. There are usually more
lane-changing maneuvers at the multilanes exit, which could
increase sideswipe accidents. The coefficient for the variable
of Ramp ADT is also positive, indicating that the number of
crashes increases with the increase of traffic volume diverging
into ramp.Moreover, the coefficient of speed limit shows that,
as the speed limit increases, the risk of accidents increases.
A previous study reported that, controlling the other factors,
purely increasing operation speed in road segments by 1%
would approximately result in 2% increment in injury crash
rate and 4% increment in fatal crash rate [24]. The only

negative sign in the regression equation is for the variable
of ramp length. It indicates that fewer crashes would occur
at longer ramp while controlling the other variables. The
reduced accident likelihood for a longer ramp is consistent
with previous findings [25–27].The driving tasks of diverging
from freeway segments into ramps require negotiating with
other vehicles to change lanes, decelerating to exit from the
main line, and accommodating the exiting traffic. A sudden
change in speed and direction due to insufficient deceleration
distance in a shorter ramp can raise the risks of both rear-end
and sideswipe crashes.

As modeled in (8), when the ramp length was increased
by 1 mile, the crash frequency would decrease by 𝑒−4.197
times. To have amore intuitive illustration of the relationship,
Figure 5 presents the accident frequencies under different
ramp length conditions. The numbers of ramp lanes are set
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Figure 5:NBmodels for predicting accidents occurring under ramp
length conditions.

as 1 and 2. Since Colorado has one of the highest speed limits
in the United States, which are 75mph for rural freeways,
65mph for urban freeways, and 35mph for off ramps, here
we set the value of the variable “Speed Limit” as 65 and
75 and the mean as 60.11. As is reported, shorter ramps
yield higher crash risk for accident prediction. Furthermore,
greater impact on the crash frequency could also be expected
for the number of ramp lanes.

For predicting the accident frequency, the relationship
between ramp ADT and crash frequency could be illustrated
in Figure 6. As shown in the figure, when the ramp ADT was
increased by 1 unit, the crash frequency would increase by
𝑒
−0.195 times. Greater impacts of the number of ramp lanes on
crash frequency could also be observed.

4. Conclusions and Extensions

The primary objective of this study was to explore the safety
influence area of diverging areas between freeway segments
and off ramps and the contributing factors of traffic crash
frequencies in the areas. The data were collected at 72
diverging areas from the two freeways across the Pikes Peak
region, Colorado, US. The NB models were developed to
identify the relationships between crashes and explanatory
variables. The analysis yielded some interesting results on
the relationship between crash frequency and ramp-related
variables at different buffer sizes ranging from 30 feet to 300
feet with a 30-foot increment.
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Figure 6:NBmodels for predicting accidents occurring under ramp
ADT conditions.

The main results could be listed as follows:

(1) Different from many previous studies, the generally
increasing buffer sizes of the diverging area are
adopted. The 4 statistically significant factors includ-
ing Ramp.Lanes, Ramp.Length, Ramp ADT, and
Speed Limit according to the deferent buffer sizes are
reported.

(2) Based on different size of influential area, the rela-
tionship between the number of ramp lanes, length
of the ramp, ramp ADT, and the speed limit and the
crash frequency is reported in Table 6. Specifically, the
number of ramp lanes, rampADT, and the speed limit
are positively correlated to the crash frequency, while
the length of the ramp is negatively correlated to the
crash frequency.

The findings of this study are expected to be beneficial to
transportation engineers in addressing safety concerns and
improving safety performances at off-ramp areas on freeways.
From the results of the study, it can be found that key factors
have different influence on crashes with buffer sizes changing.
That is to say, the safety influence area of the diverging
areas should be considered comprehensively. And the size
of the influence area should be determined according to the
area studied, rather than a fixed value. It is recommended
that similar methodology of changing buffer size would be
applied in identifying the traffic safety influence areas for
freeway diverging areas and other types of intersections in
road networks.
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