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A competitive system subject to environmental noise is established. By using the theory of stochastic differential equations and
Lyapunov function, sufficient conditions for the existence, uniqueness, stochastic boundedness, and global attraction of the positive
solution of the above system are established, respectively. An example together with its corresponding numerical simulations is
presented to confirm our analytical results.

1. Introduction

Mathematical modelling plays an important role in themath-
ematical ecology. In the past several years, ecological models
based on determinate systems emerged in large numbers
(see [1–9]). While the disturbance of environmental noise is
unavoidable in the real world, more and more researchers
start to pay attention to the study on nonlinear dynamic
systems with environmental noise and many valuable results
have been obtained (see [10–24]).

In [25], Gopalsamy introduced the following competitive
system:

𝑑𝑥
1
(𝑡) = 𝑥
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(1)

where 𝑥
𝑖
(𝑡)may represent the densities of species.The coeffi-

cients 𝑟
𝑖
, 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐

𝑖
are all positive constants. In the absence

of interspecific interactions, each species is governed by the
logistic equation; however, in the presence of interspecific
interactions, each species retains the average growth rate of

the other. In this contribution, we consider the influence of
environmental noise and obtain the following form:
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2
(𝑡) = 𝑥

2
(𝑡) [𝑟
2
− 𝑎
2
𝑥
2
(𝑡) −

𝑐
1
𝑥
1
(𝑡)

1 + 𝑥
1
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2
𝑥
2
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2
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(2)

where 𝑥
𝑖
(0) > 0, 𝑑𝑤

𝑖
(𝑡) is independent white noise with

𝑤
𝑖
(0) = 0, 𝑡 ≥ 0, and 𝜎2

𝑖
represents the intensity of the

noise, 𝑖 = 1, 2. 𝑤
𝑖
(𝑡) is standard Brownian motion defined

on the complete probability space (Ω,F, {F
𝑡
}
𝑡≥0
, 𝑃) with a

filtration {F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is right
continuous andF

0
contains all 𝑃-null sets).

In this paper, we focus on the asymptotic behavior of
positive solution of system (2). To the best of our knowledge,
there are few published papers concerning system (2). The
rest of this paper is organized as follows. In Section 2, some
preliminaries are introduced. The existence, uniqueness, and
stochastic boundedness of positive solution of system (2) are
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discussed in Section 3. The global attraction of system (2) is
studied in Section 4. As an application of ourmain results, we
present an example and its numerical simulations to support
our theoretical results in Section 5.

2. Preliminaries

In this section, we introduce some definitions and lemmas
which are useful for establishing our main results.

Definition 1. The solution (𝑥
1
(𝑡), 𝑥
2
(𝑡)) of system (2) is

stochastically bounded if, for any 𝜀
𝑖
∈ (0, 1), there exist

positive constants𝐻
𝑖
= 𝐻(𝜀

𝑖
) such that

lim
𝑡→+∞

sup𝑃 {󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)
󵄨󵄨󵄨󵄨 > 𝐻𝑖} < 𝜀𝑖, 𝑖 = 1, 2. (3)

Definition 2. Let (𝑥
1
(𝑡), 𝑥
2
(𝑡)) be a positive solution of system

(2). If another positive solution (𝑥∗
1
(𝑡), 𝑥
∗

2
(𝑡)) of system (2)

satisfies
lim
𝑡→+∞

𝐸 (
󵄨󵄨󵄨󵄨(𝑥1 (𝑡) , 𝑥2 (𝑡)) − (𝑥

∗

1
(𝑡) , 𝑥
∗

2
(𝑡))

󵄨󵄨󵄨󵄨) = 0, (4)

then (𝑥
1
(𝑡), 𝑥
2
(𝑡)) is global attractive.

Definition 3. Let (𝑥
1
(𝑡), 𝑥
2
(𝑡)) be a positive solution of system

(2). The solution 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡)) to system (2) is said to

be exponentially extinct with probability one if

lim sup
𝑡→∞

ln𝑥
𝑖
(𝑡)

𝑡
< 0, a.s. 𝑖 = 1, 2. (5)

Lemma 4 (𝐶
𝑝
inequality). Suppose that 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
are all

real numbers; then for any positive real number 𝑝 we have
󵄨󵄨󵄨󵄨𝑎1 + 𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑛

󵄨󵄨󵄨󵄨
𝑝

≤ 𝐶
𝑝
(
󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨
𝑝

+
󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨
𝑝

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨
𝑝

) , (6)

where

𝐶
𝑝
= {

1, 0 < 𝑝 ≤ 1,

𝑛
𝑝−1
, 𝑝 > 1.

(7)

Lemma 5 (see [26]). Let 𝑓(𝑡) be a nonnegative integrable and
uniformly continuous function defined on [0, +∞) such that
𝑓(𝑡) is integrable and uniformly continuous on [0, +∞). Then
lim
𝑡→+∞

𝑓(𝑡) = 0.

Lemma6 (see [27, 28]). Suppose that a stochastic process𝑋(𝑡)
on 𝑡 ≥ 0 satisfies the condition

𝐸
󵄨󵄨󵄨󵄨𝑋 (𝑡) − 𝑋 (𝑠) |

𝛼
≤ 𝑐
󵄨󵄨󵄨󵄨 𝑡 − 𝑠|

1+𝛽
, 0 ≤ 𝑠, 𝑡 < +∞, (8)

for some positive constants 𝛼, 𝛽, and 𝑐. Then there exists a
continuous modification 𝑋(𝑡) of 𝑋(𝑡), which has the property
that, for every 𝛾 ∈ (0, 𝛽/𝛼), there is a positive random variable
ℎ(𝜔) such that

𝑃{𝜔 : sup
0<|𝑡−𝑠|<ℎ(𝜔),0≤𝑠,𝑡<+∞

󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑡, 𝜔) − 𝑋 (𝑠, 𝜔)

󵄨󵄨󵄨󵄨󵄨

|𝑡 − 𝑠|
𝛾

≥
2

1 − 2−𝛾
}

= 1.

(9)

In other words, almost every sample path of 𝑋 is locally but
uniformly Hölder continuous with exponent 𝛾.

3. Existence, Uniqueness, Stochastic
Boundedness, and Extinction

We first present the existence and uniqueness of positive
solution of system (2).

Theorem 7. System (2) has a unique positive solution, say
(𝑥
1
(𝑡), 𝑥
2
(𝑡)), on 𝑡 ≥ 0. Furthermore, the solution will remain

in 𝑅2
+
= {(𝑥
1
, 𝑥
2
) ∈ 𝑅
2
: 𝑥
𝑖
> 0, 𝑖 = 1, 2} with probability one.

Proof. Theproof of this lemma is rather standard. It is obvious
that the coefficients of system (2) are local Lipschitz continu-
ous. Then, for any initial value (𝑥

1
(0), 𝑥
2
(0)) with 𝑥

𝑖
(0) > 0,

there exists a unique local solution (𝑥
1
(𝑡), 𝑥
2
(𝑡)), 𝑡 ∈ [0, 𝜏

∗
),

where 𝜏
∗
is the explosion time (see [10, 19]). Therefore, to

prove that the local solution is also global, we only need to
show that 𝜏

∗
= +∞ a.s. Let 𝑛

0
> 0 be sufficiently large so that

every component of (𝑥
1
(0), 𝑥
2
(0)) lies in [1/𝑛

0
, 𝑛
0
]. For each

integer 𝑛 ≥ 𝑛
0
, we define the stopping time as follows:

𝜏
𝑛
= inf {𝑡 ∈ [0, 𝜏

∗
) : 𝑥
1
(𝑡) ∉ (

1

𝑛
, 𝑛) or 𝑥

2
(𝑡) ∉ (

1

𝑛
, 𝑛)} .

(10)

Here we set inf 0 = +∞ (0 denotes the empty set). Obviously,
𝜏
𝑛
is increasing as 𝑛 → +∞. Denote 𝜏

+∞
= lim

𝑛→+∞
𝜏
𝑛
,

whence 𝜏
+∞

≤ 𝜏
∗
a.s. We need to show that 𝜏

+∞
= +∞ a.s.

Otherwise, there exist constants 𝑇 > 0 and 𝜀 ∈ (0, 1) such
that 𝑃{𝜏

+∞
≤ 𝑇} > 𝜀. Then, by denotingΩ

𝑛
= {𝜏
𝑛
≤ 𝑇}, there

exists an integer 𝑛
1
≥ 𝑛
0
such that for all 𝑛 ≥ 𝑛

1
,

𝑃 (Ω
𝑛
) ≥ 𝜀. (11)

We now define a 𝐶2-function 𝑉 as

𝑉 (𝑥
1
, 𝑥
2
) = [𝑥

1
− ln𝑥

1
− 1] + [𝑥

2
− ln𝑥

2
− 1] , (12)

where 𝑥
1
> 0 and 𝑥

2
> 0. It is obvious that 𝑉(𝑥

1
, 𝑥
2
) is

nonnegative. By Itô’s formula, one has

𝑑𝑉 (𝑥
1
(𝑡) , 𝑥
2
(𝑡))

= [(𝑟
1
+ 𝑎
1
) 𝑥
1
−

𝑐
2
𝑥
2
(𝑡)

1 + 𝑥
2
(𝑡)

(1 − 𝑥
1
(𝑡))

− 𝑎
1
𝑥
2

1
(𝑡) +

1

2
𝜎
2

1
− 𝑟
1

+ (𝑟
2
+ 𝑎
2
) 𝑥
2
−

𝑐
1
𝑥
1
(𝑡)

1 + 𝑥
1
(𝑡)

(1 − 𝑥
2
(𝑡))

− 𝑎
2
𝑥
2

2
(𝑡) +

1

2
𝜎
2

2
− 𝑟
2
] 𝑑𝑡

+ (1 − 𝑥
1
(𝑡)
−1
) 𝜎
1
𝑥
1
(𝑡) 𝑑𝑤

1
(𝑡)

+ (1 − 𝑥
2
(𝑡)
−1
) 𝜎
2
𝑥
2
(𝑡) 𝑑𝑤

2
(𝑡)

= 𝑓 (𝑥
1
(𝑡) , 𝑥
2
(𝑡)) 𝑑𝑡 + (1 − 𝑥

1
(𝑡)
−1
) 𝜎
1
𝑥
1
(𝑡) 𝑑𝑤

1
(𝑡)

+ (1 − 𝑥
2
(𝑡)
−1
) 𝜎
2
𝑥
2
(𝑡) 𝑑𝑤

2
(𝑡) ,

(13)
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where

𝑓 (𝑥
1
, 𝑥
2
) = (𝑟

1
+ 𝑎
1
) 𝑥
1
+ (𝑟
2
+ 𝑎
2
) 𝑥
2

−
𝑐
2
𝑥
2

1 + 𝑥
2

(1 − 𝑥
1
) −

𝑐
1
𝑥
1

1 + 𝑥
1

(1 − 𝑥
2
)

− 𝑎
1
𝑥
2

1
− 𝑎
2
𝑥
2

2
+
1

2
𝜎
2

1
+
1

2
𝜎
2

2
− 𝑟
1
− 𝑟
2
.

(14)

A calculation can show that 𝑓(𝑥
1
, 𝑥
2
) is upper bounded,

denoted by𝐻. Thus (13) can be rewritten as

𝑑𝑉 (𝑥
1
(𝑡) , 𝑥
2
(𝑡)) ≤ 𝐻𝑑𝑡 + (1 − 𝑥

1
(𝑡)
−1
) 𝜎
1
𝑥
1
(𝑡) 𝑑𝑤

1
(𝑡)

+ (1 − 𝑥
2
(𝑡)
−1
) 𝜎
2
𝑥
2
(𝑡) 𝑑𝑤

2
(𝑡) .

(15)

Integrating both sides from 0 to 𝜏
𝑛
∧ 𝑇, we acquire that

∫

𝜏
𝑛
∧𝑇

0

𝑉 (𝑥
1
(𝑡) , 𝑥
2
(𝑡))

≤ ∫

𝜏
𝑛
∧𝑇

0

[(1 − 𝑥
1
(𝑡)
−1
) 𝜎
1
𝑥
1
(𝑡) 𝑑𝑤

1
(𝑡)

+ (1 − 𝑥
2
(𝑡)
−1
) 𝜎
2
𝑥
2
(𝑡) 𝑑𝑤

2
(𝑡)]

+ ∫

𝜏
𝑛
∧𝑇

0

𝐻𝑑𝑡.

(16)

As a consequence, one has

𝑉 (𝑥
1
(𝜏
𝑛
∧ 𝑇) , 𝑥

2
(𝜏
𝑛
∧ 𝑇)) − 𝑉 (𝑥

1
(0) , 𝑥

2
(0))

≤ 𝐻 (𝜏
𝑛
∧ 𝑇) + ∫

𝜏
𝑛
∧𝑇

0

[(1 − 𝑥
1
(𝑡)
−1
) 𝜎
1
𝑥
1
(𝑡) 𝑑𝑤

1
(𝑡)

+ (1 − 𝑥
2
(𝑡)
−1
) 𝜎
2
𝑥
2
(𝑡) 𝑑𝑤

2
(𝑡)] .

(17)

Since 𝜏
𝑛
∧ 𝑇 > 0, taking expectations one shows that

𝐸 (𝑉 (𝑥
1
(𝜏
𝑛
∧ 𝑇) , 𝑥

2
(𝜏
𝑛
∧ 𝑇)))

≤ 𝑉 (𝑥
1
(0) , 𝑥

2
(0)) + 𝐻𝐸 (𝜏

𝑛
∧ 𝑇) .

(18)

Thus

𝐸 (𝑉 (𝑥
1
(𝜏
𝑛
∧ 𝑇) , 𝑥

2
(𝜏
𝑛
∧ 𝑇))) ≤ 𝑉 (𝑥

1
(0) , 𝑥

2
(0)) + 𝐻𝑇.

(19)

On the other hand, for every 𝜔 ∈ Ω
𝑛
, either 𝑥

1
(𝜏
𝑛
,

𝜔) or 𝑥
2
(𝜏
𝑛
, 𝜔) equals to either 𝑛 or 1/𝑛. Then 𝑉(𝑥

1
(𝜏
𝑛
,

𝜔), 𝑥
2
(𝜏
𝑛
, 𝜔)) is not less than either 𝑛−1− ln 𝑛 or 1/𝑛−1+ ln 𝑛.

Consequently, from (19) we have

𝑉 (𝑥
1
(0) , 𝑥

2
(0)) + 𝐻𝑇

≥ 𝐸 [1
Ω
𝑛

𝑉 (𝑥
1
(𝜏
𝑛
, 𝜔) , 𝑥

2
(𝜏
𝑛
, 𝜔))]

≥ 𝜀 [(𝑛 − 1 − ln 𝑛) ∧ (1
𝑛
− 1 + ln 𝑛)] ,

(20)

where 1
Ω
𝑛

is the indicator function ofΩ
𝑛
. Let 𝑛 → +∞, one

can show the following contradiction:

+∞ ≤ 𝑉 (𝑥
1
(0) , 𝑥

2
(0)) + 𝐻𝑇 < +∞. (21)

Hence, 𝜏
+∞

= +∞ a.s. and there exists a unique positive
solution (𝑥

1
(𝑡), 𝑥
2
(𝑡)) of system (2) on 𝑡 ≥ 0. This completes

the proof.

Next, we investigate the stochastic boundedness of the
positive solutions of system (2). To this end, we first give the
following Lemma 8.

Lemma 8. If 𝑥
𝑖
(0) < 𝑟

𝑖
/𝑎
𝑖
, 𝑖 = 1, 2, then for any real number

𝑝 ≥ 1 the solution (𝑥
1
(𝑡), 𝑥
2
(𝑡)) of system (2) satisfies

𝐸 (𝑥
𝑝

𝑖
(𝑡)) ≤ 𝐾

𝑖
(𝑝) , (22)

where

𝐾
𝑖
(𝑝) = [

𝑟
𝑖
+ ((𝑝 − 1) /2) 𝜎

2

𝑖

𝑎
𝑖

]

𝑝

, 𝑖 = 1, 2. (23)

Proof. By Itô’s formula, one can show that

𝑑𝑥
𝑝

𝑖
(𝑡) = 𝑝𝑥

𝑝−1

𝑖
(𝑡) 𝑑𝑥

𝑖
(𝑡) +

𝑝 (𝑝 − 1)

2
𝑥
𝑝−1

𝑖
(𝑡) 𝑑𝑥

𝑖
(𝑡) 𝑑𝑥

𝑖
(𝑡)

= {𝑝𝑥
𝑝−1

𝑖
(𝑡) 𝑥
𝑖
(𝑡) [𝑟
𝑖
− 𝑎
𝑖
𝑥
𝑖
(𝑡) −

𝑐
𝑗
𝑥
𝑗
(𝑡)

1 + 𝑥
𝑗
(𝑡)
]

+
𝑝 (𝑝 − 1)

2
𝜎
2

𝑖
𝑥
𝑝

𝑖
(𝑡)} 𝑑𝑡

+ 𝑝𝜎
𝑖
𝑥
𝑝

𝑖
(𝑡) 𝑑𝑤

𝑖
(𝑡) .

(24)

Integrating from 0 to 𝑡, we have

𝑥
𝑝

𝑖
(𝑡) − 𝑥

𝑝

𝑖
(0)

= ∫

𝑡

0

𝑝{𝑥
𝑝

𝑖
(𝑠) [𝑟
𝑖
− 𝑎
𝑖
𝑥
𝑖
(𝑠) −

𝑐
𝑗
𝑥
𝑗
(𝑡)

1 + 𝑥
𝑗
(𝑡)

+
(𝑝 − 1)

2
𝜎
2

𝑖
]}𝑑𝑠

+ ∫

𝑡

0

𝑝𝜎
𝑖
𝑥
𝑝

𝑖
(𝑡) 𝑑𝑤

𝑖
(𝑡) .

(25)

Taking expectations, we obtain that

𝐸 (𝑥
𝑝

𝑖
(𝑡)) − 𝐸 (𝑥

𝑝

𝑖
(0))

= ∫

𝑡

0

𝑝𝐸{𝑥
𝑝

𝑖
(𝑠) [𝑟
𝑖
− 𝑎
𝑖
𝑥
𝑖
(𝑠) −

𝑐
𝑗
𝑥
𝑗
(𝑠)

1 + 𝑥
𝑗
(𝑠)

+
(𝑝 − 1)

2
𝜎
2

𝑖
]}𝑑𝑠.

(26)
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So

𝑑𝐸 (𝑥
𝑝

𝑖
(𝑡))

𝑑𝑡

= 𝑝𝐸{𝑥
𝑝

𝑖
(𝑡) [𝑟
𝑖
− 𝑎
𝑖
𝑥
𝑖
(𝑡) −

𝑐
𝑗
𝑥
𝑗
(𝑡)

1 + 𝑥
𝑗
(𝑡)

+
(𝑝 − 1)

2
𝜎
2

𝑖
]}

≤ 𝑝𝑟
𝑖
𝐸 (𝑥
𝑝

𝑖
(𝑡)) − 𝑝𝑎

𝑖
𝐸 (𝑥
𝑝+1

𝑖
(𝑡)) +

(𝑝 − 1)

2
𝜎
2

𝑖
𝐸 (𝑥
𝑝

𝑖
(𝑡))

= 𝑝𝐸 (𝑥
𝑝

𝑖
(𝑡)) {[𝑟

𝑖
+
(𝑝 − 1)

2
𝜎
2

𝑖
] − 𝑎
𝑖
[𝐸 (𝑥
𝑝

𝑖
(𝑡))]
1/𝑝

} .

(27)

Let

𝑍
𝑖
(𝑡) = 𝐸 (𝑥

𝑝

𝑖
(𝑡)) ; (28)

we have

𝑑𝑍
𝑖
(𝑡)

𝑑𝑡
≤ 𝑝𝑍
𝑖
(𝑡) [𝑟
𝑖
+
(𝑝 − 1)

2
𝜎
2

𝑖
− 𝑎
𝑖
(𝑍
𝑖
(𝑡))
1/𝑝

] . (29)

As a consequence

𝑑𝑍
𝑖
(𝑡)

𝑍
𝑖
(𝑡)

≤ 𝑝 [𝑟
𝑖
+
(𝑝 − 1)

2
𝜎
2

𝑖
− 𝑎
𝑖
(𝑍
𝑖
(𝑡))
1/𝑝

]𝑑𝑡. (30)

Noting that 𝑥
𝑖
(0) < (𝑟

𝑖
+ (1/2)(𝑝 − 1)𝜎

2

𝑖
)/𝑎
𝑖
, 𝑖 = 1, 2, we have

0 < 𝑎
𝑖
(𝑍
𝑖
(0))
1/𝑝

= 𝑎
𝑖
𝑥
𝑖
(0) < 𝑟

𝑖
+
1

2
(𝑝 − 1) 𝜎

2

𝑖
. (31)

Furthermore, using the standard comparison principle, one
can show that

[𝐸(𝑥
𝑖
(𝑡))
𝑝

]
1/𝑝

= (𝑍
𝑖
(𝑡))
1/𝑝

≤
𝑟
𝑖
+ (1/2) (𝑝 − 1) 𝜎

2

𝑖

𝑎
𝑖

. (32)

Then we can obtain that

𝐸 (𝑥
𝑝

𝑖
(𝑡)) ≤ 𝐾

𝑖
(𝑝) , (33)

where

𝐾
𝑖
(𝑝) = [

𝑟
𝑖
+ ((𝑝 − 1) /2) 𝜎

2

𝑖

𝑎
𝑖

]

𝑝

. (34)

This completes the proof.

Finally, we discuss the stochastic boundedness of the
positive solutions of system (2).

Theorem 9. If 𝑥
𝑖
(0) < 𝑟

𝑖
/𝑎
𝑖
, 𝑖 = 1, 2, then the solution

(𝑥
1
(𝑡), 𝑥
2
(𝑡)) of system (2) is stochastically bounded.

Proof. On one hand, for any positive number 𝛿
𝑖
, 𝑖 = 1, 2, one

derives that

𝑃 {
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡) − 𝐸 (𝑥𝑖 (𝑡))

󵄨󵄨󵄨󵄨 ≥ 𝛿𝑖} ≥ 𝑃 {𝑥𝑖 (𝑡) ≥ 𝐸 (𝑥𝑖 (𝑡)) + 𝛿𝑖} .

(35)

On the other hand, by the Chebyshev inequality and
Lemma 8, we obtain that

𝑃 {
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡) − 𝐸 (𝑥𝑖 (𝑡))

󵄨󵄨󵄨󵄨 > 𝛿𝑖}

≤
Var (𝑥

𝑖
(𝑡))

𝛿2
𝑖

≤
𝐸 (𝑥
2

𝑖
(𝑡))

𝛿2
𝑖

≤
(𝑟
𝑖
+ (1/2) 𝜎

2

𝑖
)
2

𝑎2
𝑖
𝛿2
𝑖

.

(36)

Let 𝛿
𝑖
= (𝑟
𝑖
+ (1/2)𝜎

2

𝑖
)/√𝜀𝑖𝑎𝑖. Then we have

𝑃{𝑥
𝑖
(𝑡) ≥ 𝐸 (𝑥

𝑖
(𝑡)) +

𝑟
𝑖
+ (1/2) 𝜎

2

𝑖

√𝜀𝑖𝑎𝑖

} ≤ 𝜀
𝑖
. (37)

It follows from Lemma 8 that

𝐸 (𝑥
𝑖
(𝑡)) ≤

𝑟
𝑖

𝑎
𝑖

, (38)

which, together with (37), leads to

𝑃{𝑥
𝑖
(𝑡) ≥

𝑟
𝑖

𝑎
𝑖

+
𝑟
𝑖
+ (1/2) 𝜎

2

𝑖

√𝜀𝑖𝑎𝑖

}

≤ 𝑃{𝑥
𝑖
(𝑡) ≥ 𝐸 (𝑥

𝑖
(𝑡)) +

𝑟
𝑖
+ (1/2) 𝜎

2

𝑖

√𝜀𝑖𝑎𝑖

} ≤ 𝜀
𝑖
.

(39)

Let 𝐻
𝑖
(𝜀
𝑖
) = ((√𝜀𝑖 + 1)𝑟𝑖 + (1/2)𝜎

2

𝑖
)/𝑎
𝑖√𝜀𝑖, and noting that

𝑥
𝑖
(𝑡) > 0, one shows that

𝑃 {
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)

󵄨󵄨󵄨󵄨 ≥ 𝐻𝑖 (𝜀𝑖)} < 𝜀𝑖. (40)

Therefore,

lim
𝑡→∞

sup𝑃 {󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)
󵄨󵄨󵄨󵄨 ≥ 𝐻𝑖 (𝜀𝑖)} < 𝜀𝑖, (41)

which implies that the solution of system (2) is stochastically
bounded. The proof is complete.

Theorem 10. Suppose that all coefficients of system (2) are
positive and 𝑟

𝑖
< 𝜎
2

𝑖
/2, 𝑖 = 1, 2. Then the solution (𝑥

1
(𝑡), 𝑥
2
(𝑡))

of system (2) is exponentially extinct with probability one.

Proof. Define, respectively, Lyapunov functions ln 𝑥
1
(𝑡) and

ln𝑥
2
(𝑡). Then the following conclusions can be obtained by

Itô’s formula

𝑑 (ln𝑥
1
(𝑡)) = [𝑟

1
−
1

2
𝜎
2

1
− 𝑎
1
𝑥
1
(𝑡) −

𝑐
2
𝑥
2
(𝑡)

1 + 𝑥
2
(𝑡)
] 𝑑𝑡

+ 𝜎
1
𝑑𝑤
1
(𝑡) ,

𝑑 (ln𝑥
2
(𝑡)) = [𝑟

2
−
1

2
𝜎
2

2
− 𝑎
2
𝑥
1
(𝑡) −

𝑐
1
𝑥
1
(𝑡)

1 + 𝑥
1
(𝑡)
] 𝑑𝑡

+ 𝜎
2
𝑑𝑤
2
(𝑡) .

(42)

Integrating from 0 to 𝑡, one concludes that

ln𝑥
1
(𝑡) ≤ ln𝑥

1
(0) + (𝑟

1
−
1

2
𝜎
2

1
) 𝑡 + ∫

𝑡

0

𝜎
1
𝑑𝑤
1
(𝑠) ,

ln𝑥
2
(𝑡) ≤ ln𝑥

2
(0) + (𝑟

2
−
1

2
𝜎
2

2
) 𝑡 + ∫

𝑡

0

𝜎
2
𝑑𝑤
2
(𝑠) .

(43)
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Dividing 𝑡 on both sides of (43), sending 𝑡 → ∞,
and employing the strong law of large numbers for local
martingales, one acquires that

lim sup
𝑡→∞

ln𝑥
𝑖
(𝑡)

𝑡
< 0, a.s. 𝑖 = 1, 2. (44)

This completes the proof.

4. Global Attraction

In this section, we first introduce Lemma 11 before we show
the global attraction of system (2).

Lemma 11. If 𝑐
𝑖
≤ 𝑎
𝑖
, 𝑥
𝑖
(0) < 𝑟

𝑖
/𝑎
𝑖
, 𝑖 = 1, 2, then almost

every sample path of the solution (𝑥
1
(𝑡), 𝑥
2
(𝑡)) of system (2)

is uniformly continuous on 𝑡 ≥ 0.

Proof. It follows from system (2) that

𝑥
1
(𝑡) = 𝑥

1
(0) + ∫

𝑡

0

𝑔
1
(𝑠, 𝑥
1
(𝑠) , 𝑥
2
(𝑠)) 𝑑𝑠

+ ∫

𝑡

0

ℎ
1
(𝑠, 𝑥
1
(𝑠) , 𝑥
2
(𝑠)) 𝑑𝑤

1
(𝑠) ,

(45)

where

𝑔
1
(𝑠, 𝑥
1
(𝑠) , 𝑥
2
(𝑠)) = 𝑥

1
(𝑠) [𝑟
1
− 𝑎
1
𝑥
1
(𝑠) −

𝑐
2
𝑥
2
(𝑠)

1 + 𝑥
2
(𝑠)
] ,

ℎ
1
(𝑠, 𝑥
1
(𝑠) , 𝑥
2
(𝑠)) = 𝜎

1
𝑥
1
(𝑠) .

(46)

Applying Lemmas 4 and 8, for any 𝑝 > 1, one derives that

𝐸 (
󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑥1 (𝑠) , 𝑥2 (𝑠))

󵄨󵄨󵄨󵄨
𝑝

)

= 𝐸(𝑥
𝑝

1
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑟
1
− 𝑎
1
𝑥
1
(𝑠) −

𝑐
2
𝑥
2
(𝑠)

1 + 𝑥
2
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

)

≤
1

2
𝐸 (𝑥
2𝑝

1
(𝑠)) +

1

2
𝐸((𝑟

1
− 𝑎
1
𝑥
1
(𝑠) −

𝑐
2
𝑥
2
(𝑠)

1 + 𝑥
2
(𝑠)
)

2𝑝

)

≤
1

2
𝐸 (𝑥
2𝑝

1
(𝑠)) +

1

2
𝐸 [3
2𝑝−1󵄨󵄨󵄨󵄨𝑟1

󵄨󵄨󵄨󵄨
2𝑝

+ 3
2𝑝−1󵄨󵄨󵄨󵄨𝑎1𝑥1 (𝑠)

󵄨󵄨󵄨󵄨
2𝑝

+3
2𝑝−1󵄨󵄨󵄨󵄨𝑐2𝑥2 (𝑠)

󵄨󵄨󵄨󵄨
2𝑝

]

=
1

2
𝐸 (𝑥
2𝑝

1
(𝑠)) +

1

2
3
2𝑝−1󵄨󵄨󵄨󵄨𝑟1

󵄨󵄨󵄨󵄨
2𝑝

+
1

2
3
2𝑝−1󵄨󵄨󵄨󵄨𝑎1

󵄨󵄨󵄨󵄨
2𝑝

𝐸 (𝑥
2𝑝

1
(𝑠))

+
1

2
3
2𝑝−1

|𝑐
2
|
2𝑝−1

𝐸 (𝑥
2𝑝

2
(𝑠))

≤
1

2
𝐾
1
(2𝑝) +

1

2
3
2𝑝−1󵄨󵄨󵄨󵄨𝑟1

󵄨󵄨󵄨󵄨
2𝑝

+
1

2
3
2𝑝−1󵄨󵄨󵄨󵄨𝑎1

󵄨󵄨󵄨󵄨
2𝑝

𝐾
1
(2𝑝)

+
1

2
3
2𝑝−1󵄨󵄨󵄨󵄨𝑐2

󵄨󵄨󵄨󵄨
2𝑝−1

𝐾
2
(2𝑝) ≜ 𝐿

1
(𝑝) ,

𝐸 (
󵄨󵄨󵄨󵄨ℎ1 (𝑠, 𝑥1 (𝑠) , 𝑥2 (𝑠))

󵄨󵄨󵄨󵄨
𝑝

)

= 𝐸 (𝜎
𝑝

1
𝑥
𝑝

1
(𝑠)) ≤ 𝜎

𝑝

1
𝐸 (𝑥
𝑝

1
(𝑠)) ≜ 𝑀

1
(𝑝) .

(47)

Without loss of generality, we assume that 𝑝 > 2. Using the
moment inequality (see [10]) to stochastic integral (45), we
can obtain that

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
2

𝑡
1

ℎ
1
(𝑠, 𝑥
1
(𝑠) , 𝑥
2
(𝑠)) 𝑑𝑤

1
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

⩽ [
𝑝 (𝑝 − 1)

2
]

𝑝/2

(𝑡
2
− 𝑡
1
)
𝑝/2

× ∫

𝑡
2

𝑡
1

𝐸
󵄨󵄨󵄨󵄨ℎ1 (𝑠, 𝑥1 (𝑠) , 𝑥2 (𝑠))

󵄨󵄨󵄨󵄨
𝑝

𝑑𝑠,

(48)

where 0 ⩽ 𝑡
1
< 𝑡
2
< +∞ and 𝑝 > 2. We further let

𝑡
2
− 𝑡
1
< 1,

1

𝑝
+
1

𝑞
= 1; (49)

then by (47), (48), and Lemma 4, one yields that

𝐸
󵄨󵄨󵄨󵄨𝑥1 (𝑡2) − 𝑥1 (𝑡1)

󵄨󵄨󵄨󵄨
𝑝

= 𝐸[∫

𝑡
2

𝑡
1

𝑔
1
(𝑠, 𝑥
1
(𝑠) , 𝑥
2
(𝑠)) 𝑑𝑠

+∫

𝑡
2

𝑡
1

ℎ
1
(𝑠, 𝑥
1
(𝑠) , 𝑥
2
(𝑠)) 𝑑𝑤

1
(𝑠)]

𝑝

≤ 𝐸[2
𝑝−1
(∫

𝑡
2

𝑡
1

𝑔
1
(𝑠, 𝑥
1
(𝑠) , 𝑥
2
(𝑠)) 𝑑𝑠)

𝑝

+ 2
𝑝−1
(∫

𝑡
2

𝑡
1

ℎ
1
(𝑠, 𝑥
1
(𝑠) , 𝑥
2
(𝑠)) 𝑑𝑤

1
(𝑠))

𝑝

]

≤ 2
𝑝−1
𝐸(∫

𝑡
2

𝑡
1

󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑥1 (𝑠) , 𝑥2 (𝑠))
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑠)

+ 2
𝑝−1
𝐸(∫

𝑡
2

𝑡
1

󵄨󵄨󵄨󵄨ℎ1 (𝑠, 𝑥1 (𝑠) , 𝑥2 (𝑠))
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑤
1
(𝑠))

≤ 2
𝑝−1
(∫

𝑡
2

𝑡
1

1
𝑞
𝑑𝑠)

𝑝/𝑞

𝐸(∫

𝑡
2

𝑡
1

󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑥1 (𝑠) , 𝑥2 (𝑠))
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑠)

+ 2
𝑝−1
[
𝑝 (𝑝 − 1)

2
]

𝑝/2

(𝑡
2
− 𝑡
1
)
(𝑝−2)/2

× ∫

𝑡
2

𝑡
1

𝐸
󵄨󵄨󵄨󵄨ℎ1 (𝑠, 𝑥1 (𝑠) , 𝑥2 (𝑠))

󵄨󵄨󵄨󵄨
𝑝

𝑑𝑠

≤ 2
𝑝−1
(∫

𝑡
2

𝑡
1

1
𝑞
𝑑𝑠)

𝑝/𝑞

𝐸(∫

𝑡
2

𝑡
1

𝐿
1
(𝑝) 𝑑𝑠)

+ 2
𝑝−1
[
𝑝 (𝑝 − 1)

2
]

𝑝/2

(𝑡
2
− 𝑡
1
)
(𝑝−2)/2

∫

𝑡
2

𝑡
1

𝑀
1
(𝑝) 𝑑𝑠

= 2
𝑝−1
𝐿
1
(𝑝) (𝑡

2
− 𝑡
1
)
𝑝/2
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+ 2
𝑝−1
[
𝑝 (𝑝 − 1)

2
]

𝑝/2

(𝑡
2
− 𝑡
1
)
(𝑝−2)/2

𝑀
1
(𝑝)

≤ 2
𝑝−1
(𝑡
2
− 𝑡
1
)
(𝑝−2)/2

[𝐿
1
(𝑝) + [

𝑝 (𝑝 − 1)

2
]

𝑝/2

𝑀
1
(𝑝)] .

(50)

It follows from Lemma 6 that almost every sample path of
𝑥
1
(𝑡) is uniformly continuous on 𝑡 ≥ 0. Similarly, we can

show that almost every sample path of 𝑥
2
(𝑡) is uniformly

continuous on 𝑡 ≥ 0. Therefore, (𝑥
1
(𝑡), 𝑥
2
(𝑡)) is uniformly

continuous on 𝑡 ≥ 0, a.s. This completes the proof.

We can now present the result on global attraction of
system (2).

Theorem 12. If 𝑐
𝑖
≤ 𝑎
𝑖
, 𝑥
𝑖
(0) < 𝑟

𝑖
/𝑎
𝑖
, 𝑖 = 1, 2, then system

(2) has a unique global attractive positive solution, denoted by
(𝑥
1
(𝑡), 𝑥
2
(𝑡)), on 𝑡 ≥ 0.

Proof. It follows fromTheorem 7 that system (2) has a unique
positive solution (𝑥

1
(𝑡), 𝑥
2
(𝑡)). Assume that (𝑥∗

1
(𝑡), 𝑥
∗

2
(𝑡)) is

another positive solution of system (2). Consider a Lyapunov
function 𝑉(𝑡) defined by

𝑉 (𝑡) =
󵄨󵄨󵄨󵄨ln𝑥1 (𝑡) − ln𝑥∗

1
(𝑡)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨ln𝑥2 (𝑡) − ln𝑥∗

2
(𝑡)
󵄨󵄨󵄨󵄨 , 𝑡 ≥ 0.

(51)

Applying Itô’s formula, a calculation of the right differential
𝐷
+
𝑉(𝑡) of 𝑉(𝑡) along the solution, one yields that

𝐷
+
𝑉 (𝑡)

= sgn (𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡)) {[

𝑑𝑥
1
(𝑡)

𝑥
1
(𝑡)

−
(𝑑𝑥
1
(𝑡))
2

2𝑥2
1
(𝑡)

]

− [
𝑑𝑥
∗

1
(𝑡)

𝑥∗
1
(𝑡)

−
(𝑑𝑥
∗

1
(𝑡))
2

2𝑥∗
1
(𝑡)
2
]}

+ sgn (𝑥
2
(𝑡) − 𝑥

∗

2
(𝑡)) {[

𝑑𝑥
2
(𝑡)

𝑥
2
(𝑡)

−
(𝑑𝑥
2
(𝑡))
2

2𝑥2
2
(𝑡)

]

− [
𝑑𝑥
∗

2
(𝑡)

𝑥∗
2
(𝑡)

−
(𝑑𝑥
∗

2
(𝑡))
2

2𝑥∗
2
(𝑡)
2
]}

= sgn (𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡))

× {[(𝑟
1
− 𝑎
1
𝑥
1
(𝑡) −

𝑐
2
𝑥
2
(𝑡)

1 + 𝑥
2
(𝑡)

−
𝜎
2

1

2
)𝑑𝑡

+ 𝜎
1
𝑑𝑤
1
(𝑡) ]

− [(𝑟
1
− 𝑎
1
𝑥
∗

1
(𝑡) −

𝑐
2
𝑥
∗

2
(𝑡)

1 + 𝑥∗
2
(𝑡)

−
𝜎
2

1

2
)𝑑𝑡

+ 𝜎
1
𝑑𝑤
1
(𝑡) ]}

+ sgn (𝑥
2
(𝑡) − 𝑥

∗

2
(𝑡))

× {[(𝑟
2
− 𝑎
2
𝑥
2
(𝑡) −

𝑐
1
𝑥
1
(𝑡)

1 + 𝑥
1
(𝑡)

−
𝜎
2

2

2
)𝑑𝑡

+ 𝜎
2
𝑑𝑤
2
(𝑡) ]

− [(𝑟
2
− 𝑎
2
𝑥
∗

2
(𝑡) −

𝑐
1
𝑥
∗

1
(𝑡)

1 + 𝑥∗
1
(𝑡)

−
𝜎
2

2

2
)𝑑𝑡

+ 𝜎
2
𝑑𝑤
2
(𝑡) ]}

= sgn (𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡))

× [𝑎
1
(𝑥
∗

1
(𝑡) − 𝑥

1
(𝑡))

+ 𝑐
2
(

𝑥
∗

2
(𝑡)

1 + 𝑥∗
2
(𝑡)

−
𝑥
2
(𝑡)

1 + 𝑥
2
(𝑡)
)] 𝑑𝑡

+ sgn (𝑥
2
(𝑡) − 𝑥

∗

2
(𝑡))

× [𝑎
2
(𝑥
∗

2
(𝑡) − 𝑥

2
(𝑡))

+ 𝑐
1
(

𝑥
∗

1
(𝑡)

1 + 𝑥∗
1
(𝑡)

−
𝑥
1
(𝑡)

1 + 𝑥
1
(𝑡)
)] 𝑑𝑡.

(52)

Integrating from 0 to 𝑡 and taking expectations one can show
that

𝐸 (𝑉 (𝑡) − 𝑉 (0))

= 𝐸{∫

𝑡

0

sgn (𝑥
1
(𝑠) − 𝑥

∗

1
(𝑠))

× [𝑎
1
(𝑥
∗

1
(𝑠) − 𝑥

1
(𝑠))

+ 𝑐
2
(

𝑥
∗

2
(𝑠)

1 + 𝑥∗
2
(𝑠)

−
𝑥
2
(𝑠)

1 + 𝑥
2
(𝑠)
)] 𝑑𝑠

+ ∫

𝑡

0

sgn (𝑥
2
(𝑠) − 𝑥

∗

2
(𝑠))

× [𝑎
2
(𝑥
∗

2
(𝑠) − 𝑥

2
(𝑠))

+ 𝑐
1
(

𝑥
∗

1
(𝑠)

1 + 𝑥∗
1
(𝑠)

−
𝑥
1
(𝑠)

1 + 𝑥
1
(𝑠)
)] 𝑑𝑠} .

(53)

Thus
𝑑𝐸 (𝑉 (𝑡))

𝑑𝑡

= 𝐸{ sgn (𝑥
1
(𝑡) − 𝑥

∗

1
(𝑡))
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× [𝑎
1
(𝑥
∗

1
(𝑡) − 𝑥

1
(𝑡))

+ 𝑐
2
(

𝑥
∗

2
(𝑡)

1 + 𝑥∗
2
(𝑡)

−
𝑥
2
(𝑡)

1 + 𝑥
2
(𝑡)
)]

+ sgn (𝑥
2
(𝑡) − 𝑥

∗

2
(𝑡))

× [𝑎
2
(𝑥
∗

2
(𝑡) − 𝑥

2
(𝑡))

+ 𝑐
1
(

𝑥
∗

1
(𝑡)

1 + 𝑥∗
1
(𝑡)

−
𝑥
1
(𝑡)

1 + 𝑥
1
(𝑡)
)]}

≤ −𝑎
1
𝐸 (
󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥

∗

1
(𝑡)
󵄨󵄨󵄨󵄨) + 𝑐2𝐸 (

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨)

− 𝑎
2
𝐸 (
󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)
󵄨󵄨󵄨󵄨) + 𝑐1𝐸 (

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨)

= (𝑐
1
− 𝑎
1
) 𝐸 (

󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥
∗

1
(𝑡)
󵄨󵄨󵄨󵄨)

+ (𝑐
2
− 𝑎
2
) 𝐸 (

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
∗

2
(𝑡)
󵄨󵄨󵄨󵄨) ,

(54)

and hence integrating from 0 to 𝑡 one derives that

𝐸 (𝑉 (𝑡)) ≤ ∫

𝑡

0

(𝑐
1
− 𝑎
1
) 𝐸 (

󵄨󵄨󵄨󵄨𝑥1 (𝑠) − 𝑥
∗

1
(𝑠)
󵄨󵄨󵄨󵄨) 𝑑𝑠

+ ∫

𝑡

0

(𝑐
2
− 𝑎
2
) 𝐸 (

󵄨󵄨󵄨󵄨𝑥2 (𝑠) − 𝑥
∗

2
(𝑠)
󵄨󵄨󵄨󵄨) 𝑑𝑠 + 𝑉 (0) ,

(55)

which implies that

𝐸 (
󵄨󵄨󵄨󵄨(𝑥1 (𝑡) , 𝑥2 (𝑡)) − (𝑥

∗

1
(𝑡) , 𝑥
∗

2
(𝑡))

󵄨󵄨󵄨󵄨)

= 𝐸 {[
󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥

∗

1
(𝑡)
󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)
󵄨󵄨󵄨󵄨
2

]
1/2

}

≤ 𝐸 (
󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥

∗

1
(𝑡)
󵄨󵄨󵄨󵄨)

+ 𝐸 (
󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)
󵄨󵄨󵄨󵄨) ∈ 𝐿

1
[0, +∞) .

(56)

So

𝐸 (
󵄨󵄨󵄨󵄨(𝑥1 (𝑡) , 𝑥2 (𝑡)) − (𝑥

∗

1
(𝑡) , 𝑥
∗

2
(𝑡))

󵄨󵄨󵄨󵄨)

= 𝐸 {[
󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥

∗

1
(𝑡)
󵄨󵄨󵄨󵄨
2

+
󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)
󵄨󵄨󵄨󵄨
2

]
1/2

}

≤ 𝐸 (
󵄨󵄨󵄨󵄨𝑥1 (𝑡) − 𝑥

∗

1
(𝑡)
󵄨󵄨󵄨󵄨)

+ 𝐸 (
󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)
󵄨󵄨󵄨󵄨) ∈ 𝐿

1
[0,∞) ,

(57)

which, together with Lemmas 5 and 11, leads to

lim
𝑡→∞

𝐸 (
󵄨󵄨󵄨󵄨(𝑥1 (𝑡) , 𝑥2 (𝑡)) − (𝑥

∗

1
(𝑡) , 𝑥
∗

2
(𝑡))

󵄨󵄨󵄨󵄨) = 0 (58)

and hence (𝑥
1
(𝑡), 𝑥
2
(𝑡)) is global attractive on 𝑡 ≥ 0.

5. An Example

In this section, we first give an example to verify the
feasibilities of Theorems 9 and 12. Using the Milsten method
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Figure 1: The sample paths of 𝑥
1
(𝑡) and 𝑥∗

1
(𝑡).

mentioned in Higham [29], we can derive the following
discrete version of system (2):

𝑥
1
(𝑘 + 1) − 𝑥

1
(𝑘)

= 𝑥
1
(𝑘) [𝑟

1
− 𝑎
1
𝑥
1
(𝑘) −

𝑐
2
𝑥
2
(𝑘)

1 + 𝑥
2
(𝑘)
] Δ𝑡

+ 𝜎
1
𝑥
1
(𝑘)√Δ𝑡𝑁

1
(𝑘)

+
1

2
𝜎
2

1
𝑥
1
(𝑘) (𝑁

2

1
(𝑘) − 1) Δ𝑡,

𝑥
2
(𝑘 + 1) − 𝑥

2
(𝑘)

= 𝑥
2
(𝑘) [𝑟

2
− 𝑎
2
𝑥
2
(𝑘) −

𝑐
1
𝑥
1
(𝑘)

1 + 𝑥
1
(𝑘)
] Δ𝑡

+ 𝜎
2
𝑥
2
(𝑘)√Δ𝑡𝑁

2
(𝑘)

+
1

2
𝜎
2

2
𝑥
2
(𝑘) (𝑁

2

2
(𝑘) − 1) Δ𝑡,

(59)

where𝑁
1
(𝑘) and𝑁

2
(𝑘) are Gaussian random variables which

follow 𝑁(0, 1). Let us choose 𝑟
1
= 0.5, 𝑎

1
= 0.4, 𝑐

1
= 0.1,

𝜎
1
= 0.1, 𝑟

2
= 0.6, 𝑎

2
= 0.5, 𝑐

2
= 0.3, 𝜎

2
= 0.1, Δ𝑡 = 0.001,

and (𝑥
1
(0), 𝑥
2
(0)) = (0.8, 1.1), (𝑥∗

1
(0), 𝑥
∗

2
(0)) = (0.3, 0.4). A

calculation shows that the conditions of Theorems 9 and 12
are satisfied. Figures 1 and 2 show that the positive solution
of system (59) is stochastically bounded and global attractive
on 𝑡 ≥ 0.

Recalling the whole paper, we have derived sufficient
conditions for the existence, uniqueness, stochastic bounded-
ness, and global attraction of the positive solutions of system
(2). However, there are still some limitations in our work
which need to be improved. We only especially consider the
white noise which is an idealized situation. In fact, the effect
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of colorful noise on system (2) is more general in line with the
actual situation, and we leave it for our future work.
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