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We perform a bifurcation analysis of an orbit homoclinic to a hyperbolic saddle of a vector field inR4. We give an expression of the
gap between returning points in a transverse section by renormalizing system, through which we find the existence of homoclinic-
doubling bifurcation in the case 1 + 𝛼 > 𝛽 > ]. Meanwhile, after reparametrizing the parameter, a periodic-doubling bifurcation
appears and may be close to a saddle-node bifurcation, if the parameter is varied. These scenarios correspond to the occurrence of
chaos. Based on our analysis, bifurcation diagrams of these bifurcations are depicted.

1. Introduction and Problems

Homoclinic orbits are crucial to know dynamics of differ-
ential systems in many application fields. For example, the
famous FitzHugh-Nagumo equations, given by PDEs (see
[1]), describe how action potentials in neurons occur and
spread

𝑢
𝑡
= 𝑢
𝑥
𝑥 − 𝑓
𝑎
(𝑢) − 𝑤,

𝑤
𝑡
= 𝜀 (𝑢 − 𝛾𝑤) ,

(1)

where 𝑓
𝑎
(𝑢) = 𝑢(𝑢 − 𝑎)(𝑢 − 1). Through the variable

transforming 𝜁 = 𝑥 + 𝑐𝑡, system (1) is then in an ODE form:

�̇� = V,

V̇ = 𝑐V + 𝑓
𝑎
(𝑢) + 𝑤,

�̇� =
𝜀

𝑐
(𝑢 − 𝛾𝑤) .

(2)

It has an orbit homoclinic to the equilibrium (𝑢, V, 𝑤) = 0

which corresponds to a solitary wave (𝑢, 𝑤)(𝑥, 𝑡) = (𝑢, 𝑤)(𝜁)
of system (1). The authors detected how homoclinic branch
converted a 1-homoclinic orbit to a𝑁-homoclinic orbit.

In [2], a reversible water wave model was studied:
2

15
V𝑖V − 𝑏V + 𝑎V +

3

2
V2 −

1

2
(V)
2

+ [VV]


= 0. (3)

The system admits a flip orbit

𝑟 (𝑡) = 3 (𝑏 +
1

2
) sech2 (𝑡√3

4
(2𝑏 + 1)) , (4)

for 𝑏 > 2, 𝑎 > 0, and shows the existence of the 𝑁-hom-
oclinic orbit in some circumstances on two sides of the flip
bifurcation.

In fact, the homoclinic-doubling bifurcation, which
switches a 2𝑛−1-homoclinic orbit to a 2𝑛-homoclinic orbit,
exists extensively in systems with flips; see [3–6] and the
references therein. A simple and analytic model permitting
these flips was initially given by Sandstede in a three-
dimensional system in [7]. From then on, more and more
excellent work has been done based on the model (see, e.g.,
[8, 9]). Now researchers even extend these flips phenomena
to heterodimensional cycles and homoclinic bellows to study
periodic orbits and homoclinic orbits; see [10–12]. But none
of them aimed to investigate the homoclinic-doubling bifur-
cations. So in this paperwe focus on the homoclinic-doubling
problem for a kind of homoclinic flips.

Throughout the paper, we consider the following ODE
system:

�̇� = 𝑓 (𝑥, 𝜉) , (𝑥, 𝜉) ∈ R
4
×R
𝑙
, (5)
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Figure 1:The gap ‖𝛾−(𝑇, 𝜉) − 𝛾+(𝑇, 𝜉)‖ ̸= 0 in (a); there is no homoclinic orbit in general. The gap ‖𝛾
𝑖
(𝑇+𝑇

𝑖
+𝜏
𝑖
, 𝜉) − 𝛾

𝑖
(𝑇, 𝜉)‖ ̸= 0 in (b); there

is no periodic orbit in general.

where 𝑓 is sufficiently smooth and 𝑙 ≥ 4. Suppose that the
system (5) has an orbit 𝛾(𝑡) of codimension-1 homoclinic to
a saddle equilibrium 𝑝 at 𝜉 = 0. Let 𝑇 be a certain time, such
that 𝛾(𝑇) and 𝛾(−𝑇) are in some small neighborhood 𝑈 of 𝑝.
Then we can take two sections vertical to 𝑇

𝛾(±𝑇)
:

𝑆
0
: {𝑥 | 𝑥 = 𝑥 (𝑇)} ⊂ 𝑈; 𝑆

1
: {𝑥 | 𝑥 = 𝑥 (−𝑇)} ⊂ 𝑈.

(6)

Generally, if the small parameter 𝜉 ̸= 0, the homoclinic
orbit 𝛾(𝑡)will not exist. But the system (5)must have solutions
𝛾
±
(𝑡, 𝜉) with the properties

̇𝛾
±
= 𝑓 (𝛾

±
, 𝜉) ,

𝛾
+
(𝑡, 𝜉) ∈ 𝑊

𝑠
(𝑝) , 𝛾

−
(𝑡, 𝜉) ∈ 𝑊

𝑢
(𝑝) ,

𝛾
±
(𝑡, 0) = 𝛾 (𝑡) ,

𝛾
+
(𝑇, 𝜉) ∈ 𝑆

0
, 𝛾
−
(−𝑇, 𝜉) ∈ 𝑆

1
,


𝛾
−
(𝑇, 𝜉) − 𝛾

+
(𝑇, 𝜉)


≪ 1,

(7)

where 𝑊𝑠(𝑝) and 𝑊𝑢(𝑝) are the stable and unstable mani-
folds of the equilibrium 𝑝, and dim(𝑇

𝛾(𝑡)
𝑊
𝑠
∩ 𝑇
𝛾(𝑡)
𝑊
𝑢
) = 1.

Notice that if the gap ‖𝛾−(𝑇, 𝜉)−𝛾+(𝑇, 𝜉)‖ = 0 in the transverse
section 𝑆

0
, it means that the homoclinic orbit is kept (see

Figure 1(a)) but it may not be of codimension-1.
Moreover, the system (5) still has other solutions 𝛾

𝑖
(𝑡, 𝜉);

𝑖 is a natural number. Set the time of the orbit 𝛾
𝑖
(𝑡, 𝜉) from 𝑆

0

to 𝑆
1
and from 𝑆

1
to 𝑆
0
to be 𝜏

𝑖
and 𝑇

𝑖
, respectively; there are

̇𝛾
𝑖
= 𝑓 (𝛾

𝑖
, 𝜉) ,

𝛾
𝑖
(𝑇 + 𝑇

𝑖
+ 𝜏
𝑖
, 𝜉) , 𝛾

𝑖
(𝑇, 𝜉) ∈ 𝑆

0
,


𝛾
𝑖
(𝑇 + 𝑇

𝑖
+ 𝜏
𝑖
, 𝜉) − 𝛾

𝑖
(𝑇, 𝜉)


≪ 1.

(8)

Actually 𝛾
𝑖
(𝑡, 𝜉) is a regular orbit and will be periodic if the

gap ‖𝛾
𝑖
(𝑇+𝑇

𝑖
+𝜏
𝑖
, 𝜉)−𝛾

𝑖
(𝑇, 𝜉)‖ = 0; namely, the orbit starting

in 𝑆
0
will return to 𝑆

0
after the time 𝑇

𝑖
+ 𝜏
𝑖
; see Figure 1(b).

From above, we see that the gap in the transverse section
𝑆
0
of some orbits is crucial to study bifurcations of the system.

So in the next section we try to quantitate the gap size.

2. Main Method

Towell carry out our discussion, we give some hypotheses for
the system (5) here.

(𝐴
1
) The spectrum 𝜎(𝐷

𝑥
𝑓(𝑝, 𝜉)) = {𝜆

1
(𝜉), 𝜆
2
(𝜉), −𝜌

1
(𝜉),

−𝜌
2
(𝜉)}, and 𝜆

2
(𝜉) > 𝜆

1
(𝜉) > 0 > −𝜌

1
(𝜉) > −𝜌

2
(𝜉).

(𝐴
2
) As 𝑡 → +∞, the homoclinic orbit 𝛾(𝑡) → 𝑝 along
the strong stable manifold𝑊𝑠𝑠(𝑝).

(𝐴
3
) Vectors in the strong unstable (resp., stable) manifold
𝑊
𝑢𝑢 (resp.,𝑊𝑠𝑠) return to the saddle 𝑝 in the direc-

tion along𝑊𝑢 (resp.,𝑊𝑠).

We know that the discontinuity of the functions 𝛾±(𝑡, 𝜉)
or 𝛾
𝑖
(𝑡, 𝜉) is confined in a special position in 𝑆

0
. Since

dim(𝑇
𝛾(𝑡)
𝑊
𝑠
∩ 𝑇
𝛾(𝑡)
𝑊
𝑢
) = 1, the space

(𝑇
𝛾(𝑡)
𝑊
𝑠
∩ 𝑇
𝛾(𝑡)
𝑊
𝑢
)
⊥

= span {𝜑
1
} (9)

is of one dimension, where 𝜑
1
can be taken as the solution of

the linear variational system

̇𝑦 = 𝐷
𝑥
𝑓 (𝛾 (𝑡) , 0) 𝑦, (10)

and 𝜑
1
(𝑇) = (0, 𝜔

12
, 1, 0), 𝜑

1
(−𝑇) = (𝜔

11
, 0, 𝜔
13
, 𝜔
14
) based

on the assumptions of (𝐴
2
) and (𝐴

3
); refer to [13] for the

details.
Beside this, by the theories of matrix, the other three

solutions denoted by 𝜑
2
, 𝜑
3
, and 𝜑

4
of the system (10) can also

be taken in the following ways:

𝜑
2
=
− ̇𝛾 (𝑡)


̇𝛾 (𝑇)



∈ 𝑇
𝛾(𝑡)
𝑊
𝑢
∩ 𝑇
𝛾(𝑡)
𝑊
𝑠
,

𝜑
3
∈ 𝑇
𝛾(𝑡)
𝑊
𝑢
, 𝜑
4
∈ 𝑇
𝛾(𝑡)
𝑊
𝑠
,

(11)

satisfying

𝜑
2
(−𝑇) = (𝜔

21
, 0, 0, 0) , 𝜑

2
(𝑇) = (0, 0, 0, 1) ,

𝜑
3
(−𝑇) = (0, 0, 1, 0) , 𝜑

3
(𝑇) = (𝜔

31
, 𝜔
32
, 0, 𝜔
34
) ,

𝜑
4
(−𝑇) = (𝜔

41
, 𝜔
42
, 𝜔
43
, 𝜔
44
) , 𝜑

4
(𝑇) = (0, 1, 0, 0) .

(12)
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Now take a transformation

𝑥 (𝑡) = 𝛾 (𝑡) + Φ (𝑡) Ξ = 𝛾 (𝑡) + 𝜑
1
(𝑡) 𝜒
1

+ 𝜑
3
(𝑡) 𝜒
3
+ 𝜑
4
(𝑡) 𝜒
4
,

(13)

where Φ(𝑡) = (𝜑
1
(𝑡), 𝜑
2
(𝑡), 𝜑
3
(𝑡), 𝜑
4
(𝑡)) and Ξ = (𝜒

1
, 0,

𝜒
3
, 𝜒
4
)
∗. Then system (5) becomes the following ODE in the

new variable Ξ; namely,

Ξ̇ = Φ
−1
𝐷
𝜉
𝑓 (𝛾 (𝑡) , 0) 𝜉 + Φ

−1
𝐷
2

𝑥𝜉
𝑓 (𝛾 (𝑡) , 0)ΦΞ𝜉

+ 𝑂 (|Φ| |Ξ|
2
) + 𝑂 (|Φ|

−1
𝜉


2

) .

(14)

By (14),

∫

𝑇

−𝑇

Ξ̇ d𝑡 = ∫
𝑇

−𝑇

Φ
−1
𝐷
𝜉
𝑓 (𝛾 (𝑡) , 0) 𝜉 d𝑡 + h.o.t. (15)

gives

Ξ (𝑇) = Ξ (−𝑇) +𝑀𝜉 + h.o.t., (16)

where𝑀 = (𝑀
1
, 0,𝑀
3
,𝑀
4
)
∗
= ∫
𝑇

−𝑇
Φ
−1
𝐷
𝜉
𝑓(𝛾(𝑡), 0)d𝑡.

Notice that in (13), Ξ represents in some meaning the
deviation in the normal direction of the manifolds 𝑇

𝛾(𝑡)
𝑊
𝑠
∩

𝑇
𝛾(𝑡)
𝑊
𝑢, so Ξ(−𝑇) ∈ 𝑆

1
and Ξ(𝑇) ∈ 𝑆

0
; in other words, (16)

maps a point in 𝑆
1
to a point in 𝑆

0
.

On the other hand, from assumption (𝐴
1
), system (5)

admits a local linearization

𝐷
𝑥
𝑓 (𝑝, 𝜉) = 𝜆

1
(𝜉) 𝑥
1

𝜕

𝜕𝑥
1

− 𝜌
1
(𝜉) 𝑥
2

𝜕

𝜕𝑥
2

+ 𝜆
2
(𝜉) 𝑥
3

𝜕

𝜕𝑥
3

− 𝜌
2
(𝜉) 𝑥
4

𝜕

𝜕𝑥
4

,

(17)

where 𝑥 = (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
).

Suppose Ξ(𝑇) = Ξ
0
= (𝑥
0

1
, 𝑥
0

2
, 𝑥
0

3
, 𝑥
0

4
) and Ξ(−𝑇) = Ξ

1
=

(𝑥
1

1
, 𝑥
1

2
, 𝑥
1

3
, 𝑥
1

4
). Rescale the time 𝑠 = 𝑒

−𝜆
1
(𝜉)𝜏 and write 𝛼 =

𝜌
1
(𝜉)/𝜆
1
(𝜉), 𝛽 = 𝜌

2
(𝜉)/𝜆
1
(𝜉), and ] = 𝜆

2
(𝜉)/𝜆
1
(𝜉). Without

loss of generality, we assume 𝛼 ≥ 1 for sufficiently small
𝜉. Otherwise, we can set 𝑠 = 𝑒

−𝜌
1
(𝜉)𝜏 and 𝛼 = 𝜆

1
(𝜉)/𝜌
1
(𝜉).

Clearly, 𝛽 > 𝛼 ≥ 1.
Then by the linear approximation solutions of system (17),

we have thereby

𝑥 = 𝑒
𝜆
1
(𝜉)𝜏
𝑥
0

1

𝜕𝑥

𝜕𝑥
1

+ 𝑒
−𝜌
1
(𝜉)𝜏
𝑥
0

2

𝜕𝑥

𝜕𝑥
2

+ 𝑒
𝜆
2
(𝜉)𝜏
𝑥
0

3

𝜕𝑥

𝜕𝑥
3

+ 𝑒
−𝜌
2
(𝜉)𝜏
𝑥
0

4

𝜕𝑥

𝜕𝑥
4

= 𝑠
−1
𝑥
0

1

𝜕𝑥

𝜕𝑥
1

+ 𝑠
𝛼
𝑥
0

2

𝜕𝑥

𝜕𝑥
2

+ 𝑠
−]
𝑥
0

3

𝜕𝑥

𝜕𝑥
3

+ 𝑠
𝛽
𝑥
0

4

𝜕𝑥

𝜕𝑥
4

.

(18)

Formula (18) indeed maps a point in 𝑆
0
to a point in 𝑆

1
in

some subset of 𝑈 if we substitute 𝑥 by Ξ
1
.

Now take Ξ
0
∈ 𝑆
0
as the initial point. System (5) must

have an orbit 𝛾(𝑡, 𝜉) starting at Ξ
0
, passing through 𝑆

1
with an

intersection Ξ
1
, and finally returning to 𝑆

0
at some point Ξ

2
;

see Figure 1. From (13), (16), and (18), we can derive Ξ
2
−Ξ
0
=

(𝜒
2

1
, 0, 𝜒
2

3
, 𝜒
2

4
) − (𝜒

0

1
, 0, 𝜒
0

3
, 𝜒
0

4
) ≜ (𝜀

1
(𝑠, 𝜉), 0, 𝜀

3
(𝑠, 𝜉), 𝜀

4
(𝑠, 𝜉)),

where

𝜔
14
𝜀
1
(𝑠, 𝜉) = 𝛿𝑠

𝛽
− 𝜔
14
𝑥
1

3
𝑠
]
− 𝜔
44
𝜔
−1

42
𝑠
𝛼
𝑥
0

2

+ 𝜔
14
𝑀
1
𝜉 + h.o.t.,

𝜀
3
(𝑠, 𝜉) = 𝑥

1

3
− 𝜔
−1

31
𝛿𝑠 + (𝜔

13
𝜔
44
𝜔
−1

14
− 𝜔
43
) 𝜔
−1

42
𝑠
𝛼
𝑥
0

2

+𝑀
3
𝜉 + h.o.t.,

𝜀
4
(𝑠, 𝜉) = 𝜔

−1

42
𝑠
𝛼
𝑥
0

2
− 𝑥
0

2
+ 𝜔
12
𝑠
]
𝑥
1

3
+ 𝜔
32
𝜔
−1

31
𝛿𝑠

+𝑀
4
𝜉 + h.o.t.

(19)

Denote 𝑎 = 𝜔
44
𝑤
−1

42
, 𝑏 = 𝜔

32
𝑤
−1

31
, and 𝜔 = 𝜔

14
. Then the gap

between the points Ξ
2
and Ξ

0
can be represented by (refer to

[13–15])

𝛾 (2𝑇 + 𝜏, 𝜉) − 𝛾 (𝑇, 𝜉)

= 𝜀
𝛾
(𝑠, 𝜉)

= −𝑎𝑀
4
𝜉𝑠
𝛼
+ 𝛿𝑠
𝛽
+ 𝜔𝑀

3
𝜉𝑠

]
− 𝑎𝑏𝛿𝑠

1+𝛼

+ 𝜔𝑀
1
𝜉 + 𝑂 (𝑠

1+]
) .

(20)

Obviously, 𝜀
𝛾
(𝑠, 𝜉) = 0 means that system (5) has closed

orbits.

3. Saddle-Node Bifurcations

From this section, we analyze bifurcation construction of
system (5). Firstly, set 𝑟 = 𝑠𝛼. Then 𝜀

𝛾
(𝑟, 𝜉) = 0 equals

𝑎𝑀
4
𝜉𝑟 − 𝛿𝑟

𝛽/𝛼
− 𝜔𝑀

3
𝜉𝑟

]/𝛼
+ 𝑎𝑏𝛿𝑟

1+(1/𝛼)
− 𝜔𝑀

1
𝜉

+ 𝑂 (𝑟
(1+])/𝛼

) = 0

(21)

or

𝑟 =
𝛿

𝑎𝑀
4
𝜉
𝑟
𝛽/𝛼

+
𝜔𝑀
3
𝜉

𝑎𝑀
4
𝜉
𝑟
]/𝛼

−
𝑎𝑏𝛿

𝑎𝑀
4
𝜉
𝑟
1+(1/𝛼)

+
𝜔𝑀
1
𝜉

𝑎𝑀
4
𝜉
+

1

𝑎𝑀
4
𝜉
𝑂 (𝑟
(1+])/𝛼

) .

(22)

Define 𝑆(𝜉) = 𝜔𝑀
1
𝜉/𝑎𝑀

4
𝜉. When ‖𝑆(𝜉)‖ =

𝑂(‖𝑀
4
𝜉‖
𝛼/(𝛽−𝛼)

), 𝑎𝑀
4
𝜉𝑟 is the leading term in (21), so

(21) has a small solution 𝑟 = 𝑆(𝜉) + h.o.t. > 0; but as
‖𝑆(𝜉)‖ ≫ ‖𝑀

4
𝜉‖
𝛼/(𝛽−𝛼), 𝑟 = (−𝛿−1𝜔𝑀

1
𝜉)
𝛼/𝛽

+ h.o.t. > 0. No
matter which case, a periodic orbit of system (5) exists.

Theorem 1. Under (𝐴
1
)–(𝐴
3
) and for 1 + 𝛼 > 𝛽, system (5)

has a 1-periodic orbit.

To look for saddle-node bifurcations of 1-periodic orbits,
it is enough to differentiate (22) with respect to 𝑟. Consider

1 =
𝛽𝛿

𝛼𝑎𝑀
4
𝜉
𝑟
(𝛽/𝛼)−1

+
]𝜔𝑀
3
𝜉

𝛼𝑎𝑀
4
𝜉
𝑟
(]/𝛼)−1

+
1

𝑎𝑀
4
𝜉
𝑂 (𝑟
1/𝛼
) .

(23)
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Solving (23) for 𝑟, there is

𝑟 = (
𝛼𝑎𝑀
4
𝜉

𝛽𝛿
)

𝛼/(𝛽−𝛼)

+ 𝑂(

𝑀
3
𝜉


𝛼/(𝛽−𝛼)
𝑀
4
𝜉


𝛼(]−𝛼)/(𝛽−𝛼)2
) .

(24)

Then substituting (24) into (22), an asymptotic expression for
a saddle-node bifurcation is given by

𝑆 (𝜉) =
𝛽 − 𝛼

𝛽
(
𝛼𝑎𝑀
4
𝜉

𝛽𝛿
)

𝛼/(𝛽−𝛼)

+ 𝑂(

𝑀
3
𝜉



𝑀
4
𝜉


(]−𝛽+𝛼)/(𝛽−𝛼)
) .

(25)

Furthermore, if we continue to differentiate (23), there is

0 =
(𝛽 − 𝛼) 𝛽𝛿

𝛼
2
𝑎𝑀
4
𝜉
𝑟
(𝛽/𝛼)−2

+
(] − 𝛼) ]𝜔𝑀

3
𝜉

𝛼
2
𝑎𝑀
4
𝜉

𝑟
(]/𝛼)−2

+
1

𝑎𝑀
4
𝜉
𝑂 (𝑟
(1−𝛼)/𝛼

) .

(26)

Equation (26) is solvable for 𝛽 > ] with

𝑟 = (−
(] − 𝛼)]𝜔𝑀

3
𝜉

(𝛽 − 𝛼)𝛿𝛽
)

𝛼/(𝛽−])

+ 𝑂(

𝑀
3
𝜉


𝛼(1−𝛼)/(𝛽−])2
) .

(27)

This is a triple solution of (22). It means that a saddle-node
bifurcation of a triple 1-periodic orbit exists. The asymptotic
expression can be derived from (22) and (23):

𝑆 (𝜉) = (−
(] − 𝛼)]𝜔𝑀

3
𝜉

(𝛽 − 𝛼)𝛿𝛽
)

𝛼/(𝛽−])

+ 𝑂(

𝑀
3
𝜉


𝛼/(𝛽−])
) ,

(28)

where

𝜔𝑀
3
𝜉 = −

(𝛽 − 𝛼) 𝛿𝛽

(] − 𝛼) ]
(
𝛼 (] − 𝛼) 𝑎𝑀

4
𝜉

𝛿𝛽 (] − 𝛽)
)

(𝛽−])/(𝛽−𝛼)

+ 𝑜 (

𝑀
4
𝜉


(𝛽−])/(𝛽−𝛼)
) .

(29)

Theorem 2. Under (𝐴
1
)–(𝐴
3
) and for 1 + 𝛼 > 𝛽, system (5)

has a saddle-node bifurcation 𝑆𝑁 of a double 1-periodic orbit
given by (25) in the parameter space; moreover, for 𝛽 > ],
system (5) has a saddle-node bifurcation 𝑆𝑁

2 of a triple 1-
periodic orbit given by (28).

Remark 3. For the case 𝛽 < ], (26) has no sufficiently small
positive solution, so there does not exist 𝑛-multiple 1-periodic
orbit bifurcation for 𝑛 ≥ 3.

Now we define a surface in the parameter space of 𝜉:

𝐻
1
(𝜉) = {𝜉 : 𝑀

1
𝜉 + 𝑜 (1) = 0} . (30)

On the surface𝐻
1
, (21) equals

𝑟 (𝑎𝑀
4
𝜉 − 𝛿𝑟

(𝛽/𝛼)−1
− 𝜔𝑀

3
𝜉𝑟
(]/𝛼)−1

+ 𝑎𝑏𝛿𝑟
1/𝛼

+𝑂 (𝑟
((1+])/𝛼)−1

)) = 0.

(31)

Clearly, it has a zero solution 𝑟
1
= 0. If we differentiate the

part in the parentheses in (31) for 𝑟, we get

−
𝛽 − 𝛼

𝛼
𝛿𝑟
(𝛽/𝛼)−2

−
] − 𝛼
𝛼

𝜔𝑀
3
𝜉𝑟
(]/𝛼)−2

+ 𝑂 (𝑟
(1/𝛼)−1

) = 0.

(32)

It has a solution for 𝛽 > ]:

𝑟
2
= (−

] − 𝛼
(𝛽 − 𝛼)𝛿

𝜔𝑀
3
𝜉)

𝛼/(𝛽−])

+ 𝑂(

𝑀
3
𝜉


𝛼(1+𝛼−])/(𝛽−])2
) .

(33)

Then we obtain another saddle-node bifurcation similarly:

𝑅 (𝜉) =
𝛽 − ]
𝛽 − 𝛼

(−
] − 𝛼

(𝛽 − 𝛼) 𝛿
𝜔𝑀
3
𝜉)

(]−𝛼)/(𝛽−])

+ 𝑂(

𝑀
3
𝜉


(1+]−𝛽)/(𝛽−])
) ,

(34)

where 𝑅(𝜉) = 𝑎𝑀
4
𝜉/𝜔𝑀

3
𝜉.

Notice that (32) has no solution for 𝛽 < ]. But from (31),
a small positive solution in the form 𝑟



2
= (𝛿
−1
𝑎𝑀
4
𝜉)
𝛼/(𝛽−𝛼)

+

𝑂(‖𝑀
3
𝜉‖
𝛼/(𝛽−𝛼)

‖𝑀
4
𝜉‖
𝛼(]−𝛼)/(𝛽−𝛼)2

) exists.
So we can conclude the following.

Theorem 4. Under (𝐴
1
)–(𝐴
3
) and for 1 + 𝛼 > 𝛽 > ],

system (5) has a homoclinic-saddle-node bifurcation 𝐻𝑆𝑁 of
a 1-homoclinic orbit and a double 1-periodic orbit confined on
𝐻
1
∩ 𝑅(𝜉) while, for 𝛽 < ], system (5) has only a 1-homoclinic

orbit and a 1-periodic orbit in the parameter space and the 1-
homoclinic orbit is of codimension-1.

Remark 5. In Theorem 4, the 1-homoclinic orbit may be
nongeneral, that is, may be a flip orbit, because the orbit can
connect the saddle along the weak unstable and strong stable
directions if𝑀

4
𝜉 = 0.

4. Homoclinic-Doubling and
Periodic-Doubling Bifurcations

Now we focus on 2-homoclinic orbits and 2-periodic orbits.
Correspondingly, the gap functions are

𝑟
1
−

𝛿

𝑎𝑀
4
𝜉
𝑟
𝛽/𝛼

1
−
𝜔𝑀
3
𝜉

𝑎𝑀
4
𝜉
𝑟
]/𝛼
2

+
𝑎𝑏𝛿

𝑎𝑀
4
𝜉
𝑟
1+(1/𝛼)

1
− 𝑆 (𝜉)

+
1

𝑎𝑀
4
𝜉
𝑂 (𝑟
1/𝛼

1
𝑟
]/𝛼
2
) = 0,

𝑟
2
−

𝛿

𝑎𝑀
4
𝜉
𝑟
𝛽/𝛼

2
−
𝜔𝑀
3
𝜉

𝑎𝑀
4
𝜉
𝑟
]/𝛼
1

+
𝑎𝑏𝛿

𝑎𝑀
4
𝜉
𝑟
1+(1/𝛼)

2
− 𝑆 (𝜉)

+
1

𝑎𝑀
4
𝜉
𝑂 (𝑟
1/𝛼

2
𝑟
]/𝛼
1
) = 0.

(35)
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Figure 2: Bifurcation surfaces for 1 + 𝛼 > 𝛽, ] > 𝛽 in (a) and for 1 + 𝛼 > 𝛽 > ] in (b). 0 means no periodic orbits and 𝑛 means 𝑛 periodic
orbits. Chaos occurs in the region bounded by HD2

𝑛

and PD2
𝑛

.

To find a 2-homoclinic orbit, the above two equations
must have a kind of solutions with 𝑟

1
= 0 and 𝑟

2
> 0. That

is,

𝑟
]/𝛼
2

+
𝜔𝑀
1
𝜉

𝜔𝑀
3
𝜉
+

1

𝜔𝑀
3
𝜉
𝑂 (𝑟
(]+𝛽)/𝛼
2

) = 0,

𝑟
2
−

𝛿

𝑎𝑀
4
𝜉
𝑟
𝛽/𝛼

2
+

𝑎𝑏𝛿

𝑎𝑀
4
𝜉
𝑟
1+(1/𝛼)

2
− 𝑆 (𝜉)

+
1

𝑎𝑀
4
𝜉
𝑂 (𝑟
(1+𝛽)/𝛼

2
) = 0.

(36)

Then we get

𝑆 (𝜉) = (−
𝑀
1
𝜉

𝑀
3
𝜉
)

𝛼/]

−
𝛿

𝑎𝑀
4
𝜉
(−

𝑀
1
𝜉

𝑀
3
𝜉
)

𝛽/]

+
1

𝑎𝑀
4
𝜉
𝑂(



𝑀
1
𝜉

𝑀
3
𝜉



(1+𝛼)/]

) ,

(37)

in the region defined by ‖𝑀
1
𝜉‖ ≪ ‖𝑀

3
𝜉‖
𝛽/(𝛽−]).

To find a 2-periodic orbit, the gap functions will have two
positive solutions 𝑟

1
and 𝑟
2
. We suppose that 𝑟

2
= (1 + 𝜖)𝑟

1

after the reparametrization 𝜉 = (𝜉
1
, 𝜖). Then there are

𝑟
1
−

𝛿

𝑎𝑀
4
𝜉
𝑟
𝛽/𝛼

1
−
𝜔𝑀
3
𝜉

𝑎𝑀
4
𝜉
(1 + 𝜖)

]/𝛼
𝑟
]/𝛼
1

− 𝑆 (𝜉)

+
1

𝑎𝑀
4
𝜉
𝑂 (𝑟
(1+𝛼)/𝛼

1
) = 0,

(1 + 𝜖) 𝑟
1
−

𝛿

𝑎𝑀
4
𝜉
(1 + 𝜖)

𝛽/𝛼
𝑟
𝛽/𝛼

1
−
𝜔𝑀
3
𝜉

𝑎𝑀
4
𝜉
𝑟
]/𝛼
1

− 𝑆 (𝜉) +
1

𝑎𝑀
4
𝜉
𝑂 ((1 + 𝜖)

(1+𝛼)/𝛼
𝑟
(1+𝛼)/𝛼

1
) = 0.

(38)

Subtracting the two equations, there is

𝑟
1
= (

𝛿
−1
𝜖

(1 + 𝜖)
𝛽/𝛼

− 1

)

𝛼/(𝛽−𝛼)

(𝑎𝑀
4
𝜉)
𝛼/(𝛽−𝛼)

+ 𝑂(

𝑀
3
𝜉


𝛼/(𝛽−𝛼)

‖𝜖‖ 𝑟
(]−𝛼)/(𝛽−𝛼)
1

) .

(39)

Finally, we get the 2-periodic orbit bifurcation:

𝑆 (𝜉) = (1 −
𝜖

(1 + 𝜖)
𝛽/𝛼

− 1

)(
𝛿
−1
𝜖

(1 + 𝜖)
𝛽/𝛼

− 1

)

𝛼/(𝛽−𝛼)

× (𝑎𝑀
4
𝜉)
𝛼/(𝛽−𝛼)

+ 𝑂(

𝑀
3
𝜉



𝑀
4
𝜉


(𝛼+]−𝛽)/(𝛽−𝛼)
) .

(40)

Remark 6. Obviously, if 𝑟
1
= 𝑟
2
, the 2-periodic orbit is close to

the double 1-periodic orbit perturbed from the saddle-node
bifurcation. This is true by taking limit 𝜖 → 0 in (40), and
onemay get the similar approximate expression given in (25).

If we continue the computation, we can finally get an
asymptotic expression of the homoclinic-doubling bifurca-
tion of 2𝑛-homoclinic orbit and the periodic-doubling bifur-
cation of 2𝑛-periodic orbit with the same leading terms as in
(37) and (40), respectively. For example, for a 4-homoclinic
orbit or a 4-periodic orbit, the gap functions are

𝑟
1
−

𝛿

𝑎𝑀
4
𝜉
𝑟
𝛽/𝛼

1
−
𝜔𝑀
3
𝜉

𝑎𝑀
4
𝜉
𝑟
]/𝛼
2

+
𝑎𝑏𝛿

𝑎𝑀
4
𝜉
𝑟
1+(1/𝛼)

1

− 𝑆 (𝜉) +
1

𝑎𝑀
4
𝜉
𝑜 (1) = 0,

𝑟
2
−

𝛿

𝑎𝑀
4
𝜉
𝑟
𝛽/𝛼

2
−
𝜔𝑀
3
𝜉

𝑎𝑀
4
𝜉
𝑟
]/𝛼
3

+
𝑎𝑏𝛿

𝑎𝑀
4
𝜉
𝑟
1+(1/𝛼)

2

− 𝑆 (𝜉) +
1

𝑎𝑀
4
𝜉
𝑜 (1) = 0,

𝑟
3
−

𝛿

𝑎𝑀
4
𝜉
𝑟
𝛽/𝛼

3
−
𝜔𝑀
3
𝜉

𝑎𝑀
4
𝜉
𝑟
]/𝛼
4

+
𝑎𝑏𝛿

𝑎𝑀
4
𝜉
𝑟
1+(1/𝛼)

3

− 𝑆 (𝜉) +
1

𝑎𝑀
4
𝜉
𝑜 (1) = 0,

𝑟
4
−

𝛿

𝑎𝑀
4
𝜉
𝑟
𝛽/𝛼

4
−
𝜔𝑀
3
𝜉

𝑎𝑀
4
𝜉
𝑟
]/𝛼
1

+
𝑎𝑏𝛿

𝑎𝑀
4
𝜉
𝑟
1+(1/𝛼)

4

− 𝑆 (𝜉) +
1

𝑎𝑀
4
𝜉
𝑜 (1) = 0.

(41)

We need only to consider solutions 𝑟
1
= 0 and 𝑟

𝑖
> 0, 𝑖 =

2, 3, 4, for the 4-homoclinic orbit or all the positive solutions
for 4-periodic orbit. For concision, we omit the details here.

Now we can claim our last theorem.
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Theorem 7. Under (𝐴
1
)–(𝐴
3
) and for 1 + 𝛼 > 𝛽 > ],

system (5) has a homoclinic-doubling bifurcation 𝐻𝐷2
𝑛

of 2𝑛-
homoclinic orbit and a periodic-doubling bifurcation 𝑃𝐷2

𝑛

of
2
𝑛-periodic orbit defined by (37) and (40), respectively, in the
parameter region ‖𝑀

1
𝜉‖ ≪ ‖𝑀

3
𝜉‖
𝛽/(𝛽−]).

From the above analysis, one may see that all of these
bifurcation surfaces have the same order 𝑆(𝜉) =

𝑂(‖𝑀
4
𝜉‖
𝛼/(𝛽−𝛼)

) except HSN and are tangent to 𝐻
1
. To

be clear, we illustrate these bifurcation surfaces in the
parameter plane in Figure 2.
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